
Appendices for "A Unified Approach to Sparse
Tweedie Modeling of Multi-Source Insurance Claim

Data"

Simon Fontaine⇤, Yi Yang†, Wei Qian‡, Yuwen Gu§, Bo Fan¶

July 19, 2019

Appendix A. Projection onto the L1-Ball

Proof of Lemma 1. Note that (16) can be written as

prox⌧h(u) = argmin
�j

1

2
k�j � (�̃j � tjrj`(�̃j; b̃�j))k

2
2 + �vjtjk�jk1,

where ⌧ = �vjtj , h = || · ||1 and u = �̃j � tjrj`(�̃j; b̃�j). By the Moreau decomposition (Parikh

et al., 2014), we have

proxh(u) = u� proxh⇤(u),

where h⇤ denotes the convex conjugate of h. We want to derive a similar identity for ⌧h, ⌧ > 0. The

convex conjugate of ⌧h is

(⌧h)⇤(u) = sup
v

�
u>v � ⌧h(v)

�
= ⌧ sup

v

✓
1

⌧
u>v � h(v)

◆
= ⌧h

⇤
⇣u
⌧

⌘
.

⇤Department of Mathematics and Statistics, University of Montreal (fontaines@dms.umontreal.ca)
†Corresponding author, Department of Mathematics and Statistics, McGill University (yi.yang6@mcgill.ca)
‡Department of Applied Economics and Statistics, University of Delaware (weiqian@udel.edu)
§Department of Statistics, University of Connecticut (yuwen.gu@uconn.edu)
¶Department of Statistics, University of Oxford (bo.fan@lmh.ox.ac.uk)

1

Then, we get

prox(⌧h)⇤(u) = argmin
v

(⌧h)⇤(v) +
1

2
kv � uk22

= argmin
v

⌧h
⇤
⇣v
⌧

⌘
+

1

2
kv � uk22

= argmin
v

h
⇤
⇣v
⌧

⌘
+

1

2⌧
kv � uk22 (v = ⌧z)

= argmin
⌧z

h
⇤ (z) +

1

2⌧
k⌧z� uk22

= ⌧ argmin
z

h
⇤ (z) +

1

2 1
⌧

���z�
u

⌧

���
2

2

= ⌧ prox 1
⌧ h

⇤

⇣u
⌧

⌘
,

so we have the identity

prox⌧h(u) = u� prox(⌧h)⇤(u) = u� ⌧ prox 1
⌧ h

⇤

⇣u
⌧

⌘
.

For h = || · ||1, it can be shown that ⌧ prox 1
⌧ h

⇤
�
u
⌧

�
is equivalent to the L2-projection of u onto an

L1-ball B1(⌧),

⌧ prox 1
⌧ h

⇤

⇣u
⌧

⌘
= ProjB1(⌧)(u).

To see this, note that the convex conjugate h
⇤ of h = || · ||1 is

h
⇤(u) = I{u:||u||11} =

8
><

>:

0, ||u||1  1,

+1, ||u||1 > 1,

and

2⌧h⇤
⇣z
⌧

⌘
=

8
><

>:

0, ||z||1  ⌧,

+1, ||z||1 > ⌧.

2

Then

⌧ prox 1
⌧ h

⇤

⇣u
⌧

⌘
= ⌧ argmin

v
h
⇤(v) +

⌧

2

���v �
u

⌧

���
2

2

= argmin
z

h
⇤
⇣z
⌧

⌘
+

⌧

2

���
z

⌧
�

u

⌧

���
2

2
(z = ⌧v)

= argmin
z

h
⇤
⇣z
⌧

⌘
+

1

2⌧
kz� uk22

= argmin
z

2⌧h⇤
⇣z
⌧

⌘
+ kz� uk22 .

The objective function is minimized at where 2⌧h⇤ � z
⌧

�
is finite, i.e., ||z||1  ⌧ . Hence, we get

⌧ prox 1
⌧ h

⇤

⇣u
⌧

⌘
= argmin

z:||z||1⌧
kz� uk22 = ProjB1(⌧)(u).

If ||u||1  ⌧ , we obviously have ProjB1(⌧)(u) = u. Otherwise, we have to solve

KX

k=1

(|uk|� ⇠)+ = ⌧

for ⇠ and compute

⇥
ProjB1(⌧)(u)

⇤
k
= sgn(uk) (|uk|� ⇠)+ .

Duchi et al. (2008) suggest a linear time algorithm to perform projection onto the simplex that

can be easily extended to projection onto the L1-ball. Algorithm 5 summarizes the procedure.

Appendix B. KKT Conditions

Denote u = �̃j � tjrj`(�̃j|b̃�j). Note that

||u||1 = max
k

|uk| = max
k

|e>k u|,

where ek = (I(j = k), 1  j  K)>. For each individual |e>k u|, we have

@|e>k u| = ek@|e
>
k u| = ek · sk,

3

Algorithm 5: Linear time projection of y 2 Rn onto the L1-ball of radius z > 0 (Duchi et al.,
2008)

1. Consider v = (|y1|, . . . , |yn|)>;

2. Project v onto the simplex:

(a) Initialize U = {1, . . . , n}, s = 0, ⇢ = 0;

(b) While U 6= ;, do:

i. Pick k 2 U at random;
ii. Partition U = G [L, where G = {j 2 U |vj � vk} and L = U \G;

iii. Compute �⇢ = |G| and �s =
P

j2G vj;
iv. If (s+�s)� (⇢+�⇢)vk < z, then set s s+�s, ⇢ ⇢+�⇢ and U L.

