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Abstract

A series of conjugates of diterpenoid isosteviol (16-oxo-ent-beyeran-19-oic acid) and N-acetyl-D-
glucosamine was synthesized and their cytotoxicity against some human cancer cell lines (M-Hela,
MCF-7, Hep G2, Panc-1, PC-3), as well as normal human cell lines (WI1-38, Chang liver) were assayed.
Most of the conjugates was found to be cytotoxic against the mentioned cancer cell lines in the range of
ICso values 13 — 89 uM. Two lead compounds 14a and 14b showed selective cytotoxicity against M-
Hela (ICso 13 and 14 uM) that was two times as high as the cytotoxicity of the anti-cancer drug
Tamoxifen in control (ICso 28 uM). It was found that cytotoxic activity of the lead compounds against
M-Hela cells is due to induction of apoptosis.

Keywords: Isosteviol, glucosamine, conjugates, diterpenoids, cytotoxicity

Experimental

Chemistry

General metods

The 'H spectra were recorded on 400 MHz Brucker Advance. *C NMR spectra were obtained in the
above instrument operating at 100.6 MHz. Melting points were obtained on Electrothermal 1A 9100

(Bibby Scientific, Great Britain). The MALDI mass spectra were recorded on an Ultraflex Il
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TOF/TOF mass spectrometer (Bruker Daltonic GmbH, Germany) operated in the linear mode with the
registration of positively charged ions or negatively charged ions. A Nd:YAG laser (A = 355 nm,
repetition rate 100 Hz) was used. The mass spectrum was obtained with an accelerating voltage of 25
kV and an ion extraction delay time of 30 ns. The resulting mass spectrum was formed due to multiple
laser irradiation of the crystal (50 shots). The metal target MTP AnchorChipTM was used. Portions
(0.5 pl) of a 1% matrix solution in acetonitrile and of a 0.1% sample solution in methanol were
consecutively applied onto the target and evaporated. The data was obtained using the FlexControl
program (Bruker Daltonik GmbH, Germany) and processed using the FlexAnalysis 3.0 program
(Bruker Daltonik GmbH, Germany). The ESI MS measurements were performed using an AmazonX
ion trap mass spectrometer (Bruker Daltonic GmbH, Germany) in positive (and/or negative) mode in
the mass range of 70-3000. The capillary voltage was —3500 V, nitrogen drying gas — 10 Lemin™,
desolvation temperature — 250 °C. A methanol/water solution (70:30) was used as a mobile phase at a
flow rate of 0.2 mL/min by binary pump (Agilent 1260 chromatograph, USA). The sample was
dissolved in methanol to a concentration of 10° geL™. Optical rotations were measured using a Perkin
Elmer-341 automatic digital polarimeter (Perkin Elmer, USA) on A = 589 um, 20°C. The elemental
analysis was carried out on a CHNS analyzer EuroEA3028-HT-OM (Eurovector SpA, ltaly). The
samples were weighed on Sartorius CP2P (Germany) microbalances in tin capsules. Callidus 4.1
software was used to perform quantitative measurements and evaluate the data received. Flash
chromatography was performed on silica gel 60 (40-63 pum, Buchi, Sepacore). Thin-layer
chromatography was carried out on plates with silica gel (Sorbfil, Russia). Spots of compounds were
visualized by heating the plates (at ca. 150 °C) after immersion in a 5% H,SO4 and 95% H,0.
Anhydrous solvents were purified and dried (where appropriate) according to standard procedures. D-

Glucosamine hydrochloride were purchased from abcr GmbH (Germany).

Isosteviol 1 were synthesized by analogous to the literature (Khaibullin et al 2009) from sweetener
Sweta (Stevian Biotechnology Corp.). Derivative 3a was prepared according to protocols described in
(Garifullin et al. 2015). Compounds 3b-c u 4a-b were synthesized and published in early publication
(Sharipova et al. 2018). 3,4,6-Tri-O-acetyl-2-deoxy-2-[2,2,2-trichloroethoxycarbonyl(amino)]-a-
bromo-D-glucopyranose 9 were synthesized by analogous to the literature (Lioux et al. 2005), spectral

data were in keeping with published ones (Higashi et al. 1990).

19-(5-Hydroxypentylaza)-16,19-dioxo-ent-beyeran 5. A solution of 2 g (6.3 mmol) of isosteviol
1 in 2 mL of SOCI, was heated for 2 h at 40°C under argon. Excess SOCI, was distilled off under

reduced pressure, the residue was treated with anhydrous methylene chloride, the mixture was stirred,



the solvent was distilled off, and the residue was dried in vacuo. Freshly prepared 16-oxo-ent-beyeran-
19-oyl chloride 2 was dissolved in 10 mL of anhydrous CH,Cl,, and the solution was added dropwise
under argon to ice cooled solution of 2.17 g (21 mmol) of 5-amino-butane-1-ol in 5 mL of anhydrous
methylene chloride. The mixture was stirred at room temperature for 7 h. Reaction mixture was washed
with water (3x10 mL) and dried over CaCl,. The residue was purified by chromatography using
petroleum ether—cthyl acetate (3:2 — 1:4) as eluent. Yield 2.1 g (83%) as colorless needle-like crystals;
m.p. 157.5-157.9 °C; [a]p®® = -45.9 (1, CH,Cl,). "H NMR (400 MHz, CDCls): § 0.8-2.05 (m, 24H, ent-
beyerane, (CHy)s3 - spacer), 0.77 (s, 3H, H-20), 0.96 (s, 3H, H-17), 1.16 (s, 3H, H-18), 2.64 (dd, 1H, J =
18.6, 3.8 Hz, H-15a), 3.18-3.26 (m, 2H, H-5""), 3.63 (t, 2H, J = 6.3 Hz, H-1""), 5.65 (t, 1H, J = 5.4 Hz,
NHC(O)CHs). ESI-MS m/z 404.3 [M+H]", 426.3 [M+Na]". Anal.,%: C, 74.27; H, 10.05; N, 3.52.
CysH41NOs3. Calced., %: C, 74.40; H, 10.24; N, 3.47. M 403.60.

General procedure for the synthesis of the glycosides 11, 20a-b. 3,4,6-Tri-O-acetyl-2-deoxy-2-
[2,2,2-trichloroethoxycarbonyl(amino)]-a-bromo-D-glucopyranose 9 (1 mol), K,CO3; (1.5 mol), and
TBAB (0.25 mol) were added to a stirred solution of isosteviol 1 (1 mol) or its derivatives 4a or 4b (1
mol) in the mixture CH,Cl,/H,0 1:1 (40 mL) and the reaction mixture was refluxed until isosteviol 1
or its derivatives 4a or 4b had completely reacted, as indicated by TLC (30—40 h). After cooling to 25
°C, CHCI3 was added and the mixture washed with water and brine. The organic layer was dried over
MgSQ,, filtered, concentrated under reduced pressure, the residue was used without further purification
in the next step. A suspension of compounds 10, 19a or 19b (1 mol) and Zn powdered (10 mol) in
AcOH (10 mL) was stirred for 10 min at room temperature, then Ac,O (10 mol) was added, and the
mixture was stirred for 24 h at room temperature. The suspension was filtered, washed with CH,Cl, and
concentrated. The residue was diluted with CH,Cl, and washed with water. The organic layer was
separated, dried over MgSQO,, and concentrated. The residue was purified by silica gel column
chromatography eluted with petroleum ether/EtOAc to afford the corresponding compounds 11, 20a or
20b.

3,4,6-Tri-O-acetyl-2-deoxy-2-acetamido-p-D-glucopyranosyl-16-oxo-ent-beyeran-19-oate
(11). Yield 0.17 g (25 %), colorless oil, [a]p?° = -25.5 (1.75, CHCIs). Eluent: petroleum ether/EtOAC
=4:1 — 1:2. '"H NMR (400 MHz, CDCls): 6 0.73-1.93 (m, 18H, ent-beyerane), 0.69 (s, 3H, H-20),
0.97 ¢ (s, 3H , H-17), 1.18 ¢ (5, 3H , H-18), 1.91 (s, 3H, CH3CO), 2.03 (s, 3H, CHsCO), 2.04 (s, 3H,
CH3CO), 2.06 (s, 3H, CH3CO), 2.20 (d, 1H, H-3eq, J = 13.5 Hz), 2.57 (dd, 1H, J = 18.8, 3.6 Hz, H-
150), 3.72-3.80 (m, 1H, H-5"), 4.04-4.10 (m, 1H, H-6’a), 4.26 (dd, 1H, J = 12.3, 5.15 Hz, H-6’b),
4.32-4.41 (m, 1H, H-2"), 5.04-5.15 (m, 2H, H-4>, H-3"), 5.46 (d, 1H, J = 9.8 Hz, NHC(O)CH), 5.64



(d, 1H, J = 8.8 Hz, H-1°). MALDI-MS: m/z: 671.3 [M+H+Na]*. Anal.,%: C 63.50; H 7.59; N 2.19.
C34H49NO11. Calcd., %: C,63.04;: H7.62; N 2.16. M 647.75.

(3,4,6-Tri-O-acetyl-2-deoxy-2-acetamido-f-D-glucopyranosyloxopentyl)-16-oxo-ent-beyeran-
19-oate (20a). Yield 0.25 g (32 %), colorless oil, [a]p®® = -29.7° (2.95, CHCIs). Eluent: petroleum
ether/EtOAc = 1:1 — EtOAc. 'H NMR (400 MHz, CDCl3): 6 0.79-2.19 (m, 25H, ent-beyerane, (CHy)s
- spacer), 0.69 (s, 3H , H-20), 0.96 (s, 3H , H-17), 1.17 (s, 3H , H-18), 1.89 (s, 3H, CH3CO), 2.02 (s,
3H, CH3CO), 2.03 (s, 3H, CH3CO), 2.07 (s, 3H, CH3CO), 2.30-2.42 (m, 2H, H-2""), 2.60 (dd, 1H, J =
18.6, 3.3 Hz, H-15a), 3.76-3.84 (m, 1H, H-5"), 4.00 (q, 2H, J = 6.5 Hz, H-6"), 4.10 (dd, 1H, J = 12.4,
1.7 Hz, H-2°), 4.19-4.29 (m, 2H, H-6"), 5.11 (t, 1H, J = 9.5 Hz, H-3"), 5.17 (t, 1H, J = 9.8 Hz, H-4"),
5.72 (d, 1H, J = 8.8 Hz, H-1°), 5.87 (d, 1H, J = 9.4 Hz, NHC(O)CH3). MALDI-MS: m/z: 784.7
[M+Na]", 800.7 [M+K]*. Anal.,%: C 62.98; H 7.49; N 1.87. C4HssNOy; Calcd., %: 63.06; H 7.81; N
1.84. M 761.90.

(3,4,6-Tri-O-acetyl-2-deoxy-2-acetamido-f-D-glucopyranosyloxononyl)-16-oxo-ent-beyeran-
19-oate (20b). Yield 0.16 g (20 %), colorless oil, [0]o®= -20.9 (0.7; CH3;OH). Eluent: petroleum
ether/EtOAc = 3:1 — 1:2. 'H NMR (400 MHz, CDCls): & 0.70 (s, 3H , H-20), 0.97 (s, 3H , H-17),
1.18 (s, 3H , H-18), 0.84-1.87 (m, 32H, ent-beyerane, (CH>); - spacer), 1.90 (s, 3H, CH3CO), 2.02 (s,
3H, CH3CO), 2.03 (s, 3H, CH3CO), 2.07 (s, 3H, CH3CO), 2.17 (d, 1H, J = 13.0 Hz, H-3eq), 2.36 (t,
2H, J = 7.5 Hz, H-2""), 2.62 (dd, 1H, J = 18.6, 3.7 Hz, H-150), 3.76 — 3.83 (m, 1H, H-5"), 3.96 — 4.04
(m, 2H, H-10""), 4.05-4.12 (m, 1H, H-6’a), 4.22-4.28 (m, 2H, H-2’, H-6"b), 5.08 — 5.20 (m, 2H, H-3’,
H-4"), 5.72 (d, 1H, J = 8.8 Hz, H-17), 5.87 (d, 1H, J = 9.6 Hz, NHC(O)CHj3). MALDI-MS: m/z: 840.8
[M+Na]*, 856.7 [M+K]". Found: C 64.54; H 8.29; N 1.75. C4sHe7NOy3. Calcd., %: C 64.61; H 8.26; N
1.71. M 818.00.

General procedure for the synthesis of the glycosides 14a-c, 17. 3,4,6-Tri-O-acetyl-2-deoxy-2-
[2,2,2-trichloroethoxycarbonyl(amino)]-a-bromo-D-glucopyranose 9 (1 mol), and ZnCl, (1 mol) were
added to a stirred solution of corresponding compounds 3a-c or 5 (1 mol) in anhydrous CH,Cl, (25
mL) and the reaction mixture was stirred at room temperature. When complete disappearance of
starting compounds 3a-c or 5 on TLC was observed (24-48 h), reaction mixture was filtered, CH,Cl,
was added and the organic solution washed with 5% NaHCOj3 solution and water. The organic layer
was dried over Na,SO,, filtered, concentrated in vacuo, the residue was used without further
purification in the next step. A suspension of compounds 13a-c or 16 (1 mol) and Zn powdered (10

mol) in AcOH (10 mL) was stirred for 10 min at room temperature, then Ac,O (10 mol) was added,



and the mixture was stirred for 24 h at room temperature. The suspension was filtered, washed with
CH,Cl, and concentrated. The residue was diluted with CH,ClI, and washed with water. The organic
layer was separated, dried over Na,SO,4, and concentrated. The residue was purified by silica gel
column chromatography eluted with petroleum ether/EtOAc to afford the corresponding compounds
1l4a-c or 17.

3’°,4°,6’-Tri-O-acetyl-2’-deoxy-2’-acetamido-a-D-glucopyranosylbutyl 16-oxo-ent-beyeran-19-
oate 14a. Yield 0.39 g (52 %), colorless oil, [0]p® = 16.6 (0.65, CH,Cl,). Eluent: petroleum
ether/EtOAc = 5:1 — 1:1. *H NMR (400 MHz, CDCls): & 0.80-1.96 (m, 22H, ent-beyerane, (CH,); -
spacer), 0.72 (s, 3H , H-20), 0.97 ¢ (s, 3H , H-17), 1.20 ¢ (s, 3H , H-18), 1.96 ¢ (s, 3H, 2 CH3CO), 2.01
¢ (s, 3H, 2 CH3CO), 2.02 (s, 3H, CH3CO), 2.09 (s, 3H, CH3CO), 2.19 x (d, 1H, J = 14.4 Hz, H-3eq),
2.62 (dd, 1H, J = 18.5, 3.6 Hz, H-150), 3.41-3.49 (m, 1H, H-1""a), 3.70-3.78 M (M, 1H, H-1""b), 3.88—
3.94 (m, 1H, H-5"), 4.01-4.14 (m, 3H, H-6’a, H-4""), 4.23 (dd, 1H, J =12.3, 4.5 Hz, H-6’b), 4.30-4.37
(m, 1H, H-2"), 4.84 (d, 1H, J = 3.6 Hz, H-17), 5.11 (t, 1H, H-4’, J = 9.9 Hz), 5.19 (t, 1H, J = 9.9 I'Ly,
H-3"), 5.83 (d, 1H, J = 9.3 T'y, NHC(O)CH3). MALDI-MS: m/z: 742.3 [M+Na]". Anal.,%: C 63.45; H
8.04; N 1.93. C33Hs57;NO1,. Calcd., %: C 63.40; H 7.98; N 1.95. M 719.86.

3°,4°,6’-Tri-O-acetyl-2’-deoxy-2’-acetamido-a-D-glucopyranosylhexyl ~ 16-oxo-ent-beyeran-
19-oate 14b. Yield 0.32 g (30 %), colorless oil, [a]p?® = 11.3 (0.6, CHCIs). Eluent: petroleum
ether/EtOAc = 4:1 — 1:1. *H NMR (400 MHz, CDCls): & 0.78-1.90 (m, 26H, ent-beyerane, (CH,) -
spacer), 0.71 (s, 3H , H-20), 0.97 (s, 3H , H-17), 1.19 (s, 3H , H-18), 1.95 (s, 3H, CH3CO), 2.01 (s, 3H,
CH3CO), 2.02 (s, 3H, CH3CO), 2.08 (s, 3H, CH3CO), 2.18 (d, 1H, J = 13.5 Hz, H-3eq), 2.62 (dd, 1H, J
= 18.5, 3.7 Hz, H-150), 3.40-3.47 (m, 1H, H-1"a), 3.65-3.70 (m, 1H, H-1°"b), 3.90-3.95 (m, 1H, H-
5%), 3.98-4.11 (m, 3H, H-6’a, H-6""), 4.23 (dd, 1H,J =12.3, 4.6 Hz, H-6"b), 4.30-4.37 (m, 1H, H-2"),
4.83 (d, 1H, J = 3.7 Hz, H-17), 5.11 (t, 1H, , J = 9.9 Hz, H-4"), 5.20 (t, 1H, J = 9.9 Hz, H-3"), 5.71 (d,
1H, J = 9.5 Hz, NHC(O)CHs). MALDI-MS: m/z: 770.6 [M+Na]*, 786.6 [M+K]*. Anal.,%: C 64.30; H
8.19; N 1.85. C4oHgNO1,. Calcd., %: C 64.24; H 8.22; N 1.87. M 747.91.

3°,4°,6’-Tri-O-acetyl-2’-deoxy-2’-acetamido-a-D-glucopyranosyldecyl 16-oxo-ent-beyeran-19-
oate 14c. Yield 0.15 g (18 %), colorless oil, [a]p? = 11.2 (1, CHCI5). Eluent: petroleum ether/EtOAC
=5:1 — 1:1. *H NMR (400 MHz, CDCls): § 0.80-1.91 m (m, 34H, ent-beyerane, (CH,)s - spacer), 0.70
(s, 3H , H-20), 0.96 (s, 3H , H-17), 1.18 (s, 3H , H-18), 1.94 (s, 3H, CH3CO), 2.00 (s, 3H, CHsCO),
2.01 (s, 3H, CH3CO), 2.08 (s, 3H, CH3CO), 2.17 (d, 1H, J = 13.4 Hz, H-3eq), 2.61 (dd, 1H, J = 18.5,
3.7 Hz, H-150a), 3.37-3.46 (m, 1H, H-1"’a), 3.62-3.71 (m, 1H, H-1""b), 3.89-3.96 (m, 1H, H-5"), 3.96—



4.12 (m 3H, H-6a, H-10"), 4.22 (dd, 1H, J = 12.3, 4.8 Hz, H-6’b), 4.28-4.36 (m, 1H, H-2"), 4.81 (d,
1H, J = 3.7 Hz, H-1°), 5.09 (t, 1H, J = 9.8 Hz, H-4"), 5.19 (t, 1H, J = 10.0 Hz, H-3"), 5.67 (d, 1H, J =
9.6 Hz, NHC(O)CH3). MALDI-MS: m/z: 826.7 [M+Na]*, 842.7 [M+K]"*. Anal.,%: C 65.68; H 8.71; N
1.72. C4sHeoNOy,. Calcd., %: C 65.73; H 8.65; N 1.74. M 804.02.

19-(3°,4°,6°-Tri-O-acetyl-2’-deoxy-2’-acetamido-a,f-D-glucopyranosylpentylaza)-16,19-

dioxo-ent-beyeran 17. Yield 0.34 g (30 %), colorless oil, [a]p® = -34.9 (0.68, CHCIs). Eluent:
petroleum ether/EtOAc = 3:1 — 1:2. 'H NMR (400 MHz, CD;OD): & 0.90-2.15 (m, 25H, ent-
beyerane, (CH,)s - spacer), 0.79 (s, 3H , H-20), 0.94 (s, 3H , H-17), 1.16 (s, 3H , H-18), 1.90 (s, 3H,
CH3CO), 1.98 (s, 3H, CH3CO), 2.00 (s, 3H, CH3CO), 2.05 (s, 3H, CH3CO), 2.60 (dd, 1H, J = 18.5, 3.5
Hz, H-15a), 3.05-3.23 (m, 2H, H-4""), 3.48-3.54 (m, 1H, H-1""a), 3.75-3.80 (m, 1H, H-2"), 3.81-3.87
(m, 2H, H-5°, H-1"’b), 4.12 (dd, 1H, J = 12.3, 2.2 Hz, H-6’a), 4.27 (dd, 1H, J = 12.2, 4.6 Hz, H-6’b),
4.62 (d, 1H, J = 8.4 Hz, B-anomer (84%), H-1"), 4.81 (d, 1H, , J = 3.9 Hz, a-anomer (16%), H-1), 4.97
(t, 1H, J = 9.7 Hz, H-4"), 5.20 (t, 1H, J = 9.7 Hz, H-3"), 7.17-7.23 (m, 2H, C(O)NH, NHC(O)CHy3).
MALDI-MS: m/z: 755.5 [M+Na]*, 771.4 [M+K]". Anal..%: C 63.86; H 8.31; N 3.79. CagHgoN;O1:.
Calcd., %: C 63.91; H 8.25; N 3.82. M 732.90.

General procedure for the preparation of compounds 12, 15a-c, 18. The corresponding
compounds 11, 14a-c or 17 were dissolved in anhydrous MeOH at room temperature and the pH was
adjusted to 9.0 using 0.25 N MeONa/MeOH. The deacetylation procedure was monitored by TLC and
upon its completion the pH adjusted to 7.0 with acidic ion-exchange resin Amberlyst 15. After

filtration, the filtrate was concentrated in vacuo to yield the corresponding glycosides 12, 15a-c or 18.

2-deoxy-2-acetamido-f-D-glucopyranosyl-16-oxo-ent-beyeran-19-oate 12. Yield 0.07 g (78 %),
White powder, m.p. 154.1-155.1 °C; [a]p?’= -44.5 (0.45; CH;OH). *H NMR (400 MHz, CDs;0D): §
0.76 (s, 3H, H-20), 0.94 (s, 3H , H-17), 1.20 (s, 3H , H-18), 0.80-2.07 (m, 18H, ent-beyerane), 1.98 (s,
3H, CH3CO), 2.17 (d, 1H, J = 13.2 Hz, H-3eq), 2.58 (dd, 1H, J = 18.8, 3.6 Hz, H-15a ), 3.33 — 3.51
(m, 3H, H-3°, H-4>, H-5"), 3.70 (dd, 1H, J = 12.1, 4.9 Hz, H-6’a), 3.83 (dd, 1H, J = 12.0, 2.2 Hz, H-
6’b), 3.89 (t, 1H, J = 9.1 Hz, H-2"), 5.60 (d, 1H, J = 8.9 Hz, H-1"). ESI-MS: m/z: 544.4 [M+Na]".
Anal.,%: C 64.29; H 8.40; N 2.65. C3H43NOg. Calcd., %: C 64.47; H 8.31; N 2.69. M 521.64.

2’-Deoxy-2’-acetamido-a-D-glucopyranosylbutyl 16-oxo-ent-beyeran-19-oate 15a. Yield 0.13
g (68 %), colorless oil, [a]p?° = 3.5 (1.36, CHCl5). "H NMR (400 MHz, CDCls): & 0.87—2.00 (m, 22H,
ent-beyerane, (CH>), - spacer), 0.71 (s, 3H , H-20), 0.97 (s, 3H , H-17), 1.19 (s, 3H , H-18), 2.05 (s, 3H,
CH3CO), 2.17 (d, 1H, J = 13.4 Hz, H-3eq), 2.63 (dd, 1H, J = 18.6, 3.3 Hz, H-150.), 3.37-3.44 (m, 1H,



H-1°"a), 3.52-3.58 (M, 1H, H-1"’b), 3.61-3.66 (m, 1H, H-4"), 3.67-3.74 (m, 2H, H-6’a, H-3"), 3.75—
3.80 (m, 1H, H-6’b), 3.86-3.94 (M, 1H, H-5"), 4.02-4.13 (m, 3H, H-2’, H-4>"), 4.78 (d, 1H, J = 3.4 Hz,
H-1°), 6.32-6.41 (m, 1H, NHC(O)CH3). MALDI-MS: m/z: 616.5 [M+Na]*. Anal..%: C 64.78; H 8.59;
N 2.33. C3,Hs:NOe. Calcd., %: C 64.73; H 8.66; N 2.36. M 593.75.

2’-Deoxy-2’-acetamido-a-D-glucopyranosylhexyl 16-oxo-ent-beyeran-19-oate 15b. Yield 0.21
g (94 %), colorless oil, [a]p?® = 25.0 (0.69, CH3OH). *H NMR (400 MHz, CDCls): § 0.80-1.93 (m,
26H, ent-beyerane, (CHy)4 - spacer), 0.70 (s, 3H , H-20), 0.97 (s, 3H , H-17), 1.18 (s, 3H , H-18), 2.04
(s, 3H, CH3CO), 2.17 x (d, 1H, J = 13.6 Hz, H-3eq), 2.62 (dd, 1H, J = 18.5, 3.7 Hz, H-15a), 3.32—
3.41 (m, 1H, H-1""a), 3.52-3.59 m (M, 1H, H-1""b), 3.60-3.79 (m, 4H, H-3’, H-4’, H-6’), 3.86-3.94 (m,
1H, H-5%), 3.97-4.10 (m, 3H, H-2°, H-6""), 4.76 (d, 1H, J = 3.6 Hz, H-1°), 5.28 (br s, 3H, 3 OH) 6.45
(d, 1H, J = 9.1 Hz, NHC(O)CHs), 6.85-7.12 (br s, 3H, 3 OH). MALDI-MS: m/z; 644.6 [M+Na]".
Anal.,%: C 65.71; H 8.88; N 2.27. C34HssNOg. Calcd., %: C 65.67; H 8.92; N 2.25. M 621.80.

2’-Deoxy-2’-acetamido-a-D-glucopyranosyldecyl 16-oxo-ent-beyeran-19-oate 15c. Yield 0.07
g (75%) colorless oil, [a]p?° = 23.0 (0.71, CH3OH). *H NMR (400 MHz, CDCls): & 0.84-1.93 (m, 34H,
ent-beyerane, (CH>)s - spacer), 0.71 (s, 3H , H-20), 0.97 (s, 3H , H-17), 1.19 (s, 3H , H-18), 2.05 (s, 3H,
CH3CO), 2.18 (d, 1H, J = 13.5 Hz, H-3eq), 2.63 (dd, 1H, J = 18.6, 3.6 Hz, H-15a), 3.32-3.41 (m, 1H,
H-1"a), 3.54-3.74 (m, 4H, H-1""b, H-3°, H-4’, H-6’a), 3.75-3.82 (m, 1H, H-6’b), 3.86-3.94 (m, 1H,
H-5), 3.97-4.11 (m, 3H, H-2’, H-10""), 4.76 (d, 1H, H-1°, J = 3.6 Hz), 6.22 (d, 1H, J = 8.5 Hz,
NHC(O)CHs). MALDI-MS: m/z: 700.6 [M+Na]*. Anal.,%: 67.40; H 9.31; N 2.10. C3gHgsNOs. Calcd.,
%: C 67.33; H9.37; N 2.07. M 677.91.

19-(2°-Deoxy-2’-acetamido-a,p-D-glucopyranosylpentylaza)-16,19-dioxo-ent-beyeran 18.
Yield 0.25 g (89 %), colorless oil, [a]p®® = 39.2 (0.52, CH3OH). *H NMR (400 MHz, CD3;0D): § 0.86—
2.08 (m, 25H, ent-beyerane, (CHy); - spacer), 0.76 (s, 3H , H-20), 0.96 (s, 3H , H-17), 1.16 (s, 3H , H-
18), 1.99 (s, 3H, CH3CO), 2.62 (dd, 1H, J = 18.4, 3.0 Hz, H-1501), 3.07-3.25 (m, 2H, H-1""), 3.26-3.34
(m, 1H, H-3"), 3.37-3.47 (m, 1H, H-4"), 3.52-3.92 (m, 6H, H-2’, H-5’, H-6’, H-5""), 4.39 (d, 1H, J =
8.2 Hz, p-anomer (83%), H-17), 4.76 (d, 1H, , J = 3.2 Hz, a-anomer (17%), H-1"), 5.09-5.39 (br s, 3H,
30H), 5.94-6.02 (m, 1H, C(O)NH), 7.56-7.68 (m, 1H, NHC(O)CHs). MALDI-MS: m/z: 629.9
[M+Na]*. Anal.,%: C 65.26; H 9.03; N 4.65. C33Hs4N,Og. Calcd., %: C 65.32; H 8.97; N 4.62. M
606.79.



5 11 14a

14b 14c

Table 1S. *C NMR (100.6 MHz, CDCls) shifts for compounds 5, 11, 14a-c

Position C3

5 11 1l4a 14b 1l4c
1 39.65 39.76 39.96 40.01 40.03
2 19.38 19.03 19.12 19.14 19.12
3 37.45 37.41 37.46 37.49 37.47
4 43.81 44.24 44.07 44.02 43.98
5 57.72 57.28 57.21 57.25 57.25
6 22.41 21.56 21.90 21.91 21.89
7 41.89 41.59 41.64 41.69 41.71
8 48.55 48.69 48.60 48.62 48.59
9 54.92 54.87 54.82 54.87 54.86




10 38.32 37.77 38.05 38.20 38.12
11 20.49 20.46 20.48 20.47 20.48
12 38.25 38.26 38.20 38.21 38.18
13 39.47 39.54 39.64 39.64 39.62
14 54.43 54.44 54.42 54.47 54.46
15 48.84 48.81 48.88 48.86 48.85
16 222.46 222.37 222.74 222.47 222.74
17 19.98 19.97 19.97 20.00 19.99
18 29.36 29.05 29.13 29.11 29.10
19 176.73 176.17 177.58 177.49 177.50
20 13.72 13.66 13.62 13.58 13.55
CH5CO - 20.71 20.47 20.50 21.89
CH5CO - 20.75 20.73 20.73 20.73
CH3CO - 20.83 20.87 20.86 20.86
CH3;CONH - 23.42 23.29 23.33 23.32
CH3CO - 169.39 169.45 169.44 169.42
CH;CO - 169.86 170.76 170.01 169.94
CH3CO - 170.70 171.65 170.78 170.78
CH3;CONH - 171.37 171.41 171.51 171.51
I - 92.16 97.19 97.31 97.27

2 - 52.79 52.29 52.11 52.07

3 - 72.86 71.25 71.59 71.63

4 - 68.25 68.10 67.97 67.86

5’ - 73.15 68.36 68.42 68.69

6’ - 62.00 62.18 62.20 62.18
1” 62.75 - 63.78 64.15 64.41
27 40.37 - 25.70 29.44 29.48
37 32.35 - 25.94 28.60 29.31
4> 30.36 - 67.96 25.96 28.62
57 23.37 - - 29.83 26.29
6’ - - - 67.84 26.29




7”

28.62

87’

29.31

9,,

29.64

10”

68.37




12 15a 15b

15c 17

Table 2S. *C NMR (100.6 MHz, CD;0D, CDCls) shifts for compounds 12, 15a-c, 17

BC, 5
Position 12 o 15b 15¢ 17
(CDs0D) (CDC_IZ’;:;)SOD (CDCl;) | (CDCly) | (CDsOD)

1 40.82 39.66 37.01 37.04 40.76
2 20.00 18.82 16.13 16.14 20.18
3 39.00 37.77 34.47 34.48 38.81
4 45.15 43.84 38.67 38.71 44.91
5 58.25 56.91 58.26 58.35 59.04
6 22.76 21.61 18.89 18.89 22.82
7 42.40 41.28 41.00 40.99 42.73
8 49.78 solv. 45.60 4561 49.85
9 55.92 54.46 50.88 50.91 55.54




10 38.43 37.92 35.19 35.19 38.48
11 21.43 20.20 17.49 17.49 21.49
12 39.23 37.21 35.11 35.13 39.28
13 40.65 39.43 36.64 36.63 40.61
14 55.86 54.07 51.43 51.46 55.90
15 49.82 solv. 45.88 45.87 solv.
16 225.00 223.72 219.79 219.66 22481
17 20.15 19.56 16.98 17.00 20.41
18 29.27 28.77 22.86 23.31 29.81
19 177.75 177.77 174.53 174.53 179.35
20 14.25 13.30 10.58 10.56 14.41
CH3CO - - - - 20.54
CH3CO - - - - 20.57
CH3CO - - - - 20.60
CH3CONH 23.37 22.57 23.11 23.27 23.35
CH5CO - - - - 171.28
CH;CO - - - - 171.86
CH5CO - - - - 172.31
CH3CONH 173.31 172.11 169.50 169.33 173.32
I 93.84 97.29 94.63 94.60 102.17
2 55.15 53.66 54.23 54.26 55.15
3 76.35 71.89 69.69 65.23 74.27
4 71.57 71.77 67.11 67.25 70.72
5 78.75 70.44 68.98 68.90 72.91
6’ 62.45 61.26 51.83 51.86 70.33
1 - 63.92 61.23 61.45 59.04
2” - 25.37 26.82 26.83 30.19
3” - 25.84 26.13 26.33 24.55
4> - 67.26 25.58 26.13 30.45
5” - - 26.45 25.63 63.35
6’ - - 65.02 25.63 -




7”

26.13

87’

26.56

9’,

26.68

10”

50.54




20a

20b

Table 3S. *C NMR (100.6 MHz, CDCl5) shifts for compounds 18, 20a-b

13C, 5
Position
18 20a 20b

1 40.36 39.98 39.65
2 19.40 19.08 19.15
3 37.47 37.43 37.52
4 43.80 43.97 44.01
5 57.72 57.19 57.28
6 22.39 21.87 21.91
7 41.87 41.64 41.73
8 48.60 48.55 48.62
9 54.86 54.81 54.89
10 38.26 38.10 38.15
11 20.50 20.47 20.47




12 38.26 38.15 38.21
13 39.68 39.60 40.06
14 54.39 54.41 54.48
15 48.87 48.86 48.90
16 222.76 222.74 222.71
17 19.99 19.96 20.01
18 29.09 29.07 29.01
19 177.09 177.49 177.54
20 13.79 13.54 13.57
CH3CO - 20.68 20.71
CH3CO - 20.74 20.76
CH5CO - 20.82 20.84
CH3;CONH 23.33 23.24 23.31
CH;CO - 169.38 169.35
CH3CO - 170.18 170.04
CH3CO - 170.75 170.77
CH;CONH 172.88 172.04 172.45
1’ 101.60 92.61 92.64

2 56.25 53.25 53.21
3 74.39 72.73 72.86

4 70.28 68.02 67.98

5 75.88 72.99 73.13

6’ 61.40 61.81 61.84
1 177.02 171.20 171.24
2 30.35 24.13 29.13
37 22.46 25.69 29.18
4> 23.47 28.25 29.22
57 69.79 33.97 29.39
6’ - 63.94 24.66
7’ - - 26.26
8 - - 28.58




9 - - 34.19
107 - - 64.41

Biology

Cytotoxicity of test compounds on cancer and normal human cell lines

Cytotoxic effects of the test compounds on human cancer and normal cells were estimated by means of
the multifunctional Cytell Cell Imaging system (GE Health Care Life Science, Sweden) using the Cell
Viability Bio App which precisely counts the number of cells and evaluates their viability from
fluorescence intensity data. Two fluorescent dyes that selectively penetrate the cell membranes and
fluoresce at different wavