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Online Supplement for “Bayesian Closed-loop Robust Process Design Considering Model 

Uncertainty and Data Quality” by “Linhan Ouyang, Jianxiong Chen, Yizhong Ma, Chanseok 

Park, Jionghua (Judy) Jin” 

1. Computational cost analysis in Section 5.1 

The computational times are presented in Table 1. 

Table 1. Summary statistics of the average time (unit: second) by different online design approaches 

0 50m      
0 100m    

 dL  pL    dL  pL  

Min 0.405 0.466  Min 0.449 0.409 

Median 0.423 0.506  Median 0.553 0.471 

Mean 0.421 0.502  Mean 0.545 0.468 

Max 0.442 0.665  Max 0.858 0.648 

An interesting phenomenon can be found that the computational cost of the proposed online 

approach 
pL  

is smaller than that of the existing online approach 
dL  

under 
0 100m  . It is because the 

model parameters are updated at each run and the computation is mainly used for estimating model 

parameters. There is no doubt that the computational cost of the online approach 
dL  is smaller than that 

of the online approach 
pL  

when most of the online data are used in the updating process (e.g.,
 

0 50m  ), 

since examining the data quality for every incoming response data also needs extra time. The p value for 

the case 0 50m   is 0.189, which indicate that there is no significant difference between the two online 

approaches. Furthermore, the p value for the case 0 100m   is 0.000, which means that the proposed 
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online approach 
pL  at 0 100m   does not necessarily increase the computational cost since its 

computational cost is smaller than that of the online approach 
dL . 

2. Detailed proofs for some problems 

Derivation of Eq. (7): the meaning of Eq. (7) is posterior distribution of the model parameters. By 

adding and subtracting ˆ
t tX β

 
in each parenthesis of Eq. (6), it yields 
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where the estimated variance 
2s  and the estimated model parameters ˆ

tβ  can be calculated by

0
ˆ ˆ( ) ( ) ( 1)T

t t t t t t n r   y X β y X β
 

and 
1ˆ ( )T T

t t t t t

β X X X y , respectively. It can be seen from Eq. (7) 

that 
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X X has the form of a multivariate student t 

distribution with degrees of freedom 
0 1n r  . Then, Eq. (7) can be rewritten as 
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Derivation of Theorem 1: We can calculate the following expression 
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where E is the identity matrix. Based on the invertible matrix theorem, the inverse of the matrix 

( )TB CD can be given as
1 1 1 1 1(1 )T T     B B C D B C D B . 

Derivation of Lemma 1: Since 1

1 1 1( )T

t t t



  P X X  , the updated model parameters can be calculated 

by 
1

1 1 1 11
ˆ ( )T T
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β X X X y  based on ordinary least square method. Let *

1
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T
T

t t ty 
   y y , *

tx  is the optimal input settings at step t, and 1ty   is the new measurement of the 

response at step (t+1). The updated model parameters can be written as 

* * 1 *
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  β X X x x X y x .  

Let 1( )T

t t t

P X X , 
+1tP  

can be obtained as 
* 1 *T

t t t t tk P P x x P  based on Theorem 1. The 

calculation process for 
1

ˆ
t t
β  can be rewritten as 
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