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ABSTRACT
This is a supplementary material to the corresponding paper submitted to the Jour-
nal of Applied Statistics. It contains the regularity conditions, the proofs of Theorems
2.1–2.2 and Theorem 2.5, and R codes for sample size calculations.

1. Regularity conditions

For smooth reading, we list the regularity conditions of the main paper in the following.
In the proofs, the expectation are taken under the distribution f(x;µ0, σ0).

B0. (IID condition) In the model (1), the first sample x11, . . . , xn1
are independent

and identically distributed (i.i.d.), and the second sample x21, . . . , xn2
are i.i.d.,

and the two samples are independent.
B1. (Wald’s integrability conditions) (i) E{| log f(x; 0, 1)|} < ∞; (ii)

limx→∞ f(x; 0, 1) = 0.
B2. (Smoothness) The support of f(x;µ, σ) is (−∞,∞), and it is three times con-

tinuously differentiable with respect to µ and σ.
B3. (Identifiability) For any two mixing distribution functions Ψ1 and Ψ2 with two

supporting points such that
∫
f(x;µ, σ) dΨ1(µ, σ) =

∫
f(x;µ, σ) dΨ2(µ, σ) for all

x, we must have Ψ1 = Ψ2.
B4. (Uniform boundedness) There exists a function g with finite expectation such

that ∣∣∣∂(h+l)f(x;µ0, σ0)/∂µ
h∂σl

f(x;µ0, σ0)

∣∣∣3 ≤ g(x), for h+ l ≤ 2,

where h and l are two nonnegative integers. Moreover, there exists a positive ε
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such that

sup
|µ−µ0|2+|σ−σ0|2≤ε

∣∣∣∂(h+l)f(x;µ, σ)/∂µh∂σl

f(x;µ0, σ0)

∣∣∣3 ≤ g(x), for h+ l = 3.

B5. (Positive definiteness) The covariance matrix of (U, V ) is positive definite, where

U =
∂f(x11;µ0, σ0)/∂µ

f(x11;µ0, σ0)
and V =

∂f(x11;µ0, σ0)/∂σ

f(x11;µ0, σ0)
.

B6. (Tail condition) There exists positive constants v0, v1 and β0 with β0 > 1 such
that f(x; 0, 1) ≤ min{v0, v1|x|−β0}.

B7. (Upper bound function) There exist a nonnegative function s(x;µ, σ) which
satisfies Condition B1 and is continuous in (µ, σ), a positive number a with
1/β0 < a < 1, a positive number b, and a positive number ε∗ with ε∗ < 1 such
that for σ ∈ (0, ε∗σ0), s(x;µ, σ) is uniformly bounded,

∫
s(x;µ, σ)dx < 1, and

f(x;µ, σ) ≤
{
σ−1s(x;µ, σ), if |x− µ| ≤ σ1−a
σbs(x;µ, σ), if |x− µ| > σ1−a

.

C1. p(λ) is a continuous function such that it is maximized at λ = 1 and goes to
negative infinity as λ→ 0.

C2. supσ>0 max{pn(σ), 0} = o(n) and pn(σ) = o(n) for any σ.

C3. p′n(σ) = op(n
1/2), for all σ > 0, where p′n(σ) is the derivative function with

respect to σ.
C4. When 0 < σ ≤ 8/(n2M0) and n2 is large, pn(σ) ≤ 4(log n2)

2 log(σ). Here M0 =
max{supx f(x;µ0, σ0), 8}.

C5. pn(b1σ; b1X1 + b0, ..., b1Xn + b0) = pn(σ;X1, ..., Xn).

2. Some useful lemmas

Since the EM-test is location-scale invariant, we assume (µ0, σ0) = (0, 1) for the con-
venience of presentation.

Lemma 2.1. (Consistency with non-zero mixing proportion) Assume the same con-
ditions as in Theorem 2.1. Let (λ̄, µ̄, σ̄1, σ̄2) be any estimator of (λ, µ, σ1, σ2). If

pln(λ̄, µ̄, σ̄1, σ̄2)− pln(1, 0, 1, 1) > c > −∞

hold and λ̄ ∈ [δ, 1] for some δ ∈ (0, 1), then under the null model f(x; 0, 1), we have
µ̄ = op(1) and σ̄1 − 1 = op(1), σ̄2 − 1 = op(1).

