SUPPLEMENTARY MATERIAL

Supplementary material for "EM-test for homogeneity in a two-sample problem with a mixture structure"

Guanfu Liu^a, Yuejiao Fu^b, Jianjun Zhang^c, Xiaolong Pu^d and Boying Wang^d

^aSchool of Statistics and Information, Shanghai University of International Business and Economics, Shanghai 201620, China; ^bDepartment of Mathematics and Statistics, York University, Toronto M3J 1P3, Canada; ^cDepartment of Mathematics, University of North Texas, Denton, TX 76201, USA; ^dSchool of Statistics, East China Normal University, Shanghai 200241, China

ARTICLE HISTORY

Compiled June 20, 2019

ABSTRACT

This is a supplementary material to the corresponding paper submitted to the *Journal of Applied Statistics*. It contains the regularity conditions, the proofs of Theorems 2.1–2.2 and Theorem 2.5, and R codes for sample size calculations.

1. Regularity conditions

For smooth reading, we list the regularity conditions of the main paper in the following. In the proofs, the expectation are taken under the distribution $f(x; \mu_0, \sigma_0)$.

- **B0.** (IID condition) In the model (1), the first sample x_{11}, \ldots, x_{n_1} are independent and identically distributed (i.i.d.), and the second sample x_{21}, \ldots, x_{n_2} are i.i.d., and the two samples are independent.
- B1. (Wald's integrability conditions) (i) $E\{|\log f(x;0,1)|\} < \infty$; (ii) $\lim_{x\to\infty} f(x;0,1) = 0$.
- B2. (Smoothness) The support of $f(x; \mu, \sigma)$ is $(-\infty, \infty)$, and it is three times continuously differentiable with respect to μ and σ .
- B3. (Identifiability) For any two mixing distribution functions Ψ_1 and Ψ_2 with two supporting points such that $\int f(x;\mu,\sigma) d\Psi_1(\mu,\sigma) = \int f(x;\mu,\sigma) d\Psi_2(\mu,\sigma)$ for all x, we must have $\Psi_1 = \Psi_2$.
- B4. (Uniform boundedness) There exists a function g with finite expectation such that

$$\Big|\frac{\partial^{(h+l)}f(x;\mu_0,\sigma_0)/\partial\mu^h\partial\sigma^l}{f(x;\mu_0,\sigma_0)}\Big|^3 \le g(x), \text{ for } h+l \le 2,$$

where h and l are two nonnegative integers. Moreover, there exists a positive ϵ

CONTANT Author: Jianjun Zhang. Email: Jianjun.Zhang@unt.edu

such that

$$\sup_{|\mu-\mu_0|^2+|\sigma-\sigma_0|^2 \le \epsilon} \left| \frac{\partial^{(h+l)} f(x;\mu,\sigma)/\partial \mu^h \partial \sigma^l}{f(x;\mu_0,\sigma_0)} \right|^3 \le g(x), \text{ for } h+l=3$$

B5. (Positive definiteness) The covariance matrix of (U, V) is positive definite, where

$$U = \frac{\partial f(x_{11}; \mu_0, \sigma_0) / \partial \mu}{f(x_{11}; \mu_0, \sigma_0)} \text{ and } V = \frac{\partial f(x_{11}; \mu_0, \sigma_0) / \partial \sigma}{f(x_{11}; \mu_0, \sigma_0)}.$$

- B6. (Tail condition) There exists positive constants v_0 , v_1 and β_0 with $\beta_0 > 1$ such that $f(x; 0, 1) \leq \min\{v_0, v_1 | x |^{-\beta_0}\}$.
- B7. (Upper bound function) There exist a nonnegative function $s(x; \mu, \sigma)$ which satisfies Condition B1 and is continuous in (μ, σ) , a positive number a with $1/\beta_0 < a < 1$, a positive number b, and a positive number ϵ^* with $\epsilon^* < 1$ such that for $\sigma \in (0, \epsilon^* \sigma_0)$, $s(x; \mu, \sigma)$ is uniformly bounded, $\int s(x; \mu, \sigma) dx < 1$, and

$$f(x;\mu,\sigma) \leq \begin{cases} \sigma^{-1}s(x;\mu,\sigma), & \text{if } |x-\mu| \leq \sigma^{1-a} \\ \sigma^{b}s(x;\mu,\sigma), & \text{if } |x-\mu| > \sigma^{1-a} \end{cases}.$$