Otherwise, set U G \ {k};

(c) Set ✓ = (s� z)/⇢;

(d) Compute the projection onto the simplex w = (w1, . . . , wn)>, where
wi = max(vi � ✓, 0);

3. Output x = (x1, . . . , xn)>, the projection onto the L1-Ball, where xi = wi · sgn(yi).

where

sk =

8
>>>><

>>>>:

{1} e>k u > 0,

{�1} e>k u < 0,

[�1, 1] e>k u = 0.

Thus we can obtain the sub-differential for ||u||1

@||u||1 = conv
[

k2M(u)

{ek · sk},

where M(u) =
�
k : |e>k u| = ||u||1

is the maximizing indices set and conv denotes the convex

hull. This implies that an optimal solution needs to satisfy the condition: 0 2 rj`(�̃j; b̃�j) +

t
�1
j (�j � �̃j) + �vj@||�j||1, i.e.,

1

�vjtj

⇣
�̃j � tjrj`(�̃j; b̃�j)

⌘
�

1

�vjtj
�j 2 conv

[

k2M(�j)

{ek · sk}. (24)

4

If �j = 0, then M(�j) = {1, . . . , K} resulting in a convex hull equal to the L1 unit ball formed

by {ek · s}Kk=1. Thus, from (24), we require k�̃j � tjrj`(�̃j; b̃�j)k1  �vjtj . In practice, our

algorithm builds the model upwards: it will never exclude a feature from the model (i.e., by setting

�j = 0) once it is already included (i.e., �̃j 6= 0 for some previous iteration) so that these two

inequalities will be equivalent.

For �j 6= 0, we need to verify the above inclusion directly. If (24) holds, then we must have

1

�vjtj

⇣
�̃
(k)
j � tjrj`(�̃j; b̃�j)

(k)
⌘
�

1

�vjtj
�
(k)
j = 0

for all k 62M(�j), i.e., |�(k)
j | 6= k�jk1, while kt�1

j �̃j �rj`(�̃j; b̃�j)� t
�1
j �jk1 = �vj since the

convex hull must be a subset of the boundary of the L1 ball of radius �vj . These two conditions are

also sufficient for (24) to hold.

Appendix C. Algorithm Verification

To check the validity of our algorithm, we consider the modeling under L1/L1 regularization of

simulated data with K = 5, p = 20, nk = 200 and 4 true variables in setting 1.

In Section 3.1, we have seen that the inner loop of the algorithm (the MStweedie-GPG algorithm)

should feature the strict descent property. We can plot the difference in the objective function

`Q(�̃0, �̃)� `Q(�0,�) and check whether this value is positive for every cycle of the MStweedie-

GPG algorithm. The theoretical solution should always exhibit the descent property where a

numerical solution will possibly violate that check. Figure A1 displays this verification for the current

example. Except minor violations, we can see that this property is satisfied by our implementation.

The KKT conditions are at the heart of minimizing the penalized likelihood `(�0,�) + �P↵(�).

Along the solution path, the KKT conditions in (18) should always be verified by the theoretical

solution. However, a numerical solution could only approach this analytical value within certain

precision and therefore may fail the KKT check. Thus, we can plot the values of these conditions

for both zero and non-zero estimates and check how far they deviate from their theoretical values.

Figure A2 shows these conditions for every j = 1, . . . , p along the sequence of � values. There are

exactly no violations of the condition on excluded variables and the condition on included variables

is never violated by a large value.

5

0 2000 4000 6000

0.
0

0.
5

1.
0

1.
5

2.
0

Descent property check

Iteration number

O
bj

. f
un

ct
io

n
di

ffe
re

nc
e

Figure A1: Verification of the descent property in the MStweedie-GPG algorithm with synthetic

data: the difference in objective function is plotted versus the iteration number (representing one

MStweedie-GPG cycle). The vertical dotted lines represent new � values in the solution path.

−4 −2 0 2

0.
00
00

0.
00
10

0.
00
20

(a) KKT cond. : Included variables

log(λ)

||U
j|| 1

v j
−
λ

−4 −2 0 2

−3
−2

−1
0

1

(b) KKT cond. : Excluded variables

log(λ)

||U
j|| 1

v j
−
λ

Figure A2: Verification of the KKT conditions with synthetic data. The curves in each panel

trace the path of the value ||�j ||1/vj � � for one j. In part (a), we verify the condition on

non-zero estimates, i.e. variables included in the model for a given �, where we expect the value

to be 0. In part (b), we verify the condition on zero estimates, i.e. variables excluded from the

model, where we expect the value to be below 0.

6

Appendix D. Convergence of MStweedie-GPG with Line Search

Lemma 2. For each j 2 {0, 1, . . . , p}, rj`(�j; b̃�j) is uniformly Lipschitz continuous in the

sublevel set L0 = {(�0,�) : f(�0,�)  f(0,0)}, where f(�0,�) = `(�0,�) + �P↵(�). In other

words, there exists Mj 2 (0,1) such that the inequality

krj`(�j; b̃�j)�rj`(�
0
j; b̃�j)k2 Mjk�j � �0

jk2

holds for any �j,�
0
j and b̃�j such that (�j, b̃�j) 2 L0 and (�0

j, b̃�j) 2 L0. Moreover, r`(�0,�)

is uniformly Lipschitz continuous with constant M 2 (0,1), i.e., for all (�0,�), (�
0
0,�

0) 2 L0,

kr`(�0,�)�r`(�
0
0,�

0)k2 Mk(�0,�)� (�0
0,�

0)k2.