The proof of Lemma 2.1 is similar to the proof of Lemma 1 in [4], hence we omit
it. In the next lemma, the conclusion of Lemma 2.1 is strengthened.

Lemma 2.2. (Convergence rate with non-zero mixing proportion) Assume the same
conditions as in Lemma 1.1. If λ̄ − λ0 = op(1) for λ0 ∈ (0, 1], then µ̄ = Op(n

−1/2),

σ̄h − 1 = Op(n
−1/2), h = 1, 2.
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Proof. Let

ln1(µ, σ1) =

n1∑
i=1

log f(x1i;µ, σ1),

ln2(λ, µ, σ1, σ2) =

n2∑
i=1

log {(1− λ)f(x2i;µ, σ1) + λf(x2i;µ, σ2)} .

Further let

Rn1(µ, σ1) = ln1(µ, σ1)− ln1(0, 1) and Rn2(λ, µ, σ1, σ2) = ln2(λ, µ, σ1, σ2)− ln2(1, 0, 1, 1).

Then

pln(λ̄, µ̄, σ̄1, σ̄2)− pln(1, 0, 1, 1) = Rn1(µ, σ1) +Rn2(λ, µ, σ1, σ2)

+ p(λ̄)− p(1) + pn(σ̄2)− pn(1).

Next we derive an upper bound for pln(λ̄, µ̄, σ̄1, σ̄2)− pln(1, 0, 1, 1). Together with the
lower bound c, we get the order assessment of µ̄ and σ̄h(h = 1, 2).

We first find an approximation for Rn1(µ̄, σ̄1). From Lemma 2.1, we have the consis-
tency results µ̄ = op(1), σ̄h−1 = op(1), h = 1, 2. Applying the second Taylor expansion
to Rn1(µ̄, σ̄1) around (0, 1), and the weak law of large numbers with Conditions B2
and B4, we get that

Rn1(µ̄, σ̄1) = ln1(µ̄, σ̄1)− ln1(0, 1)

=
∂ln1(0, 1)

∂µ
µ̄+

∂ln1(0, 1)

∂σ1
(σ̄1 − 1)

+
1

2

∂2ln1(0, 1)

∂2µ
µ̄2 +

∂2ln1(0, 1)

∂µ∂σ1
µ̄(σ̄1 − 1) +

1

2

∂2ln1(0, 1)

∂2σ1
(σ̄1 − 1)2

+ op(n){µ̄2 + (σ̄1 − 1)2}. (1)

Let

Yhi =
∂f(xhi; 0, 1)/∂µ

f(xhi; 0, 1)
and Zhi =

∂f(xhi; 0, 1)/∂σ

f(xhi; 0, 1)
, h = 1, 2, i = 1, 2, . . . , nh.

Hence,

∂ln1(0, 1)

∂µ
µ̄+

∂ln1(0, 1)

∂σ1
(σ̄1 − 1) =

n1∑
i=1

{µ̄Y1i + (σ̄1 − 1)Z1i}. (2)
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Further by the weak law of large numbers, we get

∂2ln1(0, 1)

∂2µ
=

n1∑
i=1

[
∂2f(xhi; 0, 1)/∂2µ

f(xhi; 0, 1)
−
{
∂f(xhi; 0, 1)/∂µ

f(xhi; 0, 1)

}2
]

= −
n1∑
i=1

Y 2
1i + op(n). (3)

Similarly to (3), we have that

∂2ln1(0, 1)

∂µ∂σ1
= −

n1∑
i=1

Y1iZ1i + op(n) and
∂2ln1(0, 1)

∂2σ1
= −

n1∑
i=1

Z2
1i + op(n). (4)

By Condition B5 and the weak law of large numbers, we get that[
n1∑
i=1

{µ̄Y1i + (σ̄1 − 1)Z1i}2
]
op(1) = op(n){µ̄2 + (σ̄1 − 1)2}. (5)

