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1 MCMC algorithms

1.1 MCMC algorithm for the MASVM model

The parameter vector for this model is θ =
(
µ, µh, φ, σ

2
η, ψ,h = {ht}Tt=1, λ

)
. For convenience, we first

write down the likelihood function of the model:

f(y|θ) = (2π)−T/2 exp{−
T∑
t=1

ht/2} exp{−(y − µ1T − λu)′(H−1ψ )′Σ−1H−1ψ (y − µ1T − λu)/2}

where y = (y1, y2, . . . , yT )′ is the data set, 1T = (1, 1, . . . , 1)′ is a T × 1 vector of ones,

Σ = diag(eh1 , eh2 , . . . , ehT ), u = (eh1 , eh2 , . . . , ehT )′ and

Hψ =



1 0 0 · · · 0

ψ 1 0 . . . 0

0 ψ 1 · · · 0

...
...

...
...

...

0 0 · · · ψ 1


.

From the volatility equation we also get

f(h|φ, µh, σ2η) = (2πσ2η)
−T/2

√
1− φ2 exp{− 1

2σ2η

T−1∑
t=1

(ht+1 − µh − φ(ht − µh))2 − 1− φ2

2σ2η
(h1 − µh)2}.

The full conditional distributions and related updating steps are as follows:

1Correspondence to: Stefanos Dimitrakopoulos, Economics Division, Leeds University Business School, Leeds Uni-
versity, UK, E-mail: s.dimitrakopoulos@leeds.ac.uk.
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•

f((µ, λ)′| · · · ) ∝ exp

{
−(y−µ1T−λu)′(H−1ψ )′Σ−1H−1ψ (y−µ1T−λu)/2− 1

2Vµ
(µ−µ0)2−

1

2Vλ
(λ−λ0)2

}

⇒ (µ, λ)′| · · · ∼ N(D · S,D),

where S =

(
(µ0/Vµ, λ0/Vλ)′+X ′(H−1)′Σ−1H−1y

)
, D =

(
diag(1/Vµ, 1/Vλ)+X ′(H−1)′Σ−1H−1X

)−1
and X = (1T ,u).

So, we update these jointly by drawing from the above bivariate normal distribution.

•

f(φ| · · · ) ∝
√

1− φ2 exp

{
− 1

2σ2η

T−1∑
t=1

(ht+1−µh−φ(ht−µh))2−1− φ2

2σ2η
(h1−µh)2− 1

2Vφ
(φ−φ0)2

}
1(−1<φ<1)

This is therefore not of a known form, so we use a Metropolis-Hastings step with proposal density

N(mφ, Bφ)1(−1<φ<1), with Bφ = (1/Vφ + X
′
φXφ/σ

2
η)
−1, mφ = Bφ · (φ0/Vφ + X

′
φZφ/σ

2
η), where

Xφ = (h1 − µh, ..., hT−1 − µh)
′

and Zφ = (h2 − µh, ..., hT − µh)
′
.

•

f(σ2η| · · · ) ∝ (σ2η)
−T/2(σ2η)

−νh−1 exp

{
− 1

2σ2η

T−1∑
t=1

(ht+1−µh−φ(ht−µh))2−1− φ2

2σ2η
(h1−µh)2− Sh

2σ2η

}

Therefore, the full conditional distribution for σ2η is

IG

(
νh + T/2, Sh +

T−1∑
t=1

(ht+1 − µh − φ(ht − µh))2/2 + (1− φ2)(h1 − µh)/2

)
,

from which we can directly draw.

•

f(µh| · · · ) ∝ exp

{
− 1

2σ2η

T−1∑
t=1

(ht+1 − µh − φ(ht − µh))2 − 1− φ2

2σ2η
(h1 − µh)2 − 1

2Vµh
(µh − µh0)2

}

Therefore, the full conditional distribution for µh is N(Dµh · Sµh , Dµh), where

Dµh =

(
1/Vµh +

1− φ2

σ2η
+ (T − 1)(1− φ)2/σ2η

)−1
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and

Sµh =

(
µh0/Vµh +

1− φ2

σ2η
h1 +

1− φ
σ2η

T−1∑
t=1

(ht+1 − φht)

)
.

•

f(ψ| · · · ) ∝ exp

{
−(y−µ1T−λu)′(H−1ψ )′Σ−1H−1ψ (y−µ1T−λu)/2

}
exp

{
− 1

2Vψ
(ψ−ψ0)

2

}
1(−1<ψ<1)

where ψ appears also in the matrix Hψ. This is not a standard distribution, so we update it

again using a Metropolis-Hastings step as in Chan (2013).

