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This supplementary material is organized as below. Appendix A contains the necessary proofs for theorem 3.1 (appendix A1) and theorem 3.2 (appendix A2). Appendix B provides the characteristic quantities which are indispensable when calculating the R-WCF expansion. Appendix C proposes the characteristic quantities for Weibull model. 

Appendix A.1: Proof of Theorem 3.1 
To prove Theorem3.1, we first define the concept of the inseparable cut set.
	Definition A.1: Suppose random variables  satisfy . The joint cumulant of  is 

where  means ’s k-set partition. 
The k-th order cumulant of  is defined by  with . 
Definition A.2: Suppose  is a collection of arrays, which can be listed as:
                                  (A.1)
A cut set,  is called inseparable if, for any proper subset U of ,   cannot be represented by the combined rows of (A.1)
The proof of Theorem 2.1 requires a lemma and a theorem proposed by Brillinger (1980).
Theorem A.1 (Brillinger 1980). Denote , then 
         ,                (A.2)
where  means sum by all inseparable cut .
Lemma A.1. Denote , and suppose . Then, .
Proof: For any inseparable cut  satisfying , based on Theorem A.1, the terms in (A.2) corresponding to  and denoted by 

have the order .                                 □

Lemma A.2. Suppose  is an inseparable cut of . Denote  as the set in which we delete all rows satisfying . Then  is an inseparable cut of .
Lemma A.3. Suppose  is an inseparable cut of . Then,  is an inseparable cut of . Here .
Lemma A.2 and A.3 directly follow via proof by contradiction and Theorem A.1.
Lemma A.4: Suppose ,  is an inseparable cut of . If , then .
[bookmark: OLE_LINK46][bookmark: OLE_LINK47]Proof: The conclusion is trivial with. Suppose the lemma is true with . We prove that it is true for . Suppose for  there exists a cut  satisfying the condition of Lemma A.4, .  We may set with Lemma A.3. Denote  as the set of all rows deleted, satisfying. Using Lemma A.2,  is an inseparable cut of . Because , there exists a subset  satisfying .=1. Suppose. Together with condition , , elements in  are rows in  with one column. Delete  from  , and denote  as a subset of  and . Then,  is an inseparable cut. Hence, the contradiction.                                     □
Proof of Theorem 3.1: Suppose  and , if . It can be inferred from Lemma A.1. 
.
If , then for any inseparable cut of  denoted by , it follows from lemma A.4 that . Based on theorem A.1, the order of every term is at most .      □                       

Appendix A.2 Proof of Theorem 3.2. 
Let  denote a vector of components’ reliability. As shown in Section 3.1 the derivation of (4), we only need to prove ’s cumulants satisfying (4), then
.
Recall the system structure function:

[bookmark: OLE_LINK44][bookmark: OLE_LINK45]where  are point estimations of the system reliability and component reliability. It immediately follows the assumption that  are independent. From Theorems 3.1 and 3.2, as well as the Taylor expansion of  over , the cumulant of  satisfying the first cumulant of  is , and the k-th cumulant is . Because  is a smooth function, the Taylor expansion of  over  can be expressed by:

where  denotes the vector . It is easy to prove that  has the same cumulant property as ; i.e., the first cumulant of  is , and the k-th cumulant is .
Coefficients  are computed from (8), where . The polynomial  satisfies .
Appendix B: Character quantities for log-location-scale family
The calculation of character quantities for an arbitrary system consisting of components with a log location scale class is given here. Recall equation (6), 

The derivation requires the cumulant property of , retaining only the terms of order  of . We omit the subscript i for different components because there is no difference in computation. Similarly, we have:
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Appendix C: Character quantities for Weibull distribution.
The moments of a standard extreme value distribution are obtained by numerical calculation:

where  is the Euler constant. We omit subscript i, which denotes the coordinate of components and    

Similar to Appendix B, let , in which  denote , respectively. Deviations of  are easily obtained through any software with symbolic computation or through direct calculation. Then 
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