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Abstract

This is the supplemental file of the paper. The supplement is written for the

authors, the reviewers, and the readers to check the correctness of the derivations

and to replicate the results.

1. The proof of Theorem 1

Suppose that we observe X1, X2, . . . , Xn from the hierarchical Poisson and

gamma model:  Xi|θ
iid∼ P (θ) , i = 1, 2, . . . , n,

θ ∼ G (α, β) ,
(1)

where α > 0 and β > 0 are hyperparameters to be determined, P (θ) is the

Poisson distribution with an unknown mean θ > 0, and G (α, β) is the gamma

distribution with an unknown shape parameter α and an unknown rate param-

eter β.

By the Bayes Theorem, the posterior distribution of θ is

π (θ|x) ∝ f (x|θ)π (θ) .

It is easy to see that

f (x|θ) =
n∏

i=1

f (xi|θ) =
n∏

i=1

θxi

xi!
exp (−θ)

=
θ

∑n
i=1 xi

n∏
i=1

xi!
exp (−nθ)

∝ θ
∑n

i=1 xi exp (−nθ)
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and

π (θ) =
βα

Γ (α)
θα−1 exp (−θβ)

∝ θα−1 exp (−θβ) .

Therefore,

π (θ|x) ∝ θ
∑n

i=1 xi exp (−nθ) θα−1 exp (−θβ)

= θ(α+
∑n

i=1 xi)−1 exp [−θ (β + n)]

∼ G (α∗, β∗) ,

where

α∗ = α+
n∑

i=1

xi and β∗ = β + n.

Now let us calculate the marginal probability mass function (pmf) of x. We

have, for x = 0, 1, 2, . . . , α > 0, β > 0,

m (x|α, β) =
∫ ∞

0

f (x|θ)π (θ) dθ

=
∫ ∞

0

θx

x!
exp (−θ) βα

Γ (α)
θα−1 exp (−θβ) dθ

=
βα

x!Γ (α)

∫ ∞

0

θ(x+α)−1 exp [−θ (1 + β)] dθ

=
βα

x!Γ (α)
Γ (x+ α)

(1 + β)x+α

=
Γ (x+ α)

Γ (x+ 1) Γ (α)
βα

(1 + β)x+α . (2)

In particular, when α is a positive integer, the marginal distribution of x is

m (x|α, β) =
Γ (α+ x)

Γ (x+ 1)Γ (α)

(
β

1 + β

)α( 1
1 + β

)x

=
Γ (r + x)

Γ (x+ 1)Γ (r)
prqx

=
(r + x− 1)!
x! (r − 1)!

prqx

=
(
r + x− 1

x

)
prqx

∼ NB (r, p) ,
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which is a negative binomial distribution, where

r = α, p =
β

1 + β
, and q = 1− p =

1
1 + β

.

The proof of the theorem is complete. �

2. The proof of Theorem 2

The hyperparameters of the model (1) are α > 0 and β > 0. To obtain

the moment estimators of the hyperparameters of the model (1), we need to

calculate the first two moments of X, EX and EX2. It is easy to show that

Eθ =
α

β
and Var (θ) =

α

β2
.

Therefore,

EX = E [E (X|θ)] = E [θ] =
α

β

and

EX2 = E
[
E
(
X2|θ

)]
= E

{
Var (X|θ) + [E (X|θ)]2

}
= E

[
θ + θ2

]
= Eθ + Var (θ) + (Eθ)2

=
α

β
+

α

β2
+
(
α

β

)2

=
αβ + α+ α2

β2

=
α (α+ β + 1)

β2
.

Furthermore, letting the population moments be equal to the sample mo-

ments, we obtain

EX =
α

β
= A1, (3)

EX2 =
α (α+ β + 1)

β2
= A2, (4)
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where

Ak =
1
n

n∑
i=1

Xk
i , k = 1, 2,

is the sample kth moment of X. Substituting (3) into (4), we obtain

A1
α+ β + 1

β
= A2

⇔ α

β
+ 1 +

1
β

=
A2

A1
. (5)

Substituting (3) into (5) and simplifying, we have

β =
A1

A2 −A1 −A2
1

= β1 (n) . (6)

From (3) and (6), we can solve

α =
A2

1

A2 −A1 −A2
1

= α1 (n) . (7)

Consequently, the moment estimators of the hyperparameters of the model (1)

are given by (7) and (6).

The proof of the theorem is complete. �

3. The proof of Theorem 3

Now we derive the MLEs of α and β. The hyperparameters of the model

are α > 0 and β > 0. By Theorem 1, we know that the marginal density of X

of the model (1) is

m (x|α, β) =
Γ (x+ α)

Γ (x+ 1)Γ (α)
βα

(1 + β)x+α , x = 0, 1, 2, . . . , α > 0, β > 0.

Then the likelihood function of α and β is

L (α, β|x) = m (x|α, β) =
n∏

i=1

m (xi|α, β) =
n∏

i=1

βαΓ (xi + α)
xi!Γ (α) (1 + β)xi+α .

Consequently, the log-likelihood function of α and β is

logL (α, β|x)

=
n∑

i=1

[α log β + log Γ (xi + α)− log (xi!)− log Γ (α)− (xi + α) log (1 + β)]

= nα log β +
n∑

i=1

log Γ (xi + α)−
n∑

i=1

log (xi!)− n log Γ (α)−

(
n∑

i=1

xi + nα

)
log (1 + β) .
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Taking partial derivatives with respect to α and β and setting them to zeros,

we obtain

∂

∂α
logL = n log β +

n∑
i=1

Γ′ (xi + α)
Γ (xi + α)

− n
Γ′ (α)
Γ (α)

− n log (1 + β) = 0,

∂

∂β
logL = nα

1
β
−

(
n∑

i=1

xi + nα

)
1

1 + β
= 0.

Since

ψ (x) =
Γ′ (x)
Γ (x)

=
d

dx
log Γ (x) = digamma (x)

which can be directly calculated in R software by digamma(x) ([1]), after some

algebra, the above equations reduce to

f1 (α, β) = log β +
1
n

n∑
i=1

ψ (xi + α)− ψ (α)− log (1 + β) = 0, (8)

f2 (α, β) =
α

β
− x̄+ α

1 + β
= 0. (9)

The MLEs of the hyperparameters α and β are the solutions to the equations

(8) and (9). The analytical calculations of the MLEs of α and β by solving the

equations (8) and (9) are impossible, and thus we have to resort to numerical

solutions. We can exploit Newton’s method to solve the equations (8) and (9)

and to obtain the MLEs of α and β. The iterative scheme of Newton’s method

is

p(k+1) = p(k) −
[
J
(
p(k)

)]−1

f
(
p(k)

)
, k = 0, 1, . . . ,

where J (p) is the Jacobian matrix of f (p) = (f1 (p) , f2 (p))′ and p = (α, β)′.

Note that the MLEs of α and β are very sensitive to the initial estimators, and

the moment estimators are usually proved to be good initial estimators. The

Jacobian matrix of α and β is given by

J = J (p) =

J11 J12

J21 J22

 =

∂f1
∂α

∂f1
∂β

∂f2
∂α

∂f2
∂β

 ,
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where

J11 =
∂f1
∂α

=
1
n

n∑
i=1

ψ′ (xi + α)− ψ′ (α) ,

J12 =
∂f1
∂β

=
1
β
− 1

1 + β
=

1
β (1 + β)

,

J21 =
∂f2
∂α

=
1
β
− 1

1 + β
=

1
β (1 + β)

= J12,

J22 =
∂f2
∂β

= α

(
− 1
β2

)
− (x̄+ α)

[
− 1

(1 + β)2

]
= − α

β2
+

x̄+ α

(1 + β)2
.

Note that

ψ′ (x) =
d2

dx2
log Γ (x) = trigamma (x)

which can be directly calculated in R software by trigamma(x) ([1]).

The proof of the theorem is complete. �

4. The two cases of the goodness-of-fit of the model to the simulated

data

Let us consider the hierarchical Poisson and gamma model (1).

Case 1. The hyperparameters α and β are assumed known.

In this case, the hyperparameters α and β are assumed known. For example,

α = 1 and β = 2. Let the null hypothesis be

H0 : X ∼ P −G (α, β) ,

where P −G (α, β) is the marginal distribution of the hierarchical Poisson and

gamma model (1) with the marginal pmf m (x|α, β) given by (2).

The chi-square goodness-of-fit is performed as follows. We first divide the

domain of X, X = {0, 1, 2, . . . , }, into m groups:

I1 = {0} , I2 = {1} , · · · , Im−1 = {m− 2} , Im = {k : k ≥ m− 1} .

Let the theoretical probabilities under H0 on these subintervals be

p1, p2, . . . , pm−1, pm,
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where

pi = PH0 (X ∈ Ii) , i = 1, . . . ,m− 1,

= PH0 (X = i− 1)

=
Γ (i− 1 + α)
Γ (i) Γ (α)

βα

(1 + β)i−1+α
,

pm = 1−
m−1∑
i=1

pi,

and PH0 is the probability whenX is distributed underH0. Let ni, i = 1, . . . ,m,

denote the number of X1, X2, . . . , Xn that lie in the ith subinterval Ii. Then

the chi-square statistics ([2, 3])

K =
m∑

i=1

(ni − npi)
2

npi

d→ χ2 (m− 1) , as n→∞,

where d→ is convergence in distribution. Moreover, we can compute the p-value

which gives the probability that a value of K as large as the one observed would

have occurred if the null hypothesis were true. Hence,

p-value = P
(
χ2 (m− 1) > K

)
= 1− P

(
χ2 (m− 1) ≤ K

)
= 1 - pchisq(K, df = m-1),

where pchisq(), which calculates the cdf of a chi-square random variable, is an

R built-in function ([1]). Note that a large p-value (> 0.05 in the usual case)

indicates that the model specified by H0 fits the (simulated) data well, while a

small p-value (≤ 0.05 in the usual case) indicates that the model specified by

H0 does not fit the (simulated) data well. The larger the p-value, the better the

model specified by H0 fits the (simulated) data.

Case 2. The hyperparameters α and β are unknown.

Let the null hypothesis be

H0 : X ∼ P −G (α, β) ,
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where α and β are unknown. First, the hyperparameters α and β need to be

estimated by the sample. The estimators could be the moment estimators or

the Maximum Likelihood Estimators (MLEs). Let Ii and ni be given in Case

1. The theoretical probabilities under H0 on the subintervals are calculated by

p̂i = PH0

(
X ∈ Ii|α = α̂ (n) , β = β̂ (n)

)
, i = 1, . . . ,m,

that is, the unknown hyperparameters α and β are estimated by their estimators

α̂ (n) and β̂ (n) based on the sample. Then the chi-square statistics ([2, 3])

K̂ =
m∑

i=1

(ni − np̂i)
2

np̂i

d→ χ2 (m− 1− 2) , as n→∞.

Note that the degree of freedom now is lost by 2, since two unknown parameters

are estimated by the sample. Moreover, the p-value is given by

p-value = P
(
χ2 (m− 3) > K̂

)
= 1− P

(
χ2 (m− 3) ≤ K̂

)
= 1 - pchisq(K̂, df = m-3).

The derivations are complete. �
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