• f(h| · · · ) ∝ f(y|θ)f(h|φ, µh, σ2η)

∝ exp

{
−

T∑
t=1

ht/2− (y − µ1T − λu)′(H−1ψ )′Σ−1H−1ψ (y − µ1T − λu)/2

}

× exp

{
− 1

2σ2η

T−1∑
t=1

(ht+1 − µh − φ(ht − µh))2 − 1− φ2

2σ2η
(h1 − µh)2

}
,

where h appears also in u.

The above expression is not of known form and quite complicated. To sample from it, we

approximate it by a Gaussian distribution, which is then used as a proposal density within

the Acceptance-Rejection Metropolis-Hastings (ARMH) algorithm (see, for example, Tierney

(1994) and Chib and Greenberg (1995)). Candidate draws from the Gaussian approximation

are obtained, using the precision sampler of Chan and Jeliazkov (2009), instead of Kalman

filter-based methods.

In particular, the density f(h|φ, µh, σ2η) is Gaussian, that is, h|φ, µh, σ2η ∼N(H−1φ ĥ, (H ′φΣ̂−1Hφ)−1),

where ĥ = (µh, (1− φ)µh, .., (1− φ)µh)′, Σ̂ = diag(σ2η/(1− φ2), σ2η, ..., σ2η) and Hφ is a lower tri-

angular sparse matrix (with det(Hφ) = 1 - hence, it is invertible):

Hφ =



1 0 0 · · · 0

−φ 1 0 · · · 0

0 −φ 1 · · · 0

...
...

...
. . .

...

0 0 · · · −φ 1


.

The logarithm of f(h|φ, µh, σ2η) can be written as

log p(h|φ, µh, σ2η) = constant− 1

2
(h′H ′φΣ̂−1Hφh− 2h′H ′φΣ̂−1ĥ).
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The density f(y|θ) can also be approximated by a normal density. By taking the second order

Taylor expansion of the logarithm of f(y|θ) around h̃, which is the mode of the posterior

log f(h| · · · ) (see below), we have

log f(y|θ) ≈ log f(y|θ, h̃) + (h− h̃)′f − 1

2
(h− h̃)′G(h− h̃)

= constant− 1

2
(h′Gh− 2h′(f +Gh̃)),

where f = (f1, ..., fT )′ is the gradient vector with

ft =
∂

∂ht
log f(yt|µ, λ, ht, ψ) = −1

2
+

1

2
e−ht(H−1ψ (y−µ1T ))

′

(t)(H
−1
ψ (y−µ1T ))(t)−

1

2
λ2((H−1ψ )

′
H−1ψ u)(t),

t = 1, ..., T , evaluated at h = h̃, and G = diag(G1, ..., GT ) is the diagonal negative Hessian of

the log f(y|θ), with

Gt = − ∂2

∂h2t
log f(yt|µ, λ, ht, ψ) = +

1

2
e−ht(H−1ψ (y−µ1T ))

′

(t)(H
−1
ψ (y−µ1T ))(t)+

1

2
λ2((H−1ψ )

′
H−1ψ u)(t),

t = 1, ..., T , evaluated at h = h̃, and where v(i) denotes the i-th element of vector v.

The logarithm of the posterior distribution of the volatility vector therefore becomes

log f(h| · · · ) ≈ constant− 1

2
(h′Khh− 2h′kh) =: log q(h),

where Kh = H ′φΣ̂−1Hφ +G, kh = f +Gh̃+H ′φΣ̂−1ĥ and q(h) ∝ N(m̂,Kh
−1), with

m̂ = Kh
−1kh. In other words, the posterior distribution of the volatility vector can be approx-

imated by a normal density with mean m̂ and precision matrix Kh.

For efficient sampling, the point h̃, around which the second order Taylor expansion is taken,

is the mode of the posterior log f(h| · · · ). The negative Hessian of this posterior distribution

evaluated at h = h̃ is Kh and the gradient evaluated at h = h̃ is -Khh̃ +kh. To find the mode,

we apply the Newton-Raphson method as follows: 1) Initialize h = h̃(1) for some constant vector

h̃(1). 2) Set h̃ = h̃(l) for l = 1, 2, ..., and compute Kh, kh and h(l+1) = h(l) +Kh
−1(−Khh

(l) +

kh) = Kh
−1kh. This process is repeated until convergence is achieved.

