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ABSTRACT

This is a supplementary material to the corresponding paper submitted to the Jour-
nal of Applied Statistics. It contains the regularity conditions, the proofs of Theorems
2.1-2.2 and Theorem 2.5, and R codes for sample size calculations.

1. Regularity conditions

For smooth reading, we list the regularity conditions of the main paper in the following.
In the proofs, the expectation are taken under the distribution f(x; pg, o).

BO.

B1.

B2.

B3.

B4.

(IID condition) In the model (1), the first sample z11,...,z,, are independent
and identically distributed (i.i.d.), and the second sample x91,...,z,, are i.i.d.,
and the two samples are independent.

(Wald’s integrability —conditions) (i) E{|log f(z;0,1)|} < oo; (ii)
limy 00 f(2;0,1) = 0.

(Smoothness) The support of f(x;pu, o) is (—oo,00), and it is three times con-
tinuously differentiable with respect to p and o.

(Identifiability) For any two mixing distribution functions ¥; and ¥y with two
supporting points such that [ f(z;p,0) d¥(u,0) = [ f(x;p, o) d¥s(u, o) for all
x, we must have U; = Uy,

(Uniform boundedness) There exists a function g with finite expectation such

that

<g(z), for h+1<2,

00 f (; po, 00) /0" Do’ ‘3
f(@; po, 00)

where h and [ are two nonnegative integers. Moreover, there exists a positive €
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Bb5.

B6.

BrT.

C1.

C2.
C3.

C4.

C5.

such that

(h41) £( .. hal 3
sup Ot f(a;p,0)/Op" do

< g(z), for h+1=3.
=02 +lo—ao[2 <e f(@; 1o, 00)

(Positive definiteness) The covariance matrix of (U, V') is positive definite, where

U — df(x11; po, 00) /0

and v = 2 @uspo, 00)/00

f(z11; po, 00) f(x11; po, 00)

(Tail condition) There exists positive constants vy, v1 and Gy with Sy > 1 such
that f(z;0,1) < min{vg, vy |z|~%}.

(Upper bound function) There exist a nonnegative function s(z;u,o) which
satisfies Condition Bl and is continuous in (u,o), a positive number a with
1/Bp < a < 1, a positive number b, and a positive number ¢* with ¢* < 1 such
that for o € (0, €*0y), s(z; p, o) is uniformly bounded, [ s(x;p,o)dz < 1, and

0'718(33; K, 0)7 if |.%' - lu| < O-lia

o <{ 7 a

o’s(z;p,0),  if lv—p| > o'”

p(A) is a continuous function such that it is maximized at A = 1 and goes to
negative infinity as A — 0.

SUp,~o max{p,(0),0} = o(n) and p,(c) = o(n) for any o.

P (o) = o0p(n'/?), for all ¢ > 0, where p/,(0) is the derivative function with
respect to o.

When 0 < o < 8/(naMp) and ny is large, p, (o) < 4(lognz)?log(o). Here My =
max{sup, f(z; po,00),8}.

Pr(b1o; 01 X7 + bo, ..y 01X, + o) = pr(0; X1,y Xin)-

2. Some useful lemmas

Since the EM-test is location-scale invariant, we assume (pg,09) = (0,1) for the con-
venience of presentation.

Lemma 2.1. (Consistency with non-zero mizing proportion) Assume the same con-
ditions as in Theorem 2.1. Let (A, i,01,02) be any estimator of (X, u,01,02). If

pln(;\a/jh&l;&z) _pln(1707 17 1) >Cc> =00

hold and X\ € [6,1] for some & € (0,1), then under the null model f(x;0,1), we have
p=o0p(1) and 61 — 1 =o0p(1),02 — 1 = 0,(1).

The proof of Lemma 2.1 is similar to the proof of Lemma 1 in [4], hence we omit
it. In the next lemma, the conclusion of Lemma 2.1 is strengthened.

Lemma 2.2. (Convergence rate with non-zero mixing proportion) Assume the same
conditions as in Lemma 1.1. If X — X\g = op(1) for Ao € (0,1], then g = Op(n_l/Q),
on—1=0,(n""?), h=1,2.