- C1. $p(\lambda)$ is a continuous function such that it is maximized at $\lambda = 1$ and goes to negative infinity as $\lambda \to 0$.
- C2. $\sup_{\sigma>0} \max\{p_n(\sigma), 0\} = o(n) \text{ and } p_n(\sigma) = o(n) \text{ for any } \sigma.$
- C3. $p'_n(\sigma) = o_p(n^{1/2})$, for all $\sigma > 0$, where $p'_n(\sigma)$ is the derivative function with respect to σ .
- C4. When $0 < \sigma \leq 8/(n_2M_0)$ and n_2 is large, $p_n(\sigma) \leq 4(\log n_2)^2 \log(\sigma)$. Here $M_0 = \max\{\sup_x f(x; \mu_0, \sigma_0), 8\}$.
- C5. $p_n(b_1\sigma; b_1X_1 + b_0, ..., b_1X_n + b_0) = p_n(\sigma; X_1, ..., X_n).$

2. Some useful lemmas

Since the EM-test is location-scale invariant, we assume $(\mu_0, \sigma_0) = (0, 1)$ for the convenience of presentation.

Lemma 2.1. (Consistency with non-zero mixing proportion) Assume the same conditions as in Theorem 2.1. Let $(\bar{\lambda}, \bar{\mu}, \bar{\sigma}_1, \bar{\sigma}_2)$ be any estimator of $(\lambda, \mu, \sigma_1, \sigma_2)$. If

$$pl_n(\lambda, \bar{\mu}, \bar{\sigma}_1, \bar{\sigma}_2) - pl_n(1, 0, 1, 1) > c > -\infty$$

hold and $\lambda \in [\delta, 1]$ for some $\delta \in (0, 1)$, then under the null model f(x; 0, 1), we have $\bar{\mu} = o_p(1)$ and $\bar{\sigma}_1 - 1 = o_p(1), \bar{\sigma}_2 - 1 = o_p(1)$.

The proof of Lemma 2.1 is similar to the proof of Lemma 1 in [4], hence we omit it. In the next lemma, the conclusion of Lemma 2.1 is strengthened.

Lemma 2.2. (Convergence rate with non-zero mixing proportion) Assume the same conditions as in Lemma 1.1. If $\bar{\lambda} - \lambda_0 = o_p(1)$ for $\lambda_0 \in (0,1]$, then $\bar{\mu} = O_p(n^{-1/2})$, $\bar{\sigma}_h - 1 = O_p(n^{-1/2})$, h = 1, 2.

Proof. Let

$$l_{n1}(\mu, \sigma_1) = \sum_{i=1}^{n_1} \log f(x_{1i}; \mu, \sigma_1),$$

$$l_{n2}(\lambda, \mu, \sigma_1, \sigma_2) = \sum_{i=1}^{n_2} \log \{ (1 - \lambda) f(x_{2i}; \mu, \sigma_1) + \lambda f(x_{2i}; \mu, \sigma_2) \}$$

Further let

$$R_{n1}(\mu,\sigma_1) = l_{n1}(\mu,\sigma_1) - l_{n1}(0,1) \text{ and } R_{n2}(\lambda,\mu,\sigma_1,\sigma_2) = l_{n2}(\lambda,\mu,\sigma_1,\sigma_2) - l_{n2}(1,0,1,1).$$

Then

$$pl_n(\bar{\lambda}, \bar{\mu}, \bar{\sigma}_1, \bar{\sigma}_2) - pl_n(1, 0, 1, 1) = R_{n1}(\mu, \sigma_1) + R_{n2}(\lambda, \mu, \sigma_1, \sigma_2) + p(\bar{\lambda}) - p(1) + p_n(\bar{\sigma}_2) - p_n(1).$$

Next we derive an upper bound for $pl_n(\bar{\lambda}, \bar{\mu}, \bar{\sigma}_1, \bar{\sigma}_2) - pl_n(1, 0, 1, 1)$. Together with the lower bound c, we get the order assessment of $\bar{\mu}$ and $\bar{\sigma}_h(h = 1, 2)$.

We first find an approximation for $R_{n1}(\bar{\mu}, \bar{\sigma}_1)$. From Lemma 2.1, we have the consistency results $\bar{\mu} = o_p(1)$, $\bar{\sigma}_h - 1 = o_p(1)$, h = 1, 2. Applying the second Taylor expansion to $R_{n1}(\bar{\mu}, \bar{\sigma}_1)$ around (0, 1), and the weak law of large numbers with Conditions B2 and B4, we get that

$$R_{n1}(\bar{\mu},\bar{\sigma}_{1}) = l_{n1}(\bar{\mu},\bar{\sigma}_{1}) - l_{n1}(0,1)$$

$$= \frac{\partial l_{n1}(0,1)}{\partial \mu} \bar{\mu} + \frac{\partial l_{n1}(0,1)}{\partial \sigma_{1}} (\bar{\sigma}_{1}-1)$$

$$+ \frac{1}{2} \frac{\partial^{2} l_{n1}(0,1)}{\partial^{2} \mu} \bar{\mu}^{2} + \frac{\partial^{2} l_{n1}(0,1)}{\partial \mu \partial \sigma_{1}} \bar{\mu} (\bar{\sigma}_{1}-1) + \frac{1}{2} \frac{\partial^{2} l_{n1}(0,1)}{\partial^{2} \sigma_{1}} (\bar{\sigma}_{1}-1)^{2}$$

$$+ o_{p}(n) \{ \bar{\mu}^{2} + (\bar{\sigma}_{1}-1)^{2} \}.$$
(1)