1.2 MCMC algorithm for the MASVL model

The parameter vector for this model is θ =
(
µ, µh, φ, σ

2
η, ψ,h = {ht}T+1

t=1 , ρ
)

. An additional compli-

cation is that y = (y1, y2, . . . , yT )′ and h are not independent (because of the leverage part), nor
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are yt, ys, t 6= s (because of the MA part). It is therefore easier to work with the transformed

ỹ = Hψ(y − µ1T ), where Hψ and 1T are defined as in the MCMC algorithm for the MASVM model.

The joint distribution of ỹ and h is

f(ỹ,h|θ) = f(h1)

T∏
t=1

f(ỹt, ht+1|µh, φ, σ2η, ψ, ρ, {hj}j<t+1) = (2π)T+1

√
1− φ2
ση

(σ2η(1−ρ2))−T/2 exp{−
T∑
t=1

ht/2}

× exp

−1−φ2
2σ2
η
h1 −


 ỹt

ht+1


′

−

 0

µh + φ(ht − µh)



′

∗ S−1 ∗


 ỹt

ht+1


′

−

 0

µh + φ(ht − µh)


 /2


where S =

 eht ρσηe
ht/2

ρσηe
ht/2 σ2η

.

From this, it is straightforward to get the conditional distribution of ỹ given h and θ which is,

f(ỹ|h,θ) ∝ exp

{
− 1

2(1− ρ2)

T∑
t=1

e−ht(ỹt − ρ
eht/2

ση
(ht+1 − µh − φ(ht − µh)))2

}
.

The full conditional distributions are now as follows:

•

µ| · · · ∼ N(Dµ · Sµ, Dµ),

where Sµ = (µ0/Vµ+1′T (H−1ψ )′Σ−1(H−1ψ y− ρ
ση

exp{ht/2}(h+−µh1T −φ(h−−µh1T )))/(1−ρ2)),

Dµ = (1/Vµ + 1′T (H−1ψ )′Σ−1H−1ψ 1T /((1− ρ2)))−1, Σ = diag(eh1 , eh2 , . . . , ehT ),

h+ = (h2, . . . , hT+1) and h− = (h1, . . . , hT ).

•

f(φ| · · · ) ∝ exp

{
− 1

2(1− ρ2)

T∑
t=1

e−ht(ỹt − ρ
eht/2

ση
(ht+1 − µh − φ(ht − µh)))2

}
×

√
1− φ2 exp

{
− 1

2σ2η

T∑
t=1

(ht+1−µh−φ(ht−µh))2− 1− φ2

2σ2η
(h1−µh)2− 1

2Vφ
(φ−φ0)2

}
1(−1<φ<1)

To update φ we use a Metropolis-Hastings algorithm with proposal density N(mφ, Bφ)1(−1<φ<1),

where

Bφ =

(
1/Vφ +

T∑
t=1

(ht − µh)2/σ2η +
ρ2

σ2η
(exp{h

−

2
}′(h− − µh1T )

′
)Σ−1ρ (exp{h

−

2
}(h− − µh1T ))

)−1
,

mφ = Bφ·
(
φ0
Vφ

+ (h−−µh1T )
′
(h+−µh1T )

σ2
η

− ρ
ση

(exp{h−2 }
′
(h− − µh1T )

′
)Σ−1ρ (ỹ − ρ

ση
(exp{h−2 }(h

+ − µh1T )))

)
and Σρ = diag

(
eh1(1− ρ2), eh2(1− ρ2), . . . , ehT (1− ρ2)

)
.
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•

f(σ2η| · · · ) ∝ exp

− 1

2(1− ρ2)

T∑
t=1

e−ht

(
ỹt − ρ

eht/2

ση
(ht+1 − µh − φ(ht − µh))

)2
×

(σ2η)
−T/2(σ2η)

−νh−1 exp

{
− 1

2σ2η

T∑
t=1

(ht+1 − µh − φ(ht − µh))2 − 1− φ2

2σ2η
(h1 − µh)2 − Sh

2σ2η

}

As opposed to the MASVM model, this distributional form does not correspond to a known

distribution. Therefore, to update the value of σ2η we again use Metropolis-Hastings with proposal

density IG(νh+(T+1)/2, Sh+(1−φ2)(h1−µh)2/2+e
′
heh/2), where eh = h+−φh−−(1−φ)µh1T .