Proof. Let
Ini(p,01) =Y log f(w1i; 11, 1),
i=1
In2(A, g1, 01,02) = > log {(1 = A) f (wai; 1, 01) + Af (w2i3 1, 02) }
i=1

Further let
Rnl(,u,, 01) = lnl(,u, 01) — lnl(O, 1) and Rn2(>\, Hu,01, 0'2) = lnz(/\,u,al, 02) — lng(l,o, 1, 1).
Then

pln(j‘ala70_-175-2) - pln(la 07 1> 1) = Rnl(,ua Ul) + Rn2()\7 M701702)
+p(A) = p(1) + pu(02) — pa(1).

Next we derive an upper bound for pl,, (X, fi, &1, 52) — pln(1,0,1,1). Together with the
lower bound ¢, we get the order assessment of i and ap,(h = 1,2).

We first find an approximation for R, (f,51). From Lemma 2.1, we have the consis-
tency results i = o,(1), 65, —1 = 0,(1), h = 1, 2. Applying the second Taylor expansion
to Rni1(f@, 1) around (0,1), and the weak law of large numbers with Conditions B2
and B4, we get that

Ry (ft,01) = lpi(f, 01) — 1p1(0,1)
Ol (0, 1) _ Ol (0, 1) _
= -1
o Pt o0 (61 —1)
19%,1(0,1) 5 | 9*1u(0,1)

102, (0,1)

o ~ 2
2 2y M oudo, Mo D52, @1
+ op(n){E* + (71 — 1)*}. (1)
Let
Of(zp;0,1)/0u Of (xp;0,1) /00 )
Yy = and Zy; = ,h=1,2,1=1,2,... ny.
" F(@ni;0,1) " F(@ni; 0, 1) "
Hence,
Ap1(0,1) _ 9l,1(0,1) NS e ,
on i+ B0, (61 —-1) = E{qumL (01 —1)Z1i}. (2)



Further by the weak law of large numbers, we get

Ol (0,1) _ i 0 (2130, 1)/Pn {8f(9cm~;0, 1)/@}1

aQM i—1 f(mhu 07 1) f(xh’u 07 1)
=~ Y +oy(n). (3)
i=1
Similarly to (3), we have that
9%1,1(0,1) - 9%1,1(0,1)
e = ; Y1 Z1; + op(n) and T Z Zi +o0,(n).  (4)

By Condition B5 and the weak law of large numbers, we get that

S Vit (01— 1) 21 | 0p(1) = op(m) {2 + (o1 — 1)2). (5)
=1

Combining (1)—(5), we get

R (i, 01) Z{MYh 01—1)211'}—% [i{MY1i+(01 ~1)Z1}? | {1 +0p(1)}. (6)
=1

By Condition C3, we have

[pa(32) = pu(1)] = lop(n'/?)(52 = )| < |op(1)] + lop(n)| (72 — 1)*. (7)

We now find an upper bound for R,o(A p,o1,02). Write Rpo(X, p,01,02) =
Y2 log(1 + 6;), where

5 — (1 - X){f([l)gl,ﬂ,a'l) - f(levov 1)} + S‘{f(whna?a-?) - f(x21707 1)}
Z fla2:;0,1) '

By the inequality log(1 + z) < x — 22/2 + 23/3, we have
No 1 N2 1 No
) . 5.5 N 2 1 3
Rn2()\’/‘/“70-1)0-2) SX;(SZ 2251 +325Z
1= 1= 1=

Let m = (1 — A\)(61 — 1) + A(G2 — 1). By the consistency 6, — 1 = 0,(1), h = 1,2, we
get m = op(1). Applying the first order Taylor expansion to f(xg;; i, 65) around (0, 1),
we have 6; = iYs; + MZa; + €p;. Let e, = > 12, £pi. The remainder term &, satisfies

2
%zOU”u+Z%—r}oN®W+Z@—N}
h=1 h=1

From Condition B4 and the weak law of large numbers, after some straightforward



algebra, we get

B na 1 N2
Rua(\, J1,01,52) < D _{i¥i +mZai} — 5 Y {iYai + mZyi}* {1+ 0p(1)}
=1 =1

1 _ _
+ g ;{/LY% + mZQi}S + Op(&“n)
For the cubic term in the upper bound of R,2(\, i, 51, 52), we have that
No N2
Z{ﬂYzi +mZy ) = z{ﬂ3y2?§ + 3% Y5 Zoi + 3 Yo Za; + m* Z3;}
i=1 i=1

n2
= 0p(1) | Y _{R*Ys) + 30°Y5, Zoi + 3m°Ya; Z5; + > Z3;}
=1

= op(n)(* +m?).

Hence

Rua(\, i, 51, 52) < i{ﬂYzi +mZy} - % i{ﬂYm + M2} {1+ 0p(1)} + Op(en). (8)
i=1 i=1
Combining (6)—(8) and Condition C1, we get
pla(\, i, 01, 52) — pla(1,0,1,1) < i{ﬂyli + (01— 1) Z1} + i(ﬂYm + 1M Za;)
=1 =1
— % i{[mi + (61— 1) Z1 1 + i(ﬂYQi +mZ%)* | {1+ 0p(1)}
i=1

i=1
+ Op(en) + 0p(1).

Condition A — A\g = 0,(1) with A\g € (0,1] implies that

Oplen) = Op(n2) {2 + (01— 1) + 12} = 0, () {i + (31 — 1) + 2},



Hence, by the weak law of large numbers with Condition B5,
¢ < pln(A, fi,51,62) — ply(1,0,1,1)

T, na
< Z{ﬂylz + (o1 —1)Zu} + Z(ﬂYm + mZa;)
i—1 i—1

- % [i{ﬂm + (61— 1) 2} + ZQ([LY% +mZy)? | [1 + 0p(1)] + 0p(1)
i=1

i=1
n1 N2 ni M2
= M{ZylmLZYzz} + (01 — 1)ZZ1i+mZZ2i
i=1 i=1 i=1 i=1
1| 5 v o2 _ INS 2 L 2N
i=1 i=1 i=1 i=1
nqy N2
+ 2a(o1 — 1) Z Y121 + 2pm Z Yo, Zo;

i=1 i=1

1 _
< 5U7’1W U, +0,(1). (9)

{1+ 0p(1)} +0p(1)

n1 o
YooY+ > Yy
= ny =1 012/ pP10Y,Zz P20Y,Z
U, =n"'/? > Zhi and W = | pioyz pi1o% 0 ,
. p20y,z 0 p20%,

with 0}2/ = Var(Y11), O'% = Var(Z11), oy,z = Cov(Y11, Z11). Therefore
fi=0,(n"%), 61 —1=0,(n"Y?), in = 0,(n""?). (10)

Any values of (fi,& — 1,/m) out of this range in (10) will violate the inequality. With
the condition that A — Ao = 0,(1), for some A\g € (0, 1], we have

fi=0p(n12), 31— 1= 0,(n"1/?), 52 — 1= 0p(n"1/?),

Let (), fi, o1,02) be estimator of (A, u, 01, 02) as before, and let

D = _ M(2i 1, 52)
(1= N (w2 1, 01) + Af (205 1, 52)

Define

Hy(A) = (ng =Y _w;)log(1—X) + Y wilog A+ p(A).
=1 =1



The EM-test updates A by search \* = arg maxy H,(\). Then, we have the following
lemma.

Lemma 2.3. Under the same conditions as in Lemma 2.2, and if =X = op(1) for
some Ao € (0,1], then \* — Xg = 0p(1).

For the proof of Lemma 2.3 is similar to that of Lemma A3 of [3] and hence is
omitted.

3. The proofs of Theorems 2.1-2.2 and Theorem 2.5

The proof of Theorem 2.1

Proof. For any k < K, due to the monotonicity property of the EM algorithm that
the penalized likelihood increases after each iteration ([1, 8, 5]), we have

a1 o) o8y > pl, (A, 1D o) i) > pla(2;,0,1,1).

