SUPPLEMENTARY MATERIAL

New butenolides with anti-inflammatory activity from *Balanophora* simaoensis

Jie Zhou^a, Si-Yu Du^b, Zhong-Ying Fang^b & Zhi Zeng^c

^aSchool of Biological Science and Technology, University of Jinan, Jinan, China; ^bShandong University of Traditional Chinese Medicine, Jinan, China; ^cReproductive Medicine Center, The Sixth affiliated hospital of Sun Yat-sen University, Guangzhou, China

CONTACT: Jie Zhou, zhoujie8761@163.com; Zhi Zeng, zizigi@163.com

Abstract: Two new butenolides, balanolides A (1) and B (1), were isolated from the aerial parts of the parasitic plant *Balanophora simaoensis*. Their structures were established by comprehensive spectroscopic analysis and quantum chemical ECD calculation. The new butenolides were evaluated for their inhibitory effects against nitric oxide (NO) production in LPS-induced RAW 264.7 macrophage cells. Compounds 1 and 2 displayed moderate anti-inflammatory activity with IC₅₀values of 11.8 and 12.9 μ M, respectively.

Key words: Balanophora simaoensis; butenolides; anti-inflammatory activity

List of supporting information

Table S1. ¹H (600 MHz) and ¹³C (150 MHz) NMR data for compounds 1 and 2 in $CDCl_3$

Figure S1. Selected COSY (-) and HMBC (\frown) correlations of 1

Figure S2. Experimental/calculated ECD spectra of 1 and experimental ECD spectra

2 (in MeOH)

Figure S3. HR-ESI-MS spectrum of compound 1

Figure S4. ¹H NMR (600 MHz) spectrum of compound 1

Figure S5. 13C NMR (150 MHz) spectrum of compound 1

Figure S6. 1H-1H COSY spectrum of compound 1

Figure S7. HSQC spectrum of compound 1

Figure S8. HMBC spectrum of compound 1

Figure S9. IR spectrum of compound 1

Figure S10. HR-ESI-MS spectrum of compound 2

Figure S11. ¹H NMR (600 MHz) spectrum of compound 2

Figure S12. 13C NMR (150 MHz) spectrum of compound 2

Figure S13. 1H-1H COSY spectrum of compound 2

Figure S14. HSQC spectrum of compound 2

Figure S15. HMBC spectrum of compound 2

Figure S16. IR spectrum of compound 2

Desition	1		2	
FOSITION	$\delta_{\rm H}(J \text{ in Hz})$	δ_{C}	$\delta_{\rm H}(J \text{ in Hz})$	$\delta_{ m C}$
1		129.5		120.7
2	6.67 d (2.9)	116.5		158.2
3	. ,	151.6	6.44 d (2.4)	98.5
4		153.5		159.8
5	6.77 d (8.8)	111.0	6.40 dd (8.2, 2.4)	104.0
6	6.73 dd (8.8, 2.9)	111.6	6.95 d (8.2)	130.1
7	2.76 m	28.9	2.73 m	28.2
8	2.71 m	26.8	2.68 m	26.9
	2.54 m		2.50 m	
9		163.7		164.0
10		123.3		123.2
11		174.6		174.7
12	4.87 q (6.8)	78.6	4.84 q (6.8)	78.7
13	1.68 s	8.4	1.66 s	8.4
14	1.40 d (6.8)	18.2	1.38 d (6.8)	18.2
$2-OCH_3$			3.80 s	55.4
3-OCH ₃	3.78 s	55.6		
$4-OCH_3$	3.76 s	55.7	3.79 s	55.2

Table S1. 1 H (600 MHz) and 13 C (150 MHz) NMR data for compounds 1 and 2 in CDCl₃

Figure S1. Selected COSY (—) and HMBC (\frown) correlations of 1

Figure S2. Experimental/calculated ECD spectra of 1 and experimental ECD spectra 2 (in MeOH)

Figure S3. HR-ESI-MS spectrum of compound 1

Figure S4. ¹H NMR (600 MHz) spectrum of compound 1

Figure S5. 13C NMR (150 MHz) spectrum of compound 1

Figure S6. 1H-1H COSY spectrum of compound 1

Figure S7. HSQC spectrum of compound 1

Figure S8. HMBC spectrum of compound 1

Figure S9. IR spectrum of compound 1

Figure S10. HR-ESI-MS spectrum of compound 2

Figure S11. ¹H NMR (600 MHz) spectrum of compound 2

Figure S13. 1H-1H COSY spectrum of compound 2

Figure S14. HSQC spectrum of compound 2

Figure S15. HMBC spectrum of compound 2