•

f(µh| · · · ) ∝ exp

− 1

2(1− ρ2)

T∑
t=1

e−ht

(
ỹt − ρ

eht/2

ση
(ht+1 − µh − φ(ht − µh))

)2
×

exp

{
− 1

2σ2η

T∑
t=1

(ht+1 − µh − φ(ht − µh))2 − 1− φ2

2σ2η
(h1 − µh)2 − 1

2Vµh
(µh − µh0)2

}

Therefore, the full conditional distribution for µh is N(Dµh · Sµh , Dµh), where

Dµh =
(

1/Vµh + T (1− φ)2/σ2η + (1− φ2)/σ2η + (1−φ)2ρ2
σ2
η

exp{−h−

2 }
′
Σ−1ρ exp[h

−

2 ]
)−1

and

Sµh =
(
µh0/Vµh + 1−φ2

σ2
η
h1 + 1−φ

σ2
η

∑T
t=1(ht+1 − φht)− ρ(1−φ)

ση
exp{−h−

2 }
′
Σ−1ρ (ỹ − ρ

ση
exp{h−2 }(h

+ − φh−)
)
.

•

f(ψ| · · · ) ∝ exp

− 1

2(1− ρ2)

T∑
t=1

e−ht

(
ỹt − ρ

eht/2

ση
(ht+1 − µh − φ(ht − µh))

)2

− (ψ − ψ0)
2

2Vψ

 1(−1<ψ<1)

where ψ also appears in ỹ = Hψ(y − µ1T ). This is not a standard distribution, so we update it

using a Metropolis-Hastings step as in Chan (2013).

•

f(h| · · · ) ∝ exp

{
− 1

2(1− ρ2)

T∑
t=1

e−ht(ỹt − ρ
eht/2

ση
(ht+1 − µh − φ(ht − µh)))2

}
×

exp

{
−

T∑
j=1

hj/2−
1

2σ2η

T∑
t=1

(ht+1 − µh − φ(ht − µh))2 − 1− φ2

2σ2η
(h1 − µh)2

}
.

To update the volatility vector we use the same method as the one used in the MASVM model.

We only need to modify the algorithm as follows: The gradient vector f = (f1, ..., fT+1)
′ and the

negative Hessian matrix
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G =



G11 G12 0 · · · 0

G21 G22 G23 · · · 0

...
...

...
. . .

...

0 · · · GT,T−1 GTT GT,T+1

0 · · · 0 GT+1,T GT+1,T+1


,

are calculated as follows:

The logarithm of the conditional distribution p(ỹt|ht, ht+1, µ, φ, ρ, ψ, µh, σ
2
η) is given by

log p(ỹt|ht, ht+1, µ, φ, ρ, ψ, µh, σ
2
η) = − 1

2(1−ρ2)
∑T

t=1 e
−ht(ỹt − ρ e

ht/2

ση
(ht+1 − µh − φ(ht − µh)))2

− 1
2 log

(
2π(1− ρ2)

)
− ht

2 .

Setting pt = p(ỹt|ht, ht+1, µ, φ, ρ, ψ, µh, σ
2
η) for notational convenience, we have

f1 = d log pt
dht

, ft = d(log pt+log pt−1)
dht

,

G11 = −d2 log pt
dh2t

, Gtt = −d2(log pt+log pt−1)
dh2t

, Gt−1,t = − d2 log pt
dhtdht+1

,

for t = 2, ..., T + 1, evaluated at h = h̃, where

d log pt
dht

= −1
2 −

1
2(1−ρ2)

(
− ỹ2t

exp(ht)
− 2ρ2φ(ht+1 − φht − µh(1− φ))/σ2η

+ ỹtρ
exp(ht/2)ση

(ht+1 − φht − µh(1− φ) + 2φ)
)

,

d2 log pt
dh2t

=− 1
2(1−ρ2)

(
ỹ2t

exp(ht)
+ 2ρ2φ2/σ2η −

ỹtρ
2 exp(ht/2)ση

(ht+1 − φht − µh(1− φ) + 4φ)
)

,

d log pt
dht+1

= 1
(1−ρ2)

(
−ρ2(ht+1 − φht − µh(1− φ))/σ2η + ỹtρ

exp(ht/2)ση

)
,

d2 log pt
dh2t+1

= − ρ2

(1−ρ2)σ2
η
,

d2 log pt
dhtht+1

= 1
(1−ρ2)

(
ρ2φ/σ2η −

ỹtρ
2ση exp(ht/2)

)
.