Combining (1)–(5), we get

Rn1(µ̄, σ̄1) =

n1∑
i=1

{µ̄Y1i+(σ̄1−1)Z1i}−
1

2

[
n1∑
i=1

{µ̄Y1i + (σ̄1 − 1)Z1i}2
]
{1+op(1)}. (6)

By Condition C3, we have

|pn(σ̄2)− pn(1)| = |op(n1/2)(σ̄2 − 1)| ≤ |op(1)|+ |op(n)|(σ̄2 − 1)2. (7)

We now find an upper bound for Rn2(λ, µ, σ1, σ2). Write Rn2(λ, µ, σ1, σ2) =∑n2

i=1 log(1 + δi), where

δi =
(1− λ̄){f(x2i; µ̄, σ̄1)− f(x2i; 0, 1)}+ λ̄{f(x2i; µ̄, σ̄2)− f(x2i; 0, 1)}

f(x2i; 0, 1)
.

By the inequality log(1 + x) ≤ x− x2/2 + x3/3, we have

Rn2(λ̄, µ̄, σ̄1, σ̄2) ≤
n2∑
i=1

δi −
1

2

n2∑
i=1

δ2i +
1

3

n2∑
i=1

δ3i .

Let m̄ = (1− λ̄)(σ̄1 − 1) + λ̄(σ̄2 − 1). By the consistency σ̄h − 1 = op(1), h = 1, 2, we
get m̄ = op(1). Applying the first order Taylor expansion to f(x2i; µ̄, σ̄h) around (0, 1),
we have δi = µ̄Y2i + m̄Z2i + εni. Let εn =

∑n2

i=1 εni. The remainder term εn satisfies

εn = Op(n
1/2
2 ){µ̄2 +

2∑
h=1

(σ̄h − 1)2} = Op(n
1/2){µ̄2 +

2∑
h=1

(σ̄h − 1)2}.

From Condition B4 and the weak law of large numbers, after some straightforward
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algebra, we get

Rn2(λ̄, µ̄, σ̄1, σ̄2) ≤
n2∑
i=1

{µ̄Y2i + m̄Z2i} −
1

2

n2∑
i=1

{µ̄Y2i + m̄Z2i}2{1 + op(1)}

+
1

3

n2∑
i=1

{µ̄Y2i + m̄Z2i}3 +Op(εn)

For the cubic term in the upper bound of Rn2(λ̄, µ̄, σ̄1, σ̄2), we have that

n2∑
i=1

{µ̄Y2i + m̄Z2i}3 =

n2∑
i=1

{µ̄3Y 3
2i + 3µ̄2m̄Y 2

2iZ2i + 3µ̄m̄2Y2iZ
2
2i + m̄3Z3

2i}

= op(1)

[
n2∑
i=1

{µ̄2Y 3
2i + 3µ̄2Y 2

2iZ2i + 3m̄2Y2iZ
2
2i + m̄2Z3

2i}

]
= op(n)(µ̄2 + m̄2).

Hence

Rn2(λ̄, µ̄, σ̄1, σ̄2) ≤
n2∑
i=1

{µ̄Y2i+ m̄Z2i}−
1

2

n2∑
i=1

{µ̄Y2i+ m̄Z2i}2{1+op(1)}+Op(εn). (8)

Combining (6)–(8) and Condition C1, we get

pln(λ̄, µ̄, σ̄1, σ̄2)− pln(1, 0, 1, 1) ≤
n1∑
i=1

{µ̄Y1i + (σ̄1 − 1)Z1i}+

n2∑
i=1

(µ̄Y2i + m̄Z2i)

− 1

2

[
n1∑
i=1

{µ̄Y1i + (σ̄1 − 1)Z1i}2 +

n2∑
i=1

(µ̄Y2i + m̄Z2i)
2

]
{1 + op(1)}

+Op(εn) + op(1).

Condition λ̄− λ0 = op(1) with λ0 ∈ (0, 1] implies that

Op(εn) = Op(n
1/2){µ̄2 + (σ̄1 − 1)2 + m̄2} = op(n){µ̄2 + (σ̄1 − 1)2 + m̄2}.
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Hence, by the weak law of large numbers with Condition B5,

c ≤ pln(λ̄, µ̄, σ̄1, σ̄2)− pln(1, 0, 1, 1)

≤
n1∑
i=1

{µ̄Y1i + (σ̄1 − 1)Z1i}+

n2∑
i=1

(µ̄Y2i + m̄Z2i)

− 1

2

[
n1∑
i=1

{µ̄Y1i + (σ̄1 − 1)Z1i}2 +

n2∑
i=1

(µ̄Y2i + m̄Z2i)
2

]
[1 + op(1)] + op(1)

= µ̄

{
n1∑
i=1

Y1i +

n2∑
i=1

Y2i

}
+ (σ̄1 − 1)

n1∑
i=1

Z1i + m̄

n2∑
i=1

Z2i

− 1

2

[
µ̄2

{
n1∑
i=1

Y 2
1i +

n2∑
i=1

Y 2
2i

}
+ (σ̄1 − 1)2

n1∑
i=1

Z2
1i + m̄2

n2∑
i=1

Z2i

+ 2µ̄(σ̄1 − 1)

n1∑
i=1

Y1iZ1i + 2µ̄m̄

n2∑
i=1

Y2iZ2i

]
{1 + op(1)}+ op(1)

≤ 1

2
U ′nW

−1Un + op(1). (9)

where

Un = n−1/2



n1∑
i=1

Y1i +
n2∑
i=1

Y2i

n1∑
i=1

Z1i

n2∑
i=1

Z2i

 and W =

 σ2Y ρ1σY,Z ρ2σY,Z
ρ1σY,Z ρ1σ

2
Z 0

ρ2σY,Z 0 ρ2σ
2
Z

 ,

with σ2Y = Var(Y11), σ
2
Z = Var(Z11), σY,Z = Cov(Y11, Z11). Therefore

µ̄ = Op(n
−1/2), σ̄1 − 1 = Op(n

−1/2), m̄ = Op(n
−1/2). (10)

Any values of (µ̄, σ̄ − 1, m̄) out of this range in (10) will violate the inequality. With
the condition that λ̄− λ0 = op(1), for some λ0 ∈ (0, 1], we have

µ̄ = Op(n
−1/2), σ̄1 − 1 = Op(n

−1/2), σ̄2 − 1 = Op(n
−1/2).

Let (λ̄, µ̄, σ̄1, σ̄2) be estimator of (λ, µ, σ1, σ2) as before, and let

w̄i =
λ̄f(x2i; µ̄, σ̄2)

(1− λ̄)f(x2i; µ̄, σ̄1) + λ̄f(x2i; µ̄, σ̄2)
.

Define

Hn(λ) = (n2 −
n2∑
i=1

w̄i) log(1− λ) +

n2∑
i=1

w̄i log λ+ p(λ).
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The EM-test updates λ by search λ̄∗ = arg maxλHn(λ). Then, we have the following
lemma.

Lemma 2.3. Under the same conditions as in Lemma 2.2, and if λ̄− λ0 = op(1) for
some λ0 ∈ (0, 1], then λ̄∗ − λ̄0 = op(1).

For the proof of Lemma 2.3 is similar to that of Lemma A3 of [3] and hence is
omitted.

3. The proofs of Theorems 2.1–2.2 and Theorem 2.5

The proof of Theorem 2.1

Proof. For any k ≤ K, due to the monotonicity property of the EM algorithm that
the penalized likelihood increases after each iteration ([1, 8, 5]), we have

pln(λ
(k)
j , µ

(k)
j , σ

(k)
1j , σ

(k)
2j ) ≥ pln(λ

(1)
j , µ

(1)
j , σ

(1)
1j , σ

(1)
2j ) ≥ pln(λj , 0, 1, 1).

Further, pln(λ
(k)
j , µ

(k)
j , σ

(k)
1j , σ

(k)
2j )− pln(1, 0, 1, 1) ≥ p(λj)− p(1) > −∞. Then by Lem-

mas 2.1–2.3, Theorem 2.1 holds.

The proof of Theorem 2.2

Proof. Under Conditions B2, B4 and B5, applying some of the classic results about
regular models ([6]), we have

sup
µ,σ

pln(1, µ, σ, σ)− pln(1, 0, 1, 1) =
1

2
U∗n
′W∗−1U∗n + op(1), (11)

where

U∗n = n−1/2


n1∑
i=1

Y1i +
n2∑
i=1

Y2i

n1∑
i=1

Z1i +
n2∑
i=1

Z2i

 , W∗ =

(
σ2Y σY,Z
σY,Z σ2Z

)
.

From Theorem 2.1 and (9), we have

pln(λ
(K)
j , µ

(K)
j , σ

(K)
1j , σ

(K)
2j )− pln(1, 0, 1, 1) ≤ 1

2
U ′nW

−1Un + op(1) (12)

Hence, combining (11) and (12), we get

M (K)
n (λj) = 2{pln(λ

(K)
j , µ

(K)
j , σ

(K)
1j , σ

(K)
2j )− pln(1, 0, 1, 1)}

− 2{sup
µ,σ

pln(1, µ, σ, σ)− pln(1, 0, 1, 1)}

≤ U ′nW
−1Un −U∗n

′W∗−1U∗n + op(1),
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where the presentations of W−1 and W∗−1 are provided in the end of the proof. The
above equality can further be simplified as

M (K)
n (λj) ≤ σ−2Z T 2

n + op(1),

where Tn = n−1/2
(√

ρ2
ρ1

n1∑
i=1

Z1i −
√

ρ1
ρ2

n2∑
i=1

Z2i

)
. Since the upper bound does not de-

pend on λj , we further have

EM (K)
n ≤ σ−2Z T 2

n + op(1). (13)

Next, we show the upper bound for EM
(K)
n . Let (µ̃, σ̃1 − 1, σ̃2 − 1) = n−1/2W−1Un.

Since the EM-iteration always increases the penalized likelihood and λ1 = 1, we have
that

EM (K)
n ≥M (K)

n (λ1) ≥M (1)
n (λ1) ≥ 2{pln(λ1, µ̃, σ̃1, σ̃2)− sup

µ,σ
pln(1, µ, σ, σ)}. (14)

Note that it is easy to verify that µ̃ = Op(n
−1/2), σ̃1 − 1 = Op(n

−1/2), σ̃2 − 1 =

Op(n
−1/2). With this order assessment and applying the second order Taylor expan-

sion, we have that

2{pln(λ1, µ̃, σ̃1, σ̃2)− sup
µ,σ

pln(1, µ, σ, σ)} = σ−2Z T 2
n + op(1). (15)

From (13)–(15), we get EM
(K)
n = σ−2Z T 2

n + op(1). By central limit theorem, σ−1Z Tn
converges to N(0, 1) in distribution. Therefore, Consequently, the null limiting distri-

bution of EM
(K)
n is χ2

1.
The presentations of W−1 and W∗−1 are as follows.

W−1 =
1

σ2Y σ
2
Z − σ2Y,Z

 σ2Z −σY,Z −σY,Z
−σY,Z σ2

Y

ρ1
− ρ2σ2

Y,Z

ρ1σ2
Z

σ2
Y,Z

σ2
Z

−σY,Z
σ2
Y,Z

σ2
Z

σ2
Y

ρ2
− ρ1σ2

Y,Z

ρ2σ2
Z

 ,

W∗−1 =
1

σ2Y σ
2
Z − σ2Y,Z

(
σ2Z −σY,Z
−σY,Z σ2Y

)
.

The proof of Theorem 2.5

Proof. The proof of (i)
Without loss of generality, we assume that the null model is f(x; 0, 1). Then E(V 2) =

σ−20 σ2Z . Further the local alternative Hn
a1 in (6) of the main paper becomes

Hn
a1 : λ = λ0, (µ1, σ1) = (0, 1), (µ2, σ2) = (0, 1 + n

−1/2
2 ∆1/σ0).
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Let

Λn =

n2∑
i=1

log
(1− λ0)f(x2i; 0, 1) + λ0f(x2i; 0, 1 + n

−1/2
2 ∆1/σ0)

f(x2i; 0, 1)
.