Proof of Lemma 2

Proof. As will be shown in the proof of Theorem 1, the MStweedie-GPG algorithm is descending

along its iterations and we can thus restrict the domain of (�0,�) to the sublevel set L0. Without

loss of generality, assume not all y(k)i ’s are zero. Define ⌘(k)i = �
(k)
0 + x(k)>

i �(k)
, i = 1, . . . , nk, k =

1, . . . , K. It follows that the set

C0 = {⌘ = (⌘(k)i , 1  i  nk, 1  k  K) : (�0,�) 2 L0}

is convex compact. Therefore, for all (�0,�) 2 L0, ⌘
(k)
i is bounded by ⌘max, where

⌘max = max
1ink,1kK

sup
(�0,�)2L0

|⌘
(k)
i | <1.

Also, w(k)
i and y

(k)
i are bounded, respectively, by

wmax = max
1ink,1kK

w
(k)
i and ymax = max

1ink,1kK
y
(k)
i .

Let

w
(k)
i = w

(k)
i

�
(⇢� 1)y(k)i e

(1�⇢)⌘
(k)
i + (2� ⇢)e(2�⇢)⌘

(k)
i
�
.

7

Note that w(k)
i is bounded by

max
1ink,1kK

sup
(�0,�)2L0

|w
(k)
i |  wmax

�
ymax(⇢� 1)e(⇢�1)⌘max + (2� ⇢)e(2�⇢)⌘max

�
⌘ C.

Let Mj = Cmax1kK kX
(k)
j k

2
2. We can see that

r
2
j`(�j; b̃�j) =

@
2

@�j@�
>
j

`(�j; b̃�j)

= diag
⇣
X

(k)>
j [diag(w(k)

1 , . . . , w
(k)
nk
)]X(k)

j , k = 1, . . . , K
⌘

�MjIK , 8(�j; b̃�j) 2 L0.

It follows from the mean-value theorem that rj`(�j; b̃�j) is uniformly Lipschitz continuous on the

sublevel set L0. Indeed, the inequality

krj`(�j; b̃�j)�rj`(�
0
j; b̃�j)k2 Mjk�j � �0

jk2

holds for any �j,�
0
j and b̃�j satisfying (�j, b̃�j) 2 L0 and (�0

j, b̃�j) 2 L0. Now let

M = max
1kK

C⇤max(X̂
(k)>X̂(k)),

where X̂(k) = (1nk
,X(k)) and ⇤max(·) denotes the largest eigenvalue of the enclosed matrix. We

can similarly show that r`(�0,�) is uniformly Lipschitz continuous with constant M for all

(�0,�) 2 L0.

Proof of Theorem 1

Proof. To simplify notation, let b = (�0,�) such that bj = �j, 0  j  p. Also, let `(b) =

`(�0,�), h(b) = �P↵(�) and f(b) = `(b) + h(b). Since h is separable in b, we let hj(bj) =

�P↵,j(bj), 0  j  p. Denote by r`(b) = @`(b)/@b the gradient of ` and by rj`(b) =

@`(b)/@bj the groupwise gradient of `. Letr2
j`(b) = @

2
`(b)/(@bj@b>

j) be the Hessian matrix of

`(·) for group j. In Lemma 2, we have shown that r`(·) is uniformly Lipschitz continuous on the

sublevel set L0 with constant M and rj`(·) is uniformly Lipschitz continuous on the sublevel set

L0 with constant Mj, 0  j  p. Moreover, from (10), it can be shown that w(k)
i is lower-bounded

8

in the sublevel set L0. First, we have

w
(k)
i �

⇣
⇢� 1

2� ⇢

⌘3�2⇢

w
(k)
i (y(k)i)2�⇢

I(y(k)i > 0) + (2� ⇢)e�(2�⇢)⌘maxI(y(k)i = 0) > 0

for all b 2 L0 and 1  i  nk, 1  k  K. Let

wmin = min

⇢⇣
⇢� 1

2� ⇢

⌘3�2⇢

min
i,k:y

(k)
i >0

w
(k)
i (y(k)i)2�⇢

, (2� ⇢)e�(2�⇢)⌘max

�
.

Then we can see that w(k)
i � wmin > 0. Therefore

r
2
j`(b) ⌫ diag

⇣
X

(k)>
j [diag(w(k)

1 , . . . , w
(k)
nk
)]X(k)

j , k = 1, . . . , K
⌘

⌫ wmin diag
⇣
kX

(k)
j k

2
2, k = 1, . . . , K

⌘
.

As long as none of X̂(k)’s columns are zero (otherwise we simply remove that column and the

corresponding group variable), this implies that `(·) is groupwise strongly convex in L0.

Let tr+1
j be the first step size that satisfies (13) when updating group bj in the (r + 1)-st cycle of

MStweedie-GPG. We claim that

�

Mj
 t

r+1
j  tmax, 0  j  p. (25)

Indeed, recall that in the line search, tj starts with tmax. The search then continues by scaling tj

down with the factor � 2 (0, 1). Therefore, the last inequality holds in (25). Denote

Gtj(b̃) = Gtj(�̃j; b̃�j) =
�̃j � prox�vjtjh(�̃j � tjrj`(�̃j; b̃�j))

tj
=

�̃j � �+
j

tj
.

By the definition of Mj , we can see that

`(�+
j ; b̃�j)  `(b̃) +rj`(�̃j; b̃�j)

>(�+
j � �̃j) +

Mj

2
k�+

j � �̃jk
2
2

= `(b̃)� tjrj`(�̃j; b̃�j)
>
Gtj(b̃) +

Mjt
2
j

2
kGtj(b̃)k

2
2

holds for any tj . Compared to (13), the above inequality implies that (13) can be satisfied by all

tj 2 [0,M�1
j]. Consequently, the first inequality holds in (25). Now let tmin = �/(max0jp Mj),

we conclude that tr+1
j 2 [tmin, tmax] for all j and r.