•

f(ρ| · · · ) ∝ exp

− 1

2(1− ρ2)

T∑
t=1

e−ht

(
ỹt − ρ

eht/2

ση
(ht+1 − µh − φ(ht − µh))

)2


×(1− ρ2)−T/2 exp{− 1

2Vρ
(ρ− ρ0)2}1(−1<ρ<1).

This is not a distribution we can directly draw from. However, since ρ is defined in the unit

interval, we can use the Griddy-Gibbs method.

1.3 MCMC algorithm for the SVML model

The SV in mean model with leverage (SVML) is given by

yt = µ+ λeht + eht/2εt, t = 1, . . . , T
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ht+1 = µh + φ(ht − µh) + ηt, |φ| < 1

where the joint distribution of the errors εt and ηt is bivariate normal; namely,

]

 εt

ηt

 ∼ N2


 0

0

 ,

 eht ρσηe
ht/2

ρσηe
ht/2 σ2η


 .

This model was proposed by Abanto-Valle et al. (2011). The MCMC algorithm for the SVML model

is straightforward. The step that requires some modifications is the update of the volatility vector,

in which the derivatives that appear in the gradient vector and the Hessian matrix take the following

form:

d log pt
dht

= −1
2 −

1
2(1−ρ2)

(
− (yt−µ−λ exp(ht))2

exp(ht)
− 2λ(yt − µ− λ exp(ht))− 2ρ2φ(ht+1 − φht − µh(1− φ))/σ2η

+ (yt−µ)ρ
exp(ht/2)ση

(ht+1 − φht − µh(1− φ) + 2φ) + λρ exp(ht/2)
ση

(ht+1 − φht − µh(1− φ)− 2φ)
)

,

d2 log pt
dh2t

=− 1
2(1−ρ2)

(
(yt−µ−λ exp(ht))2

exp(ht)
+ 2λ(yt − µ− λ exp(ht)) + 2λ2 exp(ht) + 2ρ2φ2/σ2η

− (yt−µ)ρ
2 exp(ht/2)ση

(ht+1 − φht − µh(1− φ) + 4φ) + λρ exp(ht/2)
2ση

(ht+1 − φht − µh(1− φ)− 4φ)
)

,

d log pt
dht+1

= 1
(1−ρ2)

(
−ρ2(ht+1 − φht − µh(1− φ))/σ2η + (yt−µ−λ exp(ht))ρ

exp(ht/2)ση

)
,

d2 log pt
dh2t+1

= − ρ2

(1−ρ2)σ2
η
,

d2 log pt
dhtht+1

= 1
(1−ρ2)

(
ρ2φ/σ2η −

(yt−µ)ρ
2ση exp(ht/2)

− λρ exp(ht/2)
ση

)
.

2 Simulated data

In this section we conduct two simulation experiments to evaluate the accuracy of the estimation

methods for the two proposed models. In each experiment we created data from the relevant proposed

model and then applied the MCMC algorithm of the corresponding model. For each simulation

exercise, we also applied the same data to the nested versions of the corresponding proposed model,

in order to assess the contribution of the model components.

In our MCMC simulations we used 50000 iterations, after discarding the initial 30000 runs (burn-in

period). For comparison purposes, we calculated the marginal likelihood and the observed-data DIC

for the models of interest. For the marginal likelihood the observed-data likelihood is evaluated, using

M1 = 1000 and M2 = 50 draws from the importance densities. To compute the observed-data DIC

value we run three parallel chains and then we took the average of these DIC estimates.

2.1 Numerical illustration for the MASVM model

We generated T=800 observations from model (1)-(3) of the main paper with the following parameter

values: µ = 0.2, λ = 0.7, ψ = 0.4, µh = 0.2, φ = 0.98 and σ2η = 0.01.
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We applied these data to three different models: the proposed MASVM model and its special cases,

the MASV (i.e. for λ = 0) and SVM (i.e. for ψ = 0) models. We used the same, quite uninformative

priors for most of the common parameters in these models. Specifically, we took

µ ∼ N(0, 10), µh ∼ N(0, 10), φ ∼ N(0.97, 0.01)1(−1<φ<1), σ
2
η ∼ IG(5, 0.16).

For the other parameters, we used

λ ∼ N(0, 100), ψ ∼ N(0, 100)1(−1<ψ<1).

Table 1 presents the posterior means and standard deviations of the parameters for the three models.