Under Conditions B2 and B4, applying second order approximation, we can verify
that under the null model,

Λn = λ0σ
−1
0 n

−1/2
2

n2∑
i=1

∆1Z2i − 0.5λ20σ
−2
0 σ2Z∆2

1 + op(1).

Hence under the null model, Λn
d→ N(−0.5c2, c2), where c2 = λ20σ

−2
0 ∆2

1σ
2
Z . Therefore,

the local alternative Hn
a1 is contiguous to the null distribution ([2] and Example 6.5 of

[7]).

By Le Cam’s contiguity theory, the limiting distribution of ẼM
(K)

n under Hn
a1 is

determined by the joint limiting distribution of σ−1Z Tn and Λn under the null model. By

central limit theorem and Slutsky’s theorem, the joint limiting distribution of σ−1Z Tn
and Λn under the null model is multivariate normal

N2

((
0

−0.5c2

)
,

(
1 −√ρ1λ0σ−10 σZ∆1

−√ρ1λ0σ−10 σZ∆1 c2

))
.

By Le Cam,s third lemma ([7]), we have under Hn
a1,

σ−1Z Tn
d→ N(−√ρ1λ0σ−10 σZ∆1, 1).

Since EM
(K)
n = σ−1Z Tn + op(1) holds under the null, by Le Cam’s first lemma ([7]),

EM
(K)
n = σ−1Z Tn + op(1) still holds under Hn

a1. Therefore, the limiting distribution

of EM
(K)
n under the local alternative Hn

a1 is χ2
1(c

2
1), where c21 = λ20ρ1σ

−2
0 ∆2

1σ
2
Z =

λ20ρ1∆
2
1E(V 2).

The proof of (ii)
The proof for part (ii) is similar to that of (i), hence we omit it.

4. R codes for sample size calculation

Given the null model H0, the local alternative model Hn
a1 and given ρ1, the following

R functions size.norm() and size.logis() calculate the required sample sizes (n1, n2) to
reject the null hypothesis with the target power 1 − β at the significance level α for
the normal kernel and logistic kernel, respectively.

For example, suppose λ0 = 0.5, (µ1, σ1) = (0, 1), (µ2, σ2) = (0, 1.5), and ρ1 = 1/3.
If the target power is 80% at the 5% significance level, the required sample sizes are
found to be (n1, n2) = (94, 189) under the normal kernel and (n1, n2) = (129, 258)
under the logistic kernel by using R functions size.norm() and size.logis().

size.norm <- function(lambda0,rho1,sigma1,sigma2,alpha,target_power){

n2 <- 2

power0 <- target_power
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diff_power <- 1

while(diff_power>0.001){

Delta1 <- sqrt(n2)*(sigma2-sigma1)

c0_squ <- lambda0^2*rho1/(sigma1^2)*(2*Delta1^2)

power1 <- pchisq(qchisq(1-alpha,1),1,ncp = c0_squ,lower.tail = F)

diff_power <- power0-power1

n2 <- n2+1

}

n1 <- round(rho1/(1-rho1)*n2,0)

data.frame(n1=n1,n2=n2,row.names = "sample size")

}

size.logis <- function(lambda0,rho1,sigma1,sigma2,alpha,target_power){

n2 <- 2

power0 <- target_power

diff_power <- 1

while(diff_power>0.001){

Delta1 <- sqrt(n2)*(sigma2-sigma1)

c0_squ <- lambda0^2*rho1/(sigma1^2)*(Delta1^2*(3+pi^2)/9)

power1 <- pchisq(qchisq(1-alpha,1),1,ncp = c0_squ,lower.tail = F)

diff_power <- power0-power1

n2 <- n2+1

}

n1 <- round(rho1/(1-rho1)*n2,0)

data.frame(n1=n1,n2=n2,row.names = "sample size")

}

> size.norm(0.5,1/3,1,1.5,0.05,0.8)

n1 n2

sample size 94 189

> size.logis(0.5,1/3,1,1.5,0.05,0.8)

n1 n2

sample size 132 264
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