Let

$$Y_{hi} = \frac{\partial f(x_{hi}; 0, 1) / \partial \mu}{f(x_{hi}; 0, 1)} \quad \text{and} \quad Z_{hi} = \frac{\partial f(x_{hi}; 0, 1) / \partial \sigma}{f(x_{hi}; 0, 1)}, \ h = 1, 2, \ i = 1, 2, \dots, n_h.$$

Hence,

$$\frac{\partial l_{n1}(0,1)}{\partial \mu}\bar{\mu} + \frac{\partial l_{n1}(0,1)}{\partial \sigma_1}(\bar{\sigma}_1 - 1) = \sum_{i=1}^{n_1} \{\bar{\mu}Y_{1i} + (\bar{\sigma}_1 - 1)Z_{1i}\}.$$
(2)

Further by the weak law of large numbers, we get

$$\frac{\partial^2 l_{n1}(0,1)}{\partial^2 \mu} = \sum_{i=1}^{n_1} \left[\frac{\partial^2 f(x_{hi};0,1)/\partial^2 \mu}{f(x_{hi};0,1)} - \left\{ \frac{\partial f(x_{hi};0,1)/\partial \mu}{f(x_{hi};0,1)} \right\}^2 \right]$$
$$= -\sum_{i=1}^{n_1} Y_{1i}^2 + o_p(n). \tag{3}$$

Similarly to (3), we have that

$$\frac{\partial^2 l_{n1}(0,1)}{\partial \mu \partial \sigma_1} = -\sum_{i=1}^{n_1} Y_{1i} Z_{1i} + o_p(n) \text{ and } \frac{\partial^2 l_{n1}(0,1)}{\partial^2 \sigma_1} = -\sum_{i=1}^{n_1} Z_{1i}^2 + o_p(n).$$
(4)

By Condition B5 and the weak law of large numbers, we get that

$$\left[\sum_{i=1}^{n_1} \{\bar{\mu}Y_{1i} + (\bar{\sigma}_1 - 1)Z_{1i}\}^2\right] o_p(1) = o_p(n)\{\bar{\mu}^2 + (\bar{\sigma}_1 - 1)^2\}.$$
(5)

Combining (1)–(5), we get

$$R_{n1}(\bar{\mu},\bar{\sigma}_1) = \sum_{i=1}^{n_1} \{\bar{\mu}Y_{1i} + (\bar{\sigma}_1 - 1)Z_{1i}\} - \frac{1}{2} \left[\sum_{i=1}^{n_1} \{\bar{\mu}Y_{1i} + (\bar{\sigma}_1 - 1)Z_{1i}\}^2\right] \{1 + o_p(1)\}.$$
 (6)

By Condition C3, we have

$$|p_n(\bar{\sigma}_2) - p_n(1)| = |o_p(n^{1/2})(\bar{\sigma}_2 - 1)| \le |o_p(1)| + |o_p(n)|(\bar{\sigma}_2 - 1)^2.$$
(7)

We now find an upper bound for $R_{n2}(\lambda, \mu, \sigma_1, \sigma_2)$. Write $R_{n2}(\lambda, \mu, \sigma_1, \sigma_2) = \sum_{i=1}^{n_2} \log(1 + \delta_i)$, where

$$\delta_i = \frac{(1-\bar{\lambda})\{f(x_{2i};\bar{\mu},\bar{\sigma}_1) - f(x_{2i};0,1)\} + \bar{\lambda}\{f(x_{2i};\bar{\mu},\bar{\sigma}_2) - f(x_{2i};0,1)\}}{f(x_{2i};0,1)}$$

By the inequality $\log(1+x) \le x - x^2/2 + x^3/3$, we have

$$R_{n2}(\bar{\lambda},\bar{\mu},\bar{\sigma}_1,\bar{\sigma}_2) \le \sum_{i=1}^{n_2} \delta_i - \frac{1}{2} \sum_{i=1}^{n_2} \delta_i^2 + \frac{1}{3} \sum_{i=1}^{n_2} \delta_i^3.$$

Let $\bar{m} = (1 - \bar{\lambda})(\bar{\sigma}_1 - 1) + \bar{\lambda}(\bar{\sigma}_2 - 1)$. By the consistency $\bar{\sigma}_h - 1 = o_p(1)$, h = 1, 2, we get $\bar{m} = o_p(1)$. Applying the first order Taylor expansion to $f(x_{2i}; \bar{\mu}, \bar{\sigma}_h)$ around (0, 1), we have $\delta_i = \bar{\mu}Y_{2i} + \bar{m}Z_{2i} + \varepsilon_{ni}$. Let $\varepsilon_n = \sum_{i=1}^{n_2} \varepsilon_{ni}$. The remainder term ε_n satisfies

$$\varepsilon_n = O_p(n_2^{1/2}) \{ \bar{\mu}^2 + \sum_{h=1}^2 (\bar{\sigma}_h - 1)^2 \} = O_p(n^{1/2}) \{ \bar{\mu}^2 + \sum_{h=1}^2 (\bar{\sigma}_h - 1)^2 \}.$$

From Condition B4 and the weak law of large numbers, after some straightforward

algebra, we get

$$\begin{aligned} R_{n2}(\bar{\lambda},\bar{\mu},\bar{\sigma}_{1},\bar{\sigma}_{2}) &\leq \sum_{i=1}^{n_{2}} \{\bar{\mu}Y_{2i} + \bar{m}Z_{2i}\} - \frac{1}{2}\sum_{i=1}^{n_{2}} \{\bar{\mu}Y_{2i} + \bar{m}Z_{2i}\}^{2} \{1 + o_{p}(1)\} \\ &+ \frac{1}{3}\sum_{i=1}^{n_{2}} \{\bar{\mu}Y_{2i} + \bar{m}Z_{2i}\}^{3} + O_{p}(\varepsilon_{n}) \end{aligned}$$

For the cubic term in the upper bound of $R_{n2}(\bar{\lambda}, \bar{\mu}, \bar{\sigma}_1, \bar{\sigma}_2)$, we have that

$$\begin{split} \sum_{i=1}^{n_2} \{\bar{\mu}Y_{2i} + \bar{m}Z_{2i}\}^3 &= \sum_{i=1}^{n_2} \{\bar{\mu}^3Y_{2i}^3 + 3\bar{\mu}^2\bar{m}Y_{2i}^2Z_{2i} + 3\bar{\mu}\bar{m}^2Y_{2i}Z_{2i}^2 + \bar{m}^3Z_{2i}^3\} \\ &= o_p(1) \left[\sum_{i=1}^{n_2} \{\bar{\mu}^2Y_{2i}^3 + 3\bar{\mu}^2Y_{2i}^2Z_{2i} + 3\bar{m}^2Y_{2i}Z_{2i}^2 + \bar{m}^2Z_{2i}^3\} \right] \\ &= o_p(n)(\bar{\mu}^2 + \bar{m}^2). \end{split}$$

Hence

$$R_{n2}(\bar{\lambda},\bar{\mu},\bar{\sigma}_1,\bar{\sigma}_2) \le \sum_{i=1}^{n_2} \{\bar{\mu}Y_{2i} + \bar{m}Z_{2i}\} - \frac{1}{2} \sum_{i=1}^{n_2} \{\bar{\mu}Y_{2i} + \bar{m}Z_{2i}\}^2 \{1 + o_p(1)\} + O_p(\varepsilon_n).$$
(8)

Combining (6)–(8) and Condition C1, we get

$$pl_{n}(\bar{\lambda},\bar{\mu},\bar{\sigma}_{1},\bar{\sigma}_{2}) - pl_{n}(1,0,1,1) \leq \sum_{i=1}^{n_{1}} \{\bar{\mu}Y_{1i} + (\bar{\sigma}_{1}-1)Z_{1i}\} + \sum_{i=1}^{n_{2}} (\bar{\mu}Y_{2i} + \bar{m}Z_{2i}) \\ - \frac{1}{2} \left[\sum_{i=1}^{n_{1}} \{\bar{\mu}Y_{1i} + (\bar{\sigma}_{1}-1)Z_{1i}\}^{2} + \sum_{i=1}^{n_{2}} (\bar{\mu}Y_{2i} + \bar{m}Z_{2i})^{2} \right] \{1 + o_{p}(1)\} \\ + O_{p}(\varepsilon_{n}) + o_{p}(1).$$

Condition $\bar{\lambda} - \lambda_0 = o_p(1)$ with $\lambda_0 \in (0, 1]$ implies that

$$O_p(\varepsilon_n) = O_p(n^{1/2})\{\bar{\mu}^2 + (\bar{\sigma}_1 - 1)^2 + \bar{m}^2\} = O_p(n)\{\bar{\mu}^2 + (\bar{\sigma}_1 - 1)^2 + \bar{m}^2\}.$$

Hence, by the weak law of large numbers with Condition B5,

$$c \leq pl_{n}(\bar{\lambda},\bar{\mu},\bar{\sigma}_{1},\bar{\sigma}_{2}) - pl_{n}(1,0,1,1)$$

$$\leq \sum_{i=1}^{n_{1}} \{\bar{\mu}Y_{1i} + (\bar{\sigma}_{1}-1)Z_{1i}\} + \sum_{i=1}^{n_{2}} (\bar{\mu}Y_{2i} + \bar{m}Z_{2i})$$

$$- \frac{1}{2} \left[\sum_{i=1}^{n_{1}} \{\bar{\mu}Y_{1i} + (\bar{\sigma}_{1}-1)Z_{1i}\}^{2} + \sum_{i=1}^{n_{2}} (\bar{\mu}Y_{2i} + \bar{m}Z_{2i})^{2} \right] [1 + o_{p}(1)] + o_{p}(1)$$

$$= \bar{\mu} \left\{ \sum_{i=1}^{n_{1}} Y_{1i} + \sum_{i=1}^{n_{2}} Y_{2i} \right\} + (\bar{\sigma}_{1}-1) \sum_{i=1}^{n_{1}} Z_{1i} + \bar{m} \sum_{i=1}^{n_{2}} Z_{2i}$$

$$- \frac{1}{2} \left[\bar{\mu}^{2} \left\{ \sum_{i=1}^{n_{1}} Y_{1i}^{2} + \sum_{i=1}^{n_{2}} Y_{2i}^{2} \right\} + (\bar{\sigma}_{1}-1)^{2} \sum_{i=1}^{n_{1}} Z_{1i}^{2} + \bar{m}^{2} \sum_{i=1}^{n_{2}} Z_{2i}$$

$$+ 2\bar{\mu}(\bar{\sigma}_{1}-1) \sum_{i=1}^{n_{1}} Y_{1i}Z_{1i} + 2\bar{\mu}\bar{m} \sum_{i=1}^{n_{2}} Y_{2i}Z_{2i} \right] \{1 + o_{p}(1)\} + o_{p}(1)$$

$$\leq \frac{1}{2} U_{n}' \mathbf{W}^{-1} U_{n} + o_{p}(1). \tag{9}$$

where

$$\boldsymbol{U_n} = n^{-1/2} \begin{pmatrix} \sum_{i=1}^{n_1} Y_{1i} + \sum_{i=1}^{n_2} Y_{2i} \\ \sum_{i=1}^{n_1} Z_{1i} \\ \sum_{i=1}^{n_2} Z_{2i} \end{pmatrix} \text{ and } \boldsymbol{W} = \begin{pmatrix} \sigma_Y^2 & \rho_1 \sigma_{Y,Z} & \rho_2 \sigma_{Y,Z} \\ \rho_1 \sigma_{Y,Z} & \rho_1 \sigma_Z^2 & 0 \\ \rho_2 \sigma_{Y,Z} & 0 & \rho_2 \sigma_Z^2 \end{pmatrix},$$

with $\sigma_Y^2 = \text{Var}(Y_{11}), \ \sigma_Z^2 = \text{Var}(Z_{11}), \ \sigma_{Y,Z} = \text{Cov}(Y_{11}, Z_{11}).$ Therefore

$$\bar{\mu} = O_p(n^{-1/2}), \ \bar{\sigma}_1 - 1 = O_p(n^{-1/2}), \ \bar{m} = O_p(n^{-1/2}).$$
 (10)

Any values of $(\bar{\mu}, \bar{\sigma} - 1, \bar{m})$ out of this range in (10) will violate the inequality. With the condition that $\bar{\lambda} - \lambda_0 = o_p(1)$, for some $\lambda_0 \in (0, 1]$, we have

$$\bar{\mu} = O_p(n^{-1/2}), \ \bar{\sigma}_1 - 1 = O_p(n^{-1/2}), \ \bar{\sigma}_2 - 1 = O_p(n^{-1/2}).$$

Let $(\bar{\lambda}, \bar{\mu}, \bar{\sigma}_1, \bar{\sigma}_2)$ be estimator of $(\lambda, \mu, \sigma_1, \sigma_2)$ as before, and let

$$\bar{w}_i = \frac{\bar{\lambda}f(x_{2i};\bar{\mu},\bar{\sigma}_2)}{(1-\bar{\lambda})f(x_{2i};\bar{\mu},\bar{\sigma}_1) + \bar{\lambda}f(x_{2i};\bar{\mu},\bar{\sigma}_2)}$$

Define

$$H_n(\lambda) = (n_2 - \sum_{i=1}^{n_2} \bar{w}_i) \log(1 - \lambda) + \sum_{i=1}^{n_2} \bar{w}_i \log \lambda + p(\lambda).$$

The EM-test updates λ by search $\overline{\lambda}^* = \arg \max_{\lambda} H_n(\lambda)$. Then, we have the following lemma.

Lemma 2.3. Under the same conditions as in Lemma 2.2, and if $\bar{\lambda} - \lambda_0 = o_p(1)$ for some $\lambda_0 \in (0, 1]$, then $\bar{\lambda}^* - \bar{\lambda}_0 = o_p(1)$.

For the proof of Lemma 2.3 is similar to that of Lemma A3 of [3] and hence is omitted.

3. The proofs of Theorems 2.1–2.2 and Theorem 2.5

The proof of Theorem 2.1

Proof. For any $k \leq K$, due to the monotonicity property of the EM algorithm that the penalized likelihood increases after each iteration ([1, 8, 5]), we have

$$pl_n(\lambda_j^{(k)}, \mu_j^{(k)}, \sigma_{1j}^{(k)}, \sigma_{2j}^{(k)}) \ge pl_n(\lambda_j^{(1)}, \mu_j^{(1)}, \sigma_{1j}^{(1)}, \sigma_{2j}^{(1)}) \ge pl_n(\lambda_j, 0, 1, 1).$$

Further, $pl_n(\lambda_j^{(k)}, \mu_j^{(k)}, \sigma_{1j}^{(k)}, \sigma_{2j}^{(k)}) - pl_n(1, 0, 1, 1) \ge p(\lambda_j) - p(1) > -\infty$. Then by Lemmas 2.1–2.3, Theorem 2.1 holds.

The proof of Theorem 2.2

Proof. Under Conditions B2, B4 and B5, applying some of the classic results about regular models ([6]), we have

$$\sup_{\mu,\sigma} pl_n(1,\mu,\sigma,\sigma) - pl_n(1,0,1,1) = \frac{1}{2} \boldsymbol{U_n^{*\prime} W^{*-1} U_n^*} + o_p(1),$$
(11)

where

$$\boldsymbol{U_n^*} = n^{-1/2} \begin{pmatrix} \sum_{i=1}^{n_1} Y_{1i} + \sum_{i=1}^{n_2} Y_{2i} \\ \sum_{i=1}^{n_1} Z_{1i} + \sum_{i=1}^{n_2} Z_{2i} \end{pmatrix}, \qquad \boldsymbol{W^*} = \begin{pmatrix} \sigma_Y^2 & \sigma_{Y,Z} \\ \sigma_{Y,Z} & \sigma_Z^2 \end{pmatrix}.$$

From Theorem 2.1 and (9), we have

$$pl_n(\lambda_j^{(K)}, \mu_j^{(K)}, \sigma_{1j}^{(K)}, \sigma_{2j}^{(K)}) - pl_n(1, 0, 1, 1) \le \frac{1}{2} \boldsymbol{U'_n} \mathbf{W^{-1}} \boldsymbol{U_n} + o_p(1)$$
(12)

Hence, combining (11) and (12), we get

$$M_{n}^{(K)}(\lambda_{j}) = 2\{pl_{n}(\lambda_{j}^{(K)}, \mu_{j}^{(K)}, \sigma_{1j}^{(K)}, \sigma_{2j}^{(K)}) - pl_{n}(1, 0, 1, 1)\} - 2\{\sup_{\mu, \sigma} pl_{n}(1, \mu, \sigma, \sigma) - pl_{n}(1, 0, 1, 1)\} \leq U_{n}' \mathbf{W}^{-1} U_{n} - U_{n}^{*'} \mathbf{W}^{*-1} U_{n}^{*} + o_{p}(1),$$

where the presentations of \mathbf{W}^{-1} and \mathbf{W}^{*-1} are provided in the end of the proof. The above equality can further be simplified as

$$M_n^{(K)}(\lambda_j) \le \sigma_Z^{-2} T_n^2 + o_p(1),$$

where $T_n = n^{-1/2} \left(\sqrt{\frac{\rho_2}{\rho_1}} \sum_{i=1}^{n_1} Z_{1i} - \sqrt{\frac{\rho_1}{\rho_2}} \sum_{i=1}^{n_2} Z_{2i} \right)$. Since the upper bound does not depend on λ_j , we further have

$$EM_n^{(K)} \le \sigma_Z^{-2} T_n^2 + o_p(1).$$
(13)

Next, we show the upper bound for $EM_n^{(K)}$. Let $(\tilde{\mu}, \tilde{\sigma}_1 - 1, \tilde{\sigma}_2 - 1) = n^{-1/2} \mathbf{W}^{-1} U_n$. Since the EM-iteration always increases the penalized likelihood and $\lambda_1 = 1$, we have that

$$EM_{n}^{(K)} \ge M_{n}^{(K)}(\lambda_{1}) \ge M_{n}^{(1)}(\lambda_{1}) \ge 2\{pl_{n}(\lambda_{1}, \tilde{\mu}, \tilde{\sigma}_{1}, \tilde{\sigma}_{2}) - \sup_{\mu, \sigma} pl_{n}(1, \mu, \sigma, \sigma)\}.$$
 (14)

Note that it is easy to verify that $\tilde{\mu} = O_p(n^{-1/2}), \tilde{\sigma}_1 - 1 = O_p(n^{-1/2}), \tilde{\sigma}_2 - 1 =$ $O_p(n^{-1/2})$. With this order assessment and applying the second order Taylor expansion, we have that

$$2\{pl_n(\lambda_1, \tilde{\mu}, \tilde{\sigma}_1, \tilde{\sigma}_2) - \sup_{\mu, \sigma} pl_n(1, \mu, \sigma, \sigma)\} = \sigma_Z^{-2} T_n^2 + o_p(1).$$
(15)

From (13)–(15), we get $EM_n^{(K)} = \sigma_Z^{-2}T_n^2 + o_p(1)$. By central limit theorem, $\sigma_Z^{-1}T_n$ converges to N(0, 1) in distribution. Therefore, Consequently, the null limiting distribution of $EM_n^{(K)}$ is χ_1^2 . The presentations of \mathbf{W}^{-1} and \mathbf{W}^{*-1} are as follows.

$$\begin{split} \mathbf{W}^{-1} &= \frac{1}{\sigma_Y^2 \sigma_Z^2 - \sigma_{Y,Z}^2} \begin{pmatrix} \sigma_Z^2 & -\sigma_{Y,Z} & -\sigma_{Y,Z} \\ -\sigma_{Y,Z} & \frac{\sigma_Y^2}{\rho_1} - \frac{\rho_2 \sigma_{Y,Z}^2}{\rho_1 \sigma_Z^2} & \frac{\sigma_{Y,Z}^2}{\sigma_Z^2} \\ -\sigma_{Y,Z} & \frac{\sigma_{Y,Z}^2}{\sigma_Z^2} & \frac{\sigma_Y^2}{\rho_2} - \frac{\rho_1 \sigma_{Y,Z}^2}{\rho_2 \sigma_Z^2} \end{pmatrix}, \\ \mathbf{W}^{*-1} &= \frac{1}{\sigma_Y^2 \sigma_Z^2 - \sigma_{Y,Z}^2} \begin{pmatrix} \sigma_Z^2 & -\sigma_{Y,Z} \\ -\sigma_{Y,Z} & \sigma_Y^2 \end{pmatrix}. \end{split}$$

The proof of Theorem 2.5

Proof. The proof of (i)

Without loss of generality, we assume that the null model is f(x; 0, 1). Then $E(V^2) = \sigma_0^{-2} \sigma_Z^2$. Further the local alternative H_{a1}^n in (6) of the main paper becomes

$$H_{a1}^n: \lambda = \lambda_0, \ (\mu_1, \sigma_1) = (0, 1), \ (\mu_2, \sigma_2) = (0, 1 + n_2^{-1/2} \Delta_1 / \sigma_0).$$

Let

$$\Lambda_n = \sum_{i=1}^{n_2} \log \frac{(1-\lambda_0)f(x_{2i};0,1) + \lambda_0 f(x_{2i};0,1 + n_2^{-1/2}\Delta_1/\sigma_0)}{f(x_{2i};0,1)}.$$

Under Conditions B2 and B4, applying second order approximation, we can verify that under the null model,

$$\Lambda_n = \lambda_0 \sigma_0^{-1} n_2^{-1/2} \sum_{i=1}^{n_2} \Delta_1 Z_{2i} - 0.5 \lambda_0^2 \sigma_0^{-2} \sigma_Z^2 \Delta_1^2 + o_p(1).$$

Hence under the null model, $\Lambda_n \xrightarrow{d} N(-0.5c^2, c^2)$, where $c^2 = \lambda_0^2 \sigma_0^{-2} \Delta_1^2 \sigma_Z^2$. Therefore, the local alternative H_{a1}^n is contiguous to the null distribution ([2] and Example 6.5 of [7]).

By Le Cam's contiguity theory, the limiting distribution of $\widetilde{EM}_n^{(K)}$ under H_{a1}^n is determined by the joint limiting distribution of $\sigma_Z^{-1}T_n$ and Λ_n under the null model. By central limit theorem and Slutsky's theorem, the joint limiting distribution of $\sigma_Z^{-1}T_n$ and Λ_n under the null model is multivariate normal

$$\mathcal{N}_2\left(\begin{pmatrix}0\\-0.5c^2\end{pmatrix},\begin{pmatrix}1&-\sqrt{\rho_1}\lambda_0\sigma_0^{-1}\sigma_Z\Delta_1\\-\sqrt{\rho_1}\lambda_0\sigma_0^{-1}\sigma_Z\Delta_1&c^2\end{pmatrix}\right).$$

By Le Cam's third lemma ([7]), we have under H_{a1}^n ,

$$\sigma_Z^{-1}T_n \xrightarrow{d} N(-\sqrt{\rho_1}\lambda_0\sigma_0^{-1}\sigma_Z\Delta_1, 1).$$

Since $EM_n^{(K)} = \sigma_Z^{-1}T_n + o_p(1)$ holds under the null, by Le Cam's first lemma ([7]), $EM_n^{(K)} = \sigma_Z^{-1}T_n + o_p(1)$ still holds under H_{a1}^n . Therefore, the limiting distribution of $EM_n^{(K)}$ under the local alternative H_{a1}^n is $\chi_1^2(c_1^2)$, where $c_1^2 = \lambda_0^2 \rho_1 \sigma_0^{-2} \Delta_1^2 \sigma_Z^2 = \lambda_0^2 \rho_1 \Delta_1^2 E(V^2)$.

The proof of (ii)

The proof for part (ii) is similar to that of (i), hence we omit it.

4. R codes for sample size calculation

Given the null model H_0 , the local alternative model H_{a1}^n and given ρ_1 , the following R functions *size.norm()* and *size.logis()* calculate the required sample sizes (n_1, n_2) to reject the null hypothesis with the target power $1 - \beta$ at the significance level α for the normal kernel and logistic kernel, respectively.

For example, suppose $\lambda_0 = 0.5$, $(\mu_1, \sigma_1) = (0, 1)$, $(\mu_2, \sigma_2) = (0, 1.5)$, and $\rho_1 = 1/3$. If the target power is 80% at the 5% significance level, the required sample sizes are found to be $(n_1, n_2) = (94, 189)$ under the normal kernel and $(n_1, n_2) = (129, 258)$ under the logistic kernel by using R functions *size.norm()* and *size.logis()*.

```
size.norm <- function(lambda0,rho1,sigma1,sigma2,alpha,target_power){
  n2 <- 2
  power0 <- target_power</pre>
```

```
diff_power <- 1
while(diff_power>0.001){
    Delta1 <- sqrt(n2)*(sigma2-sigma1)
    c0_squ <- lambda0^2*rho1/(sigma1^2)*(2*Delta1^2)
    power1 <- pchisq(qchisq(1-alpha,1),1,ncp = c0_squ,lower.tail = F)
    diff_power <- power0-power1
    n2 <- n2+1
  }
  n1 <- round(rho1/(1-rho1)*n2,0)
  data.frame(n1=n1,n2=n2,row.names = "sample size")
}</pre>
```

```
size.logis <- function(lambda0,rho1,sigma1,sigma2,alpha,target_power){</pre>
  n2 <- 2
  power0 <- target_power</pre>
  diff_power <- 1
  while(diff_power>0.001){
    Delta1 <- sqrt(n2)*(sigma2-sigma1)</pre>
    c0_squ <- lambda0^2*rho1/(sigma1^2)*(Delta1^2*(3+pi^2)/9)
    power1 <- pchisq(qchisq(1-alpha,1),1,ncp = c0_squ,lower.tail = F)</pre>
    diff_power <- power0-power1</pre>
    n2 <- n2+1
  }
  n1 <- round(rho1/(1-rho1)*n2,0)</pre>
  data.frame(n1=n1,n2=n2,row.names = "sample size")
}
> size.norm(0.5,1/3,1,1.5,0.05,0.8)
            n1 n2
sample size 94 189
> size.logis(0.5,1/3,1,1.5,0.05,0.8)
              n1 n2
sample size 132 264
```

References

- A.P. Dempster, N.M. Laird and D.B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, J. Roy. Statist. Soc. Ser. B 39 (1977), pp. 1–38.
- [2] L.M. Le Cam and G.L. Yang, Asymptotics in Statistics : Some Basic Concepts, Springer-Verlag, New York, 1990.
- [3] P. Li, J. Chen and P. Marriott, Non-finite Fisher information and homogeneity: an EM approach, Biometrika 96 (2009), pp.411–426.
- [4] G. Liu, Y. Fu, P. Li and X. Pu, Using differential variability to increase the power of the homogeneity test in a two-sample problem, Statist. Sinica 28 (2018), pp. 27–41.
- [5] G.J. McLachlan and T. Krishnan, *The EM Algorithm and Extensions*, Wiley, New York, 1997.
- [6] R.J. Serfling, Approximation Theorem of Mathematical Statistics, Wiley, New York, 1980.
- [7] A.W. van der Vaart, Asymptotic Statistics, Cambridge University Press, New York, 2000.

 [8] C.F.J. Wu, On the Convergence Properties of the EM Algorithm, Ann. Statist. 11 (1983), pp. 95–103.