Table 1: Simulation results for the MASVM model and its nested versions. Standard deviations in
parentheses.

Model MASV SVM MASVM
True value Mean (stand. dev.) Mean (stand. dev.) Mean (stand. dev.)

µ = 0.2 1.058 (0.057) -0.244 (0.542) 0.274 (0.163)
µh = 0.2 0.323 (0.200) 0.267 (0.122) 0.274 (0.181)
λ = 0.7 1.043 (0.596) 0.651 (0.135)
ψ = 0.4 0.383 (0.033) 0.357 (0.035)
φ = 0.98 0.962 (0.017) 0.901 (0.051) 0.960 (0.017)
σ2η = 0.01 0.023 (0.007) 0.018 (0.004) 0.021 (0.006)

Log ML -1289.0 -1320.8 -1280.3
DICobs 2563.5 2619.4 2559.8

For the proposed MASVM model, based on which the data were generated, we get fairly good

estimates for all parameters. However, this is not the case for the rest of the models. In particular,

the MASV model fails to satisfactorily estimate the parameters µ and µh, while the posterior means

of µ and λ are quite far away from their true values in the SVM model.

As expected, the MASVM model has the best fit to the simulated data as it produces the largest

log marginal likelihood value and the smallest observed-data DIC value. As far as the MASV and

SVM models are concerned, the MASV model has better fit to the data than the SVM model, under

both criteria.

As a robustness exercise, we also employed the MASVM model with a beta B(20, 1.5) prior for φ,

(as in Nakajima and Omori (2012)), as well as the more vague N(0, 1)1(−1<φ<1) prior for the same

parameter. In both cases the simulation results were essentially the same with the ones above. These

results are presented in Table 2.

As we mention in the main paper (see section 2.3), higher φ could lead to higher λ. To capture
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this dependence we use the following joint prior on (φ, λ):

p(φ, λ) = p(φ)p(λ|ϕ) = N(φ0, Vφ)1(−1<φ<1) N

(
log

(
1 + φ

1− φ

)
, Vλ

)
. (7)

In other words, φ is given the same prior as before, whereas the prior of λ is a normal distribution,

centered at the value log(1+φ1−φ) (which is an increasing function of φ). Alternatively, one could use

tanh(φ) instead of log(1+φ1−φ).

In the MCMC code, the only changes will be the full conditionals of λ and φ. For the full conditional

of λ, we just need to replace λ0 with log(1+φ1−φ) (or tanh(φ)), so we can draw (µ, λ) jointly, as we do in

the MASVM algorithm, with this substitution.

For φ, the posterior expression becomes

f(φ| · · · ) ∝ exp

{
− 1

2σ2
η

∑T−1
t=1 (ht+1−µh−φ(ht−µh))2−1−φ2

2σ2
η

(h1−µh)2− 1
2Vφ

(φ−φ0)2− 1
2Vλ

(
λ− log(1+φ1−φ)

)2}
×
√

1− φ2 1(−1<φ<1).

The only difference from above is the last part inside the exponent. This is therefore not of a

known form, so we use a Metropolis-Hastings step.The simulation results with this joint prior are

presented in the last column of Table 2.

Table 2: Simulation results for the MASVM model with alternative priors. Standard deviations in
parentheses.

Model MASVM MASVM MASVM

Prior for φ B(20, 1.5) N(0, 1)1(−1<φ<1) p(λ, φ)

True value Mean (stand. dev.) Mean (stand. dev.) Mean (stand. dev.)

µ = 0.2 0.283 (0.148) 0.260 (0.156) 0.299 (0.209)
µh = 0.2 0.146 (0.200) 0.145 (0.163) 0.267 (0.156)
λ = 0.7 0.624 (0.134) 0.645 (0.144) 0.617 (0.158)
ψ = 0.4 0.363 (0.036) 0.387(0.036) 0.355 (0.035)
φ = 0.98 0.968 (0.012) 0.954 (0.020) 0.956 (0.017)
σ2η = 0.01 0.019 (0.005) 0.0203 (0.005) 0.021 (0.008)

2.2 Numerical illustration for the MASVL model

We constructed T=800 data points from model (4)-(6) of the main paper, using the following parameter

values: µ = 0.2, ρ = −0.5, ψ = 0.6, µh = −2, φ = 0.94 and σ2η = 0.01.

