```
/*program for figure 1 power for normality assessment*/
libname t1 "";/*set the folder where to save output*/
/*set here the folder where to save logs and outputs*/
proc printto log =";run;
proc printto print=";run;
%let rep=1;/*number of replicates for simulations n>5000 recommended*/
%macro gen;
%do obs=2 %to 50 ; /*number of observations*/
data a&obs;
do rep=1 to &rep; /*number of replicates*/
    do obs=1 to &obs;
y=RAND('UNIFORM') ;output; /*shape of the distribution change according to
http://support.sas.com/documentation/cdl/en/lrdict/64316/HTML/default/viewer.htm#a00146674
8.htm*/
    end;
end;
run;
data GOF&obs;Test="XXXXXXXXXXXXXXXXXXXXXXXX";run;
%end;
%mend;
%gen;
/*perform the test of normality*/
%macro norm;
%do rep=1 %to &rep; /*number of replicates */
    %do obs=2 %to 25 ;/*number of observations*/
```

```
proc univariate data=a&obs normal;where rep=&rep;
ods output TestsForNormality=GOF&obs._&rep;
run;
data GOF&obs._&rep;set GOF&obs._&rep;rep=&rep;run;
data GOF&obs;set GOF&obs GOF&obs._&rep;if pValue=. then delete;if VarName="obs" then
delete;run;
data GOF&obs;set GOF&obs;
result=0;
if pSign=">" then result=1;
if pSign=" " & pValue>0.05 then result=1;
if Test="XXXXXXXXXXXXXXXXXXXXXXXX" then delete;
run;
proc means data=GOF&obs noprint;class TestLab rep;var result;output out=X&obs sum=sum
mean=mean;run;
data t1.nor&obs;set X&obs;if TestLab="" or rep^=. then delete;drop rep; rename mean=
error_rate;run;
    %end;
%end;
%mend;
%norm;
proc datasets lib=work nolist kill;run;quit; /*clean the work library*/
/*examples for power calculation*/
*t-test equal variances;
proc power;
    twosamplemeans test=diff
    meandiff = 0.3 0.5 0.8 /*cohen's d standardized effect sizes */
    stddev = 1
    npergroup = 10 to 50 by 5
    power = .;
            plot x=n; /*perform the plot*/
```


run;

```
*t-test unequal variances;
proc power;
        twosamplemeans test=test=diff_satt
        meandiff = 0.3 0.5 0.8 /*cohen's d standardized effect sizes */
        stddev = 1
        npergroup = 10 to 50 by 5
        power = .;
            plot x=n; /*perform the plot*/
run;
/*non parametric comparisons*/
proc power;
        twosamplewilcoxon
        vardist("uniform1") = uniform (0, 1)
        vardist("uniform2") = uniform (0.2, 1.2)
        variables = "uniform1" | "uniform2"
        ntotal = 10 to 50 by 5
        power =.;
            plot x=n;
run;
/*example how to compute power for different distributions*/
/*check sas proc power at
https://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#statug_po
wer_sect015.htm*/
vardist("ordinal") = ordinal ((0 1 2): (.2 .3 .5))
vardist("beta") = beta (1, 2)
vardist("binomial") = binomial (.3, 3)
```

```
vardist("exponential") = exponential (2)
vardist("gamma") = gamma (1.5, 2)
vardist("laplace") = laplace (1, 2)
vardist("logistic") = logistic (1, 2)
vardist("lognormal") = lognormal (1, 2)
vardist("normal") = normal (3,2)
vardist("poisson") = poisson
```

/*one way analysis of variance*/;
*test on linear contrast between groups;
proc power;
onewayanova test=contrast
contrast $=\left(\begin{array}{ll}1 & 0\end{array}\right) \quad /$ / coefficient for linear contrasts*/
groupmeans $=-0.5|0|+0.5 / *$ note mean1-mean3/stdev as Cohen's d*/
stddev = 1
npergroup $=10$ to 50 by 5
power = .;
plot $x=n$;
run;
*test on omnibus test (F snedecor)
proc power;
onewayanova test=overall
contrast $=\left(\begin{array}{ll}1 & 0\end{array}-1\right)$
groupmeans $=-0.5|0|+0.5 / *$ note mean1-mean3/stdev as Cohen's d*/
stddev = 1
npergroup $=10$ to 50 by 5
power = .;
run;

```
/*comparison between two proportion by Fisher's exact test*/
proc power;
    twosamplefreq test=fisher /*use "chisq" for ordinary chi-squared test*/
        groupproportions =(.35 .15)
    npergroup = 10 to 50 by 10
    power = .;
            plot x=n;
run;
/*repeated measures ANOVA*/
data use;/*step 1 create a dataset with means by groups*/
    input Treatment $ out1 out2 out3 out4;/*outcomes variables 4 time points*/
    datalines;
    groupA 1 1 1 1 1 1
    groupB 1 1.52 2.5
;run;
proc glmpower data=use;/*step 2 declare other parameters*/
    class Treatment;
    model out1 out2 out3 out4 = Treatment;
    repeated Time contrast;
    power
        mtest = hlt
        alpha = 0.05
        power = .
        ntotal = 10 to 50 by 10
        stddev = 1
        MATRIX ("corr") = (1
                                /*define the correlation matrix
among measures*/
```

```
            0.21
            0.20.2 1
            0.2 0.2 0.2 1)
    corrmat = "corr";
        plot x=n;
run;
```