9

In the cyclic MStweedie-GPG algorithm, let br be the update of b after the r-th cycle. For

notational convenience, define the following auxiliary variables

Br+1
j ⌘ (br+1

0 , . . . ,br+1
j�1,b

r
j ,b

r
j+1, . . . ,b

r
p)

>
, j = 0, . . . , p,

Br+1
�j ⌘ (br+1

0 , . . . ,br+1
j�1,b

r
j+1, . . . ,b

r
p)

>
, j = 0, . . . , p,

For z 2 RK , let

(z;Br+1
�j) ⌘ (br+1

0 , . . . ,br+1
j�1, z,b

r
j+1, . . . ,b

r
p)

>
.

Clearly we have Br+1
0 = br and Br+1

p+1 = br+1, and we have

Br+1
j = (br

j ;B
r+1
�j), Br+1

j+1 = (br+1
j ;Br+1

�j).

Under the new notation, (13) can be rewritten as

`(Br+1
j+1) = `(br+1

j ;Br+1
�j)  `(Br+1

j)�tr+1
j rj`(B

r+1
j)>Gtr+1

j
(Br+1

j)+
t
r+1
j

2
kGtr+1

j
(Br+1

j)k22, (26)

where

Gtr+1
j

(Br+1
j) ⌘ Gtr+1

j
(br

j ;B
r+1
�j) = �

br+1
j � br

j

t
r+1
j

. (27)

Next, we show that for any z 2 RK
,

f(Br+1
j+1)  f(z;Br+1

�j) +Gtr+1
j

(Br+1
j)>(br

j � z)�
t
r+1
j

2
kGtr+1

j
(Br+1

j)k22. (28)

Let

`Qj(B
r+1
j+1) = `Qj(b

r+1
j ;Br+1

�j) = `(Br+1
j) +rj`(B

r+1
j)>(br+1

j � br
j) +

1

2tr+1
j

kbr+1
j � br

jk
2
2.

The gradient of `Qj is

rj`Qj(B
r+1
j+1) = rj`(B

r+1
j) +

br+1
j � br

j

tj
= rj`(B

r+1
j)�Gtr+1

j
(Br+1

j). (29)

10

By subgradient optimality condition, we have

0 2 rj`Qj(B
r+1
j+1) + @hj(b

r+1
j),

thus

Gtr+1
j

(Br+1
j)�rj`(B

r+1
j) 2 @hj(b

r+1
j). (30)

Now by convexity of `

`(z;Br+1
�j) � `(br

j ;B
r+1
�j) +rj`(B

r+1
j)>(z� br

j), (31)

and the convexity of h

h(z;Br+1
�j) = hj(z) +

X

0mp,m 6=j

hm(b
r+I(m<j)
m) � h(br+1

j ;Br+1
�j) + @hj(b

r+1
j)>(z� br+1

j) (32)

and (13), we have that for any z 2 RK
,

f(Br+1
j+1) = f(br+1

j ;Br+1
�j) = `(br+1

j ;Br+1
�j) + h(br+1

j ;Br+1
�j)

(26)
 `(Br+1

j)� t
r+1
j rj`(B

r+1
j)>Gtr+1

j
(Br+1

j) +
t
r+1
j

2
kGtr+1

j
(Br+1

j)k22 + h(br+1
j ;Br+1

�j)

(31)(32)
 `(z;Br+1

�j) +rj`(B
r+1
j)>(br

j � z)� t
r+1
j rj`(B

r+1
j)>Gtr+1

j
(Br+1

j)

+
t
r+1
j

2
kGtr+1

j
(Br+1

j)k22 + hj(z) + @hj(b
r+1
j)>(br+1

j � z) +
X

0mp,m 6=j

hm(b
r+I(m<j)
m)

(30)
= `(z;Br+1

�j) +rj`(B
r+1
j)>(br

j � z)� t
r+1
j rj`(B

r+1
j)>Gtr+1

j
(Br+1

j)

+
t
r+1
j

2
kGtr+1

j
(Br+1

j)k22 + hj(z) + (Gtr+1
j

(Br+1
j)�rj`(B

r+1
j))>(br+1

j � z)

+
X

0mp,m 6=j

hm(b
r+I(m<j)
m)

= `(z;Br+1
�j) + h(z;Br+1

�j) +rj`(B
r+1
j)>(br

j � br+1
j)� t

r+1
j rj`(B

r+1
j)>Gtr+1

j
(Br+1

j)

+
t
r+1
j

2
kGtr+1

j
(Br+1

j)k22 +Gtr+1
j

(Br+1
j)>(br+1

j � br
j + br

j � z)

(27)
= f(z;Br+1

�j) +Gtr+1
j

(Br+1
j)>(br

j � z)�
t
r+1
j

2
kGtr+1

j
(Br+1

j)k22,

which proves (28).