We applied these data to three different models: the proposed MASVL model and its special cases,

the MASV (i.e. for ρ = 0) and SVL (i.e. for ψ = 0) models. We used the same, quite uninformative

priors for most of the common parameters in these models. Specifically, we took

µ ∼ N(0, 10), µh ∼ N(0, 10), φ ∼ N(0.97, 0.01)1(−1<φ<1), σ
2
η ∼ IG(5, 0.16).
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For the other parameters, we used

ψ ∼ N(0, 100)1(−1<ψ<1), ρ ∼ N(0, 1)1(−1<ρ<1).

Table 3 presents the posterior means and standard deviations of the parameters for the three models.

Table 3: Simulation results for the MASVL model and its nested versions. Standard deviations in
parentheses.

Model MASV SVL MASVL
True value Mean (stand. dev.) Mean (stand. dev.) Mean (stand. dev.)

µ = 0.2 0.163 (0.022) 0.162 (0.015) 0.172 (0.022)
µh = −2 -1.925 (0.099) -1.670 (0.112) -1.973 (0.100)
ψ = 0.6 0.639 (0.028) 0.620 (0.028)
φ = 0.94 0.912 (0.036) 0.929 (0.027) 0.933 (0.031)
ρ = −0.5 -0.329 (0.139) -0.522 (0.167)
σ2η = 0.01 0.030 (0.011) 0.032 (0.013) 0.019 (0.009)

Log ML -379.9 -504.7 -376.9
DICobs 742.4 994.6 734.2

The posterior means for all parameters in the proposed MASVL model are closer to the actual

values of the parameters than those of the nested models MASV and SVL. For example, the SVL

model does not estimate ρ well. Also, both the MASV and SVL models substantially overestimate

the error variance σ2η.

In terms of the log marginal likelihood and the DICobs, the MASVL model is performing best, as

expected. Regarding the other two models, both criteria significantly favour the MASV model.

As for the case of the MASVM model, we used the beta prior B(20, 1.5) and the vague prior

N(0, 1)1(−1<φ<1) for parameter φ of the MASVL model. The results are presented in Table 4, and

correspond to no substantial change from the previous priors.

Table 4: Simulation results for the MASVL model with alternative priors. Standard deviations in
parentheses.

Model MASVL MASVL

Prior for φ B(20, 1.5) N(0, 1)1(−1<φ<1)

True value Mean (stand. dev.) Mean (stand. dev.)

µ = 0.2 0.208 (0.022) 0.207 (0.021)
µh = −2 -1.987 (0.071) -1.979 (0.067)
ψ = 0.6 0.604 (0.030) 0.603 (0.030)
φ = 0.94 0.951 (0.070) 0.950 (0.083)
ρ = −0.5 -0.482 (0.186) -0.530 (0.276)
σ2η = 0.01 0.026 (0.009) 0.029 (0.012)

In comparing the simulation results for the two proposed models, three conclusions can be drawn.

The first one is that omitting any of the components of the proposed SV models leads to biased
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estimation results. The second conclusion is that, based on the DICobs and the ML values, the SV

model with only the moving average part yields a better model fit than the SV with only in-mean

effect (in the first case) or only leverage effect (in the second case). The third conclusion is that data

of the second type used, i.e. data from a MASVL construction, are better fitted (closer posterior

means to the true values) by the corresponding models, compared to MASVM-type data. This means

that the inclusion of the in-mean effect creates bigger estimation challenges than the leverage effect.

2.3 Comparison of our method for updating the volatilities with those of Shephard

and Pitt (1997) and Omori and Watanabe (2008)

In this simulation study we examine the efficiency of our proposed MCMC methods, based on the

Chan (2017) algorithm for the update of volatilities, to those based on the Shephard and Pitt (1997)

and Omori and Watanabe (2008) algorithms. To this end, we repeat the simulation exercises that we

considered in sections 2.1 and 2.2 of this Online Appendix. Efficiency is measured both in terms of

correlations of the posterior draws and computational time. The algorithms are implemented using

MATLAB R2017a on a desktop with Intel Core i5-3470 @ 3.20 GHz 3.20 GHz processes with 8 GB

RAM.

Regarding the MASVM model, in order to update the latent volatilities, we use the method of

hephard and Pitt (1997). In particular, we adopt a straightforward modification of the Abanto-Valle

et al. (2012) approach, who used the block sampler of Shephard and Pitt (1997) in the context of a

SV in mean model with heavy tails. The results are presented in Table 5.

Table 5: Simulation results for the MASVM model. Standard deviations in parentheses.

