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S1. Impact of mirror symmetry boundary conditions on the identified number of pressure 

eigenmodes 

 

Figure S1. Pressure eigenmodes for a two-resonator PA cell without window volumes to increase symmetry such 

that three mirror symmetry planes bisect the geometry. Symmetry planes exist in the z-x plane (plane of the page), 

in the z-y plane bisecting both resonator centres and one in the y-x plane between the two separate resonators. 

Figure S1(a) shows the eigenmodes found by COMSOL when only the z-x mirror plane is used to define symmetry 

boundary conditions, Figure S1(b) shows the located eigenmodes when both z-x and z-y mirror symmetry boundary 

conditions are used, while Figure S1(c) shows the located eigenmodes when all three mirror symmetry boundary 

conditions are used. When mirror symmetry boundary conditions are applied, some eigenmodes fail to be identified 

in COMSOL. For example, upon increasing the symmetry in going from (a) to (b), the mode at fr = 619 Hz is not 

identified because this mode involves a change in phase that is antisymmetric about the z-y mirror plane and 

therefore is forbidden by imposing the z-y mirror symmetry boundary conditions. 
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S2. The flat-window two-resonator PA cell: understanding the frequency dependence in the 

microphone responses for window heating 

Figure S2(a) shows line profiles of the ring and longitudinal pressure eigenmodes along the x-axis 

through the centres of the upper and lower resonator. The heating domains mimicking laser-window 

interactions are located at the x-axis extremes (at the window volume boundaries) on the lower resonator 

axis, corresponding to x = ± 12 cm. At these locations, the pressure eigenmode amplitudes (pn(r⃗win)) for 

the ring and longitudinal modes are 0.098 Pa and 5.789 Pa respectively, i.e. the overlap integral of the 

window acoustic pressure source with the n = 3 (longitudinal) eigenmode wavefunction is 59 times 

larger than for the corresponding overlap integral with the n = 2 (ring) eigenmode. 

 

Although the longitudinal eigenfrequency is separated by ~150 Hz from that of the ring mode, coupling 

into the longitudinal mode has significant influence on the pressure response at the ring mode 

eigenfrequency. Here, we use an empirical model consistent with equation 2 in the main text to 

understand the frequency-dependent pressure response at the microphone positions resulting from 

window heating |𝑝𝑏𝑐𝑘(r⃗M, 𝜔)| as a sum of Lorentzian distributions, with a contribution from each n 

pressure eigenmode: 

|𝑝𝑏𝑐𝑘( r⃗M,𝜔)| = ∑𝜑𝑛(r⃗M)
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in which 𝜑𝑛(r⃗M) is the phase of the pressure eigenmode at the microphone location, 𝑝𝑛(r⃗𝑤𝑖𝑛) is the 

pressure eigenmode amplitude at the location of the window heating volumes and 𝑝𝑛(r⃗M) is the pressure 

eigenmode amplitude at the location of the microphone. Here, we consider only the contributions from 

the ring and longitudinal modes. We take Qn = 100 for both eigenmodes, f2 = 1355 Hz, f3 =1502 Hz, 

𝑝𝑛(r⃗𝑤𝑖𝑛) takes the aforementioned values of 𝑝2(r⃗𝑤𝑖𝑛)  = 0.098 Pa and 𝑝3(r⃗𝑤𝑖𝑛)  = 5.789 Pa, and the 

phases take values 𝜑2(r⃗M,up) = −1, 𝜑2(r⃗M,low) = +1, 𝜑3(r⃗M,up) = 𝜑3(r⃗M,low) = −1. From the 

eigenmode simulations (Figure 3(a) in the main text), 𝑝2(r⃗M) and 𝑝3(r⃗M) were taken as 12.4 Pa and 

10.1 Pa, respectively, for microphones in both the upper and lower resonators. Using this empirical 

expression for |𝑝𝑏𝑐𝑘( r⃗M,𝜔)|, Figure S2(b) plots the frequency-dependent |𝑝𝑏𝑐𝑘( r⃗M,𝜔)| predicted for 

the microphones in the upper resonator, lower resonator and for the differential amplifier response. 

Furthermore, the figures show component contributions to the total response from coupling into the two 

eigenmodes. 
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For window heating, longitudinal mode excitation makes a larger contribution to the individual 

microphone responses than excitation of the ring mode. |𝑝𝑏𝑐𝑘( r⃗M,𝜔)| from our empirical model shows 

similar non-symmetric variation with frequency about the ring mode eigenfrequency as found in our 

FEM simulation results (Figure 4(b) of main text). Importantly, the longitudinal mode contribution is 

mostly subtracted out by passing the individual microphone responses through a differential amplifier 

because the longitudinal eigenmode phase in the two resonators are near-equal. Meanwhile, the ring 

mode contribution is amplified by the differential amplifier due to the opposite phases in the two 

resonators. Therefore, the differential amplifier response in the frequency domain is described well by 

a single Lorentzian distribution associated with detection of only ring mode excitation. 
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Figure S2. Line profiles of the acoustic pressure along the horizontal z-axis through the centre of each resonator, 

for the n = 2, 3 eigenmodes. (b) Empirical model calculations of the frequency-dependent pressure magnitude at 

the microphone locations resulting from window heating. We show the model responses in the upper resonator, 

lower resonator and for differential operation. These plots also show the individual contributions from excitation 

of the n = 2 and n = 3 eigenmodes in addition to the total response. 
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S3. Understanding the behaviour of the two-resonator cell with Brewster-angled windows 

 

Figure S3. An expanded portion of n = 3 (longitudinal) mode line profiles through the upper and lower resonator 

centres of the two-resonator PA cells with either flat or Brewster-angled windows. The microphones are located 

at x = 0. 

 

Figure S4. Comparison of the FEM predicted |pbck(r⃗𝑀,𝑑𝑖𝑓)| to a best-fit bimodal Lorentzian distribution. Also shown 

are the individual contributions of n = 2 and n = 3 mode excitation to the total best-fit response. 
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Figure S5. Comparison of frequency-dependent pressure response for PA cells with either Brewster or flat 

windows. Cases are presented for acoustic excitation by: (a) sample heating; (b) window heating. 

 

Figure S6. Experimental measurements of the background (window heating) photoacoustic response (IA) with 

variation in laser power for our two-resonator PA cell with either flat or Brewster-angled windows, with laser 

excitation performed at a 405 nm wavelength. 
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S4. Supplementary plots for Sect. 4.3.2. Optimising the height and width of the buffer volume 

 

Figure S7. FEM predictions of frequency-dependent microphone response (differential operation) for the two-

resonator PA cell with variation in wbuf for cases of (a) sample heating, and (b) window heating. wbuf is varied over 

the range 2.5 – 4.0 cm in 0.5 cm steps, while hbuf was kept constant at 4.5 cm. 
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Figure S8. FEM predictions of frequency-dependent microphone response (differential operation) for the two-

resonator PA cell with variation in hbuf for cases of (a) sample heating, and (b) window heating. hbuf is varied over 

the range 4.5 – 6.0 cm in 0.5 cm steps, while wbuf was kept constant at 2.5 cm. 

 

Figure S9. A contour plot to show the variation in SBR with parametric variation in hbuf from 4.5 to 6.0 cm in 0.5 

cm steps and wbuf from 2.5 cm to 4.0 cm in 0.5 cm steps. The black points indicate the discrete value pairs of {hbuf, 

wbuf} input to simulations. 
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S5. Supplementary plots for Sect. 4.3.3. Optimising the fillet radius of the buffer volume 

 

Figure S10. Cross sections through the PA cell buffer volume showing the changing buffer fillet radius rfil used in 

FEM simulations. The cross sections show the element mesh used. The variation in the PA cell volume Vcell is 

indicated for each rfil. 
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Figure S11. FEM simulations of the frequency-dependent (a) |psig(r⃗M,dif, )|, and (b) |pbck(r⃗M,dif, )| for the two-

resonator PA cell with varying buffer fillet radius, rfil. (c) The SBR calculated from the ratio of the sample and 

window heating responses at the ring mode eigenfrequency. (d) The PA cell response time calculated from the 

total PA cell volume and assuming a sample flow rate of 1.0 L min-1. 
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S6. Supplementary plots for Sect. 4.3.4. Optimising the upper resonator radius (rres,up) and the 

resonator separation distance (dres) 

 

Figure S12. For variation in rres,up (x-axis) and dsep (different data series), the differential microphone response at 

the ring mode eigenfrequency for (a) sample heating |psig(r⃗M,dif)|, (b) window heating |pbck(r⃗M,dif)|, and (c) SBR. 
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Figure S13. The ring and longitudinal eigenmode pressure distributions from simulations of the thermoviscous 

acoustic fields for the two-resonator PA cell with variation in the upper resonator radius (rres,up) and the centre-to-

centre resonator separation (dres). 
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Figure S14. For the two-resonator cell, FEM predictions of the frequency-dependent differential microphone 

response for (a) sample heating, and (b) window heating for different hbuf, with dres set to its maximum value. (c) 

The predicted variation in SBR with hbuf (with dres set to its maximum value), also showing the predicted SBR for 

the current cell geometry (hbuf = 4.2 cm). 
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S7. Supplementary plots for Sect. 4.3.6. Optimising the buffer and resonator lengths for a 

conserved total cell length 

 

Figure S15. FEM predictions of the eigenmode pressure distributions pn(r⃗) for the ring and longitudinal modes for 

a candidate cell with varying lbuf/lres ratio, with lbuf/lres varying from 0.88 to 0.50. The spatial distributions in pn(r⃗) 
are shown on colour scales to highlight interesting features of either the ring or longitudinal mode. 
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Figure S16. For the candidate cell, FEM predictions of (a) |psig(r⃗M,dif, )| (sample heating) and (b) |pbck(r⃗M,dif, )| 

(window heating) for lbuf/lres values of 0.651, 0.675, 0.700, 0.725 and 0.753. The vertical lines indicate the ring 

mode eigenfrequencies demarked by the frequency locations of the sample heating maxima in (a). 

  



17 

 

S8. Supplementary plots for Sect. 4.4. An optimised two-resonator PA cell: model vs measurement 

 

Figure S17. For measurements using either the original or optimised photoacoustic cell, example calibration 

measurements of the relationship between PAS response and the absorption coefficient for an ozone-laden air 

sample as determined using cavity ring-down spectroscopy. The lines represent linear regressions to the measured 

data, with the fit constrained such that the intercept is zero. The slopes of these linear regressions are labelled. 
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