11

Now taking z = br
j in (28), we have

f(Br+1
j)� f(Br+1

j+1) �
t
r+1
j

2
kGtr+1

j
(Br+1

j)k22 =
1

2tr+1
j

kbr
j � br+1

j k
2
2 �

1

2tmax
kbr

j � br+1
j k

2
2,

which implies that the MStweedie-GPG algorithm is descending. Moreover, we have the descent

property of MStweedie-GPG over the cycles

f(br)� f(br+1) =
pX

j=0

[f(Br+1
j)� f(Br+1

j+1)] � (2tmax)
�1
kbr
� br+1

k
2
2. (33)

Now let X ⇤ := {b⇤
2 L0 : f(b⇤) = minb2L0 f(b)} be the optimal solution set of problem (6)

and define dX ⇤(b) := minb⇤2X ⇤ kb� b⇤
k2 to be the minimum distance from b to X

⇤. Let br⇤ be

the point in X
⇤ such that kbr

� br⇤
k2 = dX ⇤(br). We also have f(br⇤) = f

⇤ := minb2L0 f(b). By

the mean value theorem, there exists µ 2 [0, 1] and ⇣r = µbr+1 + (1� µ)br⇤ such that

`(br+1)� `(br⇤) = (r`(⇣r))>(br+1
� br⇤).

It follows that

f(br+1)� f
⇤ = f(br+1)� f(br⇤)

= `(br+1)� `(br⇤) +
pX

j=0

[hj(b
r+1
j)� hj(b

r⇤
j)]

=
pX

j=0

[rj`(⇣
r)>(br+1

j � br⇤
j) + hj(b

r+1
j)� hj(b

r⇤
j)]

=
pX

j=0

[rj`(B
r+1
j)>(br+1

j � br⇤
j) + hj(b

r+1
j)� hj(b

r⇤
j)

+ (rj`(⇣
r)�rj`(B

r+1
j))>(br+1

j � br⇤
j)].

12

By convexity of h, we have

rj`(B
r+1
j)>(br+1

j � br⇤
j) + hj(b

r+1
j)� hj(b

r⇤
j)

 rj`(B
r+1
j)>(br+1

j � br⇤
j)� @hj(b

r+1
j)>(br⇤

j � br+1
j)

(30)
= rj`(B

r+1
j)>(br+1

j � br⇤
j)� (Gtr+1

j
(Br+1

j)�rj`(B
r+1
j))>(br⇤

j � br+1
j)

= �Gtr+1
j

(Br+1
j)(br⇤

j � br+1
j)

=
1

t
r+1
j

(br+1
j � br

j)(b
r⇤
j � br

j + br
j � br+1

j)


1

t
r+1
j

[(br+1
j � br

j)
>(br⇤

j � br
j)� kb

r+1
j � br

jk
2
2]


1

2tr+1
j

[kbr⇤
j � br

jk
2
2 + kb

r
j � br+1

j k
2
2]


1

2tmin
[kbr⇤

j � br
jk

2
2 + kb

r
j � br+1

j k
2
2].

Moreover, by the Lipschitz continuity ofr`(·) and the Cauchy–Schwarz inequality, we have

✓ pX

j=0

(rj`(⇣
r)�rj`(B

r+1
j))>(br+1

j � br⇤
j)

◆2



pX

j=0

kr`(⇣r)�r`(Br+1
j)k22

!
pX

j=0

kbr+1
j � br⇤

j k
2
2

!



pX

j=0

M
2
k⇣r
�Br+1

j k
2
2

!
kbr+1

� br⇤
k
2
2

=

✓ pX

j=0

M
2

pX

j0=0

kµ(br+1
j0 � br

j0) + (1� µ)(br⇤
j0 � br

j0) + br
j0 � br+I(j0j)

j0 k
2
2

◆

· 2(kbr+1
� br

k
2
2 + kb

r⇤
� br

k
2
2)



2

pX

j=0

M
2
kbr+1

� br
k
2
2 + kb

r⇤
� br

k
2
2

!
· 2(kbr+1

� br
k
2
2 + kb

r⇤
� br

k
2
2)

 4(p+ 1)M2
�
kbr+1

� br
k
2
2 + kb

r⇤
� br

k
2
2

�2
.

13

Altogether these imply

f(br+1)� f
⇤


pX

j=0

1

2tmin
[kbr⇤

j � br
jk

2
2 + kb

r
j � br+1

j k
2
2]

+ 2M
p

p+ 1
�
kbr+1

� br
k
2
2 + d2

X ⇤(br)
�



⇣ 1

2tmin
+ 2M

p
p+ 1

⌘�
kbr+1

� br
k
2
2 + d2

X ⇤(br)
�
.

(34)

According to our algorithm,

br+1
j = argmin

z2RK

`Qj(z;B
r+1
j) + hj(z)

= argmin
z2RK

`(Br+1
j) +rj`(B

r+1
j)>(z� br

j) +
1

2tr+1
j

kz� br
jk

2
2 + hj(z). (35)

By the optimality condition of br+1
j in (35), we have

br+1
j = proxtr+1

j hj
(br+1

j � t
r+1
j rj`Qj(b

r+1
j ;Br+1

j)).

14

Now let c0 = min(1, tmax). It follows from Lemma 4.3 of Kadkhodaie et al. (2014) that

kbr
j � proxhj

(br
j �rj`(b

r))k2


1

max(1, 1/tr+1
j)
kbr

j � proxtr+1
j hj

(br
j � t

r+1
j rj`(b

r))k2

= min(1, tr+1
j)kbr

j � proxtr+1
j hj

(br
j � t

r+1
j rj`(b

r))k2

 c0kb
r
j � proxtr+1

j hj
(br

j � t
r+1
j rj`(b

r)) + br+1
j � br+1

j k2

 c0[kb
r+1
j � proxtr+1

j hj
(br

j � t
r+1
j rj`(b

r))k2 + kb
r+1
j � br

jk2]

 c0[k proxtr+1
j hj

(br+1
j � t

r+1
j rj`Qj(b

r+1
j ;Br+1

j))

� proxtr+1
j hj

(br
j � t

r+1
j rj`(b

r))k2 + kb
r+1
j � br

jk2]

 2c0kb
r+1
j � br

jk2 + c0t
r+1
j krj`Qj(b

r+1
j ;Br+1

j)�rj`(b
r)k2

(29)
= 2c0kb

r+1
j � br

jk2 + c0t
r+1
j krj`(B

r+1
j) +

1

t
r+1
j

(br+1
j � br

j)�rj`(b
r)k2

 3c0kb
r+1
j � br

jk2 + c0tmaxkrj`(B
r+1
j)�rj`(b

r)k2

 3c0kb
r+1
j � br

jk2 + c0tmaxkr`(B
r+1
j)�r`(br)k2

 3c0kb
r+1
j � br

jk2 + c0tmaxMkB
r+1
j � br

k2.

It follows that

kbr
� proxh(b

r
�r`(br))k2  (3c0 + c0tmaxM

p
p+ 1)kbr+1

� br
k2. (36)

Note that

`(⌘) =
KX

k=1

nkX

i=1

w
(k)
i

⇢
�
y
(k)
i e

(1�⇢)⌘
(k)
i

1� ⇢
+

e
(2�⇢)⌘

(k)
i

2� ⇢

�

is strongly convex in ⌘ 2 C0 and ⌘ is an affine transformation of (�0,�), i.e., ⌘(k)i = �
(k)
0 +x(k)>

i �(k).

It follows from Zhang et al. (2013) that for any given ⇠ � f
⇤ = minb2L0 f(b), there exists , ✏ > 0

such that, for all b 2 L0 satisfying f(b)  ⇠ and kb� proxh(b�r`(b))k2  ✏, we have

dX ⇤(b)  kb� proxh(b�r`(b))k2. (37)

15

From (33), we can see that

rX

i=0

kbi
�bi+1

k
2
2  2tmax

rX

i=0

⇥
f(bi)� f(bi+1)

⇤
= 2tmax

⇥
f(b0)� f(br+1)

⇤
 2tmaxf(b

0) <1,

then we must have kbr+1
� br

k2 ! 0 as r ! 1. Thus, it follows from (36) that as r ! 1,

kbr
� proxh(b

r
�r`(br))k2 ! 0, and further by (37), this implies that dX ⇤(br)! 0 as r !1.

Consequently, from (34) it follows that f(br) ! f
⇤
, which proves that the MStweedie-GPG

algorithm converges to the global minimum. Let �r = f(br) � f
⇤
, c1 = 1

2tmin
+ 2M

p
p+ 1.

By (37) and (34) again, we have for large enough r,

�r+1 = f(br+1)� f
⇤
 c1[d

2
X ⇤(br) + kbr+1

� br
k
2
2]

 c1
2
kbr
� proxh(b

r
�r`(br))k22 + c1kb

r+1
� br

k
2
2

 (c1
2(3c0 + c0tmaxM

p
p+ 1)2 + c1)kb

r+1
� br

k
2
2

 (c1
2(3c0 + c0tmaxM

p
p+ 1)2 + c1) · 2tmax[f(b

r)� f(br+1)]

= 2tmax(c1
2(3c0 + c0tmaxM

p
p+ 1)2 + c1)(�

r
��r+1).

This implies that

�r+1


c2

1 + c2
�r

, (38)

where c2 = 2tmax(c12(3c0 + c0tmaxM
p
p+ 1)2 + c1). Let c3 = c2/(1 + c2). From (38), we can

see that f(br) approaches f ⇤ with linear rate O(cr3). By (33) this further implies that {br
, r � 0}

converges at least linearly.

Appendix E. Numerical Studies on Correlated Responses

Setting 6 – Correlated responses

In this simulation setting, we study the impact of having correlated responses on the performance of

our proposed algorithm. Correlation is introduced using two compounded techniques. We consider a

simultaneous setting, i.e. an observation consists of a vector of features x which is used to predict all

K responses. When the coefficients are similar across tasks, then there will be correlation induced

from the fact that the means µ
(k) = exp

⇣
x�(k)

⌘
, k = 1, . . . , K, will be related. If we simply

generate K Tweedie variables from these means, then the random variables will be independent,

conditionally on the vector of means. To introduce additional correlation, we consider the following

16

setup inspired from a claim count decomposition suggested by Bermúdez and Karlis (2011). We

generate K
0
> K independent Tweedie variables with means µ(k) = exp

⇣
x�(k)

⌘
, k = 1, . . . , K 0,

for some choice of coefficients �(k) and produce the responses by taking a linear combination of

these independent Tweedie random variables. In particular, we consider eY (k), k = 1, . . . , 6, the

independent Tweedie random variables generating the K = 3 observed responses as follows:

2

66664

Y
(1)

Y
(2)

Y
(3)

3

77775
=

2

66664

1 0 0 1 0 1

0 1 0 1 1 0

0 0 1 0 1 1

3

77775

| {z }
=:A


eY (1) eY (2) eY (3) eY (4) eY (5) eY (6)

�>
.

The correlation depends on the mean of each independent Tweedie, but it is clear there will be

correlation introduced in that way. Indeed, if eY (4)
> 0, then both Y

(1) and Y
(2) will be non-zero.

This construction actually has a real interpretation. Suppose the Y
(k) represent different aspect

of a car insurance policy (1: personal injury, 2: property damage, 3: third party). Then, the random

variable eY (4) can be seen as the total claim amount that is common to personal injuries and property

damages but without third party damages, while the difference between those aspects is captured by
eY (1) and eY (2), which are independent.

We consider three experiments under this setting. In the first two cases, we set ⇢ = 1.5, � = 40

and n
(k) = 1000 and consider p = 50 features of which only the first 5 are truly generating the

data. Each x
(k)
ij is produced from a standard normal distribution. In the experiment 6A, we consider

equal contribution of the features across the sources so that the Lasso on the full dataset should be

sufficient:


�(1) �(2) �(3) �(4) �(5) �(6)

�
=

2

666666666666664

0.2 0.2 0.2 0.8 0.8 0.8

0.2 0.2 0.2 0.8 0.8 0.8

0.2 0.2 0.2 0.8 0.8 0.8

�0.2 �0.2 �0.2 �0.8 �0.8 �0.8

�0.2 �0.2 �0.2 �0.8 �0.8 �0.8

045 045 045 045 045 045

3

777777777777775

.

Upon generating 100 replications of the experiment, we obtain the following empirical correlation

17

(a) Setting 6A: Mean (standard error)

Full Lasso Ind. Lasso L1/L1 a-L1/L1 L1/L2 a-L1/L2

Test dev. 48.13 (0.28) 52.11 (0.43) 49.82 (0.33) 48.63 (0.29) 49.85 (0.35) 48.32 (0.29)

Size 11.47 (0.48) 10.02 (0.35) 6.74 (0.20) 5.54 (0.13) 7.40 (0.21) 5.44 (0.10)

Accuracy 87.06 (0.96) 89.92 (0.70) 96.52 (0.39) 98.92 (0.25) 95.20 (0.43) 99.08 (0.21)
Precision 50.31 (1.82) 55.07 (1.67) 78.96 (1.77) 93.26 (1.37) 72.76 (1.89) 94.02 (1.23)
Recall 100.00 (0.00) 99.80 (0.20) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 99.80 (0.20)

(b) Setting 6A: Mean rank (nb. times best)

Full Lasso Ind. Lasso L1/L1 a-L1/L1 L1/L2 a-L1/L2

Test dev. 1.75 (50) 5.89 (0) 4.39 (1) 2.58 (20) 4.28 (0) 2.11 (29)

Size 5.21 (1) 4.83 (3) 2.50 (29) 1.26 (83) 3.20 (21) 1.18 (87)

Accuracy 5.20 (1) 4.84 (3) 2.49 (30) 1.25 (84) 3.19 (22) 1.21 (86)
Precision 5.20 (1) 4.84 (3) 2.49 (30) 1.25 (84) 3.19 (22) 1.18 (87)
Recall 1.00 (100) 1.04 (99) 1.00 (100) 1.00 (100) 1.00 (100) 1.04 (99)

Table A1: Results from Setting 6A with 100 replications. Part (a) shows the mean values of the

statistics and their standard errors in parentheses. Part (b) shows the mean rank across the six

models and, in parentheses, the number of times the model is best.

matrix, 2

66664

1.00 0.76 0.73

0.76 1.00 0.74

0.73 0.74 1.00

3

77775
,

and the three sources respectively have 73.6%, 74.5% and 74.9% of zeroes.

Since the mean is exponential in the coefficients, we cannot compute the true coefficients

generating the real responses so that it is impossible to produce the L2-loss measure of performance.

However, the selection accuracy measures (accuracy, precision and recall) are still relevant. The

results of training and testing the usual six models are contained in Table A1. The two adaptive

versions of our algorithm (especially a-L1/L2) achieve test deviance values similar to that of Full

Lasso, but using far less features. The accuracy and precision are therefore much better with a

similar fit to the test data. This suggests that our proposal is quite robust to correlated data and can

actually benefit from it.

In experiment 6B, we consider unequal contribution of the coefficients to the means of the

18

independent random variables:


�(1) �(2) �(3) �(4) �(5) �(6)

�
=

2

666666666666664

0.5 0.5 0 1.5 3.0 1.5

0.5 0 0.5 3.0 1.5 1.5

0 0.5 0.5 1.5 1.5 3.0

0 0 0 0 �3.0 0

0 0 0 �3.0 0 0

045 045 045 045 045 045

3

777777777777775

.

Hence, the Full Lasso should not perform well in this case, but the individual Lasso should be able

to capture the differences between sources. Upon generating 100 replications of the experiment, we

obtain the following empirical correlation matrix,

2

66664

1.00 0.83 0.21

0.83 1.00 0.48

0.21 0.48 1.00

3

77775
,

and the three sources respectively have 73.0%, 69.3% and 73.3% of zeroes. The results of training

and testing the usual six models are contained in Table A2. We get that all our models systematically

out-performs both the Full Lasso and independent Lasso in term of test deviance. While the

independent Lasso can assign different parameter values in each sources, it does not benefit from the

sharing of information between sources and is thus more prone to over-fit. This is what we observe

through the poor model fit to test data and larger number of variables in the model.

In experiment 6C, rather than considering a linear combination of independent random variables,

we consider a product:

Y
(1) = eY (1)eY (4)eY (6)

,

Y
(2) = eY (2)eY (4)eY (5)

,

Y
(3) = eY (3)eY (5)eY (6)

.

This new construction allows us to compute the true generating coefficients in each task and to

produce the L2-loss measure of performance. Indeed, we find that they are given by the sub of the

19

(a) Setting 6B: Mean (standard error)

Full Lasso Ind. Lasso L1/L1 a-L1/L1 L1/L2 a-L1/L2

Test dev. 39.58 (0.80) 43.13 (1.81) 36.22 (0.78) 31.69 (0.53) 36.55 (0.86) 31.51 (0.60)

Size 7.48 (0.23) 16.55 (0.49) 10.63 (0.37) 5.62 (0.13) 10.29 (0.38) 5.57 (0.13)

Accuracy 94.80 (0.44) 76.90 (0.98) 88.70 (0.73) 98.72 (0.27) 89.34 (0.76) 98.74 (0.25)
Precision 71.28 (1.83) 32.72 (0.96) 51.53 (1.47) 91.96 (1.42) 53.85 (1.67) 92.23 (1.38)
Recall 98.80 (0.48) 100.00 (0.00) 99.80 (0.20) 99.80 (0.20) 99.60 (0.28) 99.40 (0.34)

(b) Setting 6B: Mean rank (nb. times best)

Full Lasso Ind. Lasso L1/L1 a-L1/L1 L1/L2 a-L1/L2

Test dev. 5.10 (0) 5.33 (0) 3.67 (2) 1.67 (39) 3.76 (0) 1.47 (59)

Size 2.79 (21) 5.86 (0) 4.21 (0) 1.32 (78) 3.99 (2) 1.25 (82)

Accuracy 2.82 (20) 5.86 (0) 4.20 (0) 1.28 (82) 4.00 (2) 1.25 (82)
Precision 2.82 (20) 5.86 (0) 4.21 (0) 1.29 (81) 4.01 (2) 1.24 (83)
Recall 1.25 (94) 1.00 (100) 1.03 (99) 1.04 (99) 1.06 (98) 1.11 (97)

Table A2: Results from Setting 6B with 100 replications. Part (a) shows the mean values of the

statistics and their standard errors in parentheses. Part (b) shows the mean rank across the six

models and, in parentheses, the number of times the model is best.

coefficients of the independent random variables of the product. For example,

E
�
Y

(1)

= µ

(1)
µ
(4)
µ
(6) = exp

n
x
⇣
�(1) + �(4) + �(6)

⌘o
.

Hence the true coefficients is the product between the matrix of independent coefficients and the

structure matrix A:

�true = �A> =

2

666666666666664

1 1 0 1 1 1

1 0 1 1 1 1

0 �1 �1 �1 �1 �1

0 0 0 0 �1 0

0 0 0 �1 0 0

045 045 045 045 045 045

3

777777777777775

2

666666666666664

1 0 0

0 1 0

0 0 1

1 1 0

0 1 1

1 0 1

3

777777777777775

=

2

666666666666664

3 3 2

3 2 3

�2 �3 �3

0 �1 �1

�1 �1 0

045 045 045

3

777777777777775

.

In this setting, pairs of responses are often zero at the same: e.g. eY (4) = 0 implies Y (1) = 0 and

Y
(2) = 0. Upon generating 100 replications of the experiment with � = 10, we obtain the following

20

(a) Setting 6C: Mean (standard error)

Full Lasso Ind. Lasso L1/L1 a-L1/L1 L1/L2 a-L1/L2

Test dev. 7.44 (3.86) 8.10 (1.29) 6.13 (1.84) 2.99 (0.88) 7.11 (2.00) 3.45 (1.24)

Size 7.91 (0.31) 17.50 (0.64) 9.97 (0.54) 5.60 (0.32) 9.99 (0.46) 5.08 (0.24)

Accuracy 89.34 (0.51) 72.80 (1.16) 86.38 (0.92) 94.88 (0.50) 86.50 (0.73) 95.80 (0.36)
Precision 54.26 (1.93) 28.55 (1.01) 49.90 (2.01) 83.26 (2.20) 48.59 (1.90) 86.32 (1.87)
Recall 75.80 (1.49) 89.00 (1.25) 81.60 (1.63) 80.40 (1.63) 82.40 (1.74) 79.80 (1.65)
L2 loss 4.32 (0.08) 5.09 (0.10) 4.32 (0.08) 2.86 (0.08) 4.38 (0.10) 2.86 (0.09)

(b) Setting 6C: Mean rank (nb. times best)

Full Lasso Ind. Lasso L1/L1 a-L1/L1 L1/L2 a-L1/L2

Test dev. 3.68 (6) 5.39 (1) 4.21 (2) 1.77 (39) 4.27 (3) 1.68 (49)

Size 3.19 (17) 5.66 (0) 3.84 (9) 1.69 (60) 3.88 (6) 1.42 (68)

Accuracy 3.43 (9) 5.68 (0) 3.89 (4) 1.52 (69) 3.84 (5) 1.33 (75)
Precision 3.42 (13) 5.71 (0) 3.93 (6) 1.54 (70) 3.82 (7) 1.29 (77)
Recall 2.95 (36) 1.32 (84) 1.99 (57) 2.16 (54) 1.88 (60) 2.13 (50)
L2 loss 4.05 (0) 5.42 (0) 4.12 (1) 1.60 (54) 4.19 (1) 1.62 (44)

Table A3: Results from Setting 6C with 100 replications. Part (a) shows the mean values of the

statistics and their standard errors in parentheses. Part (b) shows the mean rank across the six

models and, in parentheses, the number of times the model is best.

empirical correlation matrix, 2

66664

1.00 0.35 0.38

0.35 1.00 0.41

0.38 0.41 1.00

3

77775
,

and the three sources all have 92.9% of zeroes. Table A3 contain the results for the six models. All

versions of our algorithm significantly produce better test deviance and the two adaptive versions

clearly beats all other models. Also, the adaptive versions have smaller models and therefore much

improved selection accuracy. Finally, the estimated coefficients by the adaptive algorithms are much

closer to the truth.

21