Method Chan (2017) Shephard and Pitt (1997)

True value Mean (stand. dev.) IF Mean (stand. dev.) IF

µ = 0.2 0.274 (0.163) 1.1872 0.271 (0.161) 1.375
µh = 0.2 0.274 (0.181) 2.7196 0.279 (0.180) 4.892
λ = 0.7 0.651 (0.135) 15.018 0.649 (0.141) 35.311
ψ = 0.4 0.357 (0.035) 1.3249 0.323 (0.038) 1.8603
φ = 0.98 0.960 (0.017) 30.517 0.959 (0.019) 49.857
σ2η = 0.01 0.021 (0.006) 72.322 0.021 (0.014) 105.332

computational time 1928.18 seconds 3581.48 seconds

The second column replicates the simulation results in Table 1, using the method of Chan (2017),

whereas the fourth column displays the corresponding results when the method of Shephard and Pitt

(1997) is used. To monitor the mixing of each algorithmic scheme, we report the Inefficienty Factor

(IF) values (lower values correspond to better mixing).

Comparing the two IF columns, it is evident that the mixing of our proposed algorithm yields lower

autocorrelations of the posterior draws than that based on Shephard and Pitt (1997). Furthermore,
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our algorithm, which exploits sparse matrices, speeds up the computations relative to the Shephard

and Pitt (1997) method, which is based on Kalman filter techniques. The above conclusions continue

to hold for the nested versions of the MASVM model.

For the case of the MASVL model, we compare our proposed algorithm with that based on Omori

and Watanabe (2008) for the update of the volatilities. The results are presented in Table 6.

Table 6: Simulation results for the MASVL model. Standard deviations in parentheses.

Method Chan (2017) Omori and Watanabe (2008)

True value Mean (stand. dev.) IF Mean (stand. dev.) IF

µ = 0.2 0.172 (0.022) 2.656 0.179 (0.035) 3.598
µh = −2 -1.973 (0.100) 1.120 -1.971 (0.134) 1.730
ψ = 0.6 0.620 (0.028) 2.410 0.619 (0.030) 2.472
φ = 0.94 0.933 (0.031) 117.831 0.945 (0.056) 134.234
ρ = −0.5 -0.522 (0.167) 47.623 -0.549 (0.165) 54.293
σ2η = 0.01 0.019 (0.009) 136.442 0.021 (0.042) 143.193

computational time 333.92 seconds 499.84 seconds

Again, our MCMC algorithm for the MASVL model is faster and produces lowers autocorrelations

in the posterior draws of the parameters. Similar results hold also for the nested versions of the

MASVL model.

3 Additional empirical results

In this subsection we applied the MASVM model, with the joint prior (7) on (φ, λ), on all empirical

applications. The results are presented in Table 7. As mentioned in the same paper, the usage of tis

prior did not create significant changes in the posterior results.

Table 7: Empirical results for the MASVM model based on the joint prior on (φ, λ).

Dataset Equity Hedge S&P500 PHP/USD Energy returns

Mean IF CD Mean IF CD Mean IF CD Mean IF CD
µ 0.089* 7.461 -0.453 0.057* 1.811 1.722 -0.009 2.336 -0.664 0.314 3.100 0.035

(0.013) (0.029) (0.017) (0.291)
λ -0.472* 6.569 1.100 -0.072 1.489 -0.895 0.009 1.866 1.356 -0.008 2.197 -0.112

(0.109) (0.053) (0.146) (0.013)
ψ 0.175* 2.449 -1.947 0.279* 2.183 2.022 0.142* 1.713 0.168 0.214* 1.614 -0.205

(0.023) (0.020) (0.026) (0.034)
µh -2.153* 1.223 0.296 -0.641* 1.062 -0.044 -2.216* 1.256 -0.321 3.012* 1.239 1.219

(0.178) (0.205) (0.264) (0.213)
φ 0.971* 147.65 1.952 0.986* 34.579 -1.338 0.978* 40.743 2.905 0.959* 60.102 0.326

(0.008) (0.004) (0.008) (0.014)
σ2
η 0.039* 361.85 -1.941 0.014* 132.98 1.009 0.023* 108.96 -2.664 0.046* 132.14 -0.328

(0.008) (0.002) (0.005) (0.013)

*Significant based on the 95% highest posterior density interval. Standard deviation in parentheses (for the estimated
parameters). IF stands for Inefficiency Factor and CD stands for Convergence Diagnostics.
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