Further, pln()\;k),ug ) a%’;),aéj)) —plp(1,0,1,1) > p(A;) — p(1) > —oo. Then by Lem-
mas 2.1-2.3, Theorem 2.1 holds. ]

The proof of Theorem 2.2
Proof. Under Conditions B2, B4 and B5, applying some of the classic results about
regular models ([6]), we have
Suppln(17M707 U) _pln(l)oalal) 7U*,W* lU* +Op( ) (11)
o
where
ny Mo
YV + Y Yy

2
* _ . —1/2 | i=1 i=1 * o oY,z
U, =n / = i= , W* = (GYYZ 3 ) .
> Z1i+ ). Zai ’ Z
=1 =1

From Theorem 2.1 and (9), we have

1
Pl 1 0 o) = pla(1,0.1,1) < SUZW T U +0,(1)  (12)

Hence, combining (11) and (12), we get

MO () = 2{pla (W 1 o) oY — i, (1,0,1, 1))

n J
— 2{suppl, (1, p,0,0) — pl,(1,0,1,1)}
1,0
<UW U, - UYW* U +0,(1),



where the presentations of W1 and W*~1 are provided in the end of the proof. The
above equality can further be simplified as

MIO(N) < 0,°T2 + 0,(1),

ni1 T2
where T,, = n~1/2 < % > Zyi— Z—; > Zgz) . Since the upper bound does not de-
i=1 i=1

pend on \;, we further have
EME) < 6 ,2T2 + 0,(1). (13)

Next, we show the upper bound for EM,SK). Let (1,01 — 1,00 — 1) = n~2W-1y,,.
Since the EM-iteration always increases the penalized likelihood and A\; = 1, we have
that

EM) > MO () > MUY (A1) > 2{pl, (M, fi, 61,62) — supply (1, py0,0)}. (14)
w,o

Note that it is easy to verify that i = O,(n~2),61 — 1 = Op(n~1/2),69 — 1 =
Op(nfl/ 2). With this order assessment and applying the second order Taylor expan-
sion, we have that

2{pln()\17ﬂ751a 52) - Suppln(luu70-> G)} = 0-22T’3 =+ Op(l)‘ (15)
o

From (13)—(15), we get EM) = 0,*T2 + 0,(1). By central limit theorem, o,'T,
converges to N (0, 1) in distribution. Therefore, Consequently, the null limiting distri-
bution of EMX) is y2.

The presentations of W1 and W*~1 are as follows.

2
Oy —0Y,Z —0Y,Z
1 2 o2 o2
W_l _ —oyz oy _ P2 Y.z v.z
o202 — o2 ’ pr  P10% °z )
Y“Zz Y.iZ \ _, 9y.z oy _ P9yz
Y,z 0% P2 202,
2
Wl 1 oy —0y,z
- 020% — o2 —0Y,Z o3 '
Y9z Y, Z ) Y

The proof of Theorem 2.5

Proof. The proof of (i)
Without loss of generality, we assume that the null model is f(z;0,1). Then E(V?) =

o5 20%. Further the local alternative H? in (6) of the main paper becomes
0 9z al

moX= Mo, (pn,01) = (0,1), (u,09) = (0,1 +ny *Ay/oy).



Let

A = ilog (1= Xo) f (2550, 1) 4+ Ao f (w9:; 0,1 + ny > Ay Jarg)
" f(22:;0,1)

=1

Under Conditions B2 and B4, applying second order approximation, we can verify
that under the null model,

n2
A = 2oy 1y 2T A1 Zoi — 0.50305 205 A3 + 0,(1).
=1

Hence under the null model, A, AN (—0.5¢2, ¢?), where ¢? = )\305 QA%O'%. Therefore,
the local alternative H7 is contiguous to the null distribution ([2] and Example 6.5 of
[7)-

By Le Cam’s contiguity theory, the limiting distribution of EM ELK) under H7 is
determined by the joint limiting distribution of O'EITn and A, under the null model. By
central limit theorem and Slutsky’s theorem, the joint limiting distribution of UEIT n
and A,, under the null model is multivariate normal

I 0 1 —/P1 ooy oz Ay
2\\-0.5¢2) "\ — /ooy oz A c? ‘

By Le Camrs third lemma ([7]), we have under H}},
ngTn 4 N(—\//Tl)\gao_lazAl, 1).

Since EME) = 0, Ty + 0,(1) holds under the null, by Le Cam’s first lemma ([7]),

EMY) = 0;'T, + 0,(1) still holds under HT,. Therefore, the limiting distribution
of EM) under the local alternative HY is x3(c?), where ¢? = A3proy A0l =
Ao ATE(V?).

The proof of (ii)

The proof for part (ii) is similar to that of (i), hence we omit it. O

4. R codes for sample size calculation

Given the null model Hy, the local alternative model H', and given p1, the following
R functions size.norm() and size.logis() calculate the required sample sizes (n1,n2) to
reject the null hypothesis with the target power 1 — 8 at the significance level « for
the normal kernel and logistic kernel, respectively.

For example, suppose A\g = 0.5, (u1,01) = (0,1), (u2,02) = (0,1.5), and p; = 1/3.
If the target power is 80% at the 5% significance level, the required sample sizes are
found to be (n1,n2) = (94,189) under the normal kernel and (ni,n2) = (129, 258)
under the logistic kernel by using R functions size.norm() and size.logis().

size.norm <- function(lambdaO,rhol,sigmal,sigma2,alpha,target_power){
n2 <- 2
powerO <- target_power



diff_power <- 1
while(diff_power>0.001){
Deltal <- sqrt(n2)*(sigma2-sigmal)
cO_squ <- lambdaO~2*rhol/(sigmal~2)*(2+Deltal”2)
powerl <- pchisq(qchisq(l-alpha,1),1,ncp = cO_squ,lower.tail = F)
diff_power <- powerO-powerl
n2 <- n2+1
}
nl <- round(rhol/(1-rhol)*n2,0)
data.frame(nl=nl,n2=n2,row.names = "sample size")

size.logis <- function(lambdao,rhol,sigmal,sigma2,alpha,target_power){
n2 <- 2
powerO <- target_power
diff_power <- 1
while(diff_power>0.001){
Deltal <- sqrt(n2)*(sigma2-sigmal)
cO_squ <- lambdaO~2*rhol/(sigmal~2)*(Deltal~2*(3+pi~2)/9)
powerl <- pchisq(qchisq(l-alpha,1),1,ncp = cO_squ,lower.tail = F)
diff_power <- powerO-powerl
n2 <- n2+1

}
nl <- round(rhol/(1-rhol)*n2,0)
data.frame(ni=nl1,n2=n2,row.names = "sample size")

> size.norm(0.5,1/3,1,1.5,0.05,0.8)
nl n2
sample size 94 189

> size.logis(0.5,1/3,1,1.5,0.05,0.8)
nl n2
sample size 132 264

References

[1] A.P. Dempster, N.M. Laird and D.B. Rubin, Mazimum likelihood from incomplete data via
the EM algorithm, J. Roy. Statist. Soc. Ser. B 39 (1977), pp. 1-38

[2] L.M. Le Cam and G.L. Yang, Asymptotics in Statistics : Some Basic Concepts, Springer-
Verlag, New York, 1990.

[3] P. Li, J. Chen and P. Marriott, Non-finite Fisher information and homogeneity: an EM
approach, Biometrika 96 (2009), pp.411-426.

[4] G. Liu, Y. Fu, P. Li and X. Pu, Using differential variability to increase the power of the
homogeneity test in a two-sample problem, Statist. Sinica 28 (2018), pp. 27—41.

[5] G.J. McLachlan and T. Krishnan, The EM Algorithm and Extensions,Wiley, New York,
1997.

[6] R.J. Serfling, Approzimation Theorem of Mathematical Statistics, Wiley, New York, 1980.

[7] A'W. van der Vaart, Asymptotic Statistics, Cambridge University Press, New York, 2000.

10



[8] C.F.J. Wu, On the Convergence Properties of the EM Algorithm, Ann. Statist. 11 (1983),
pp- 95-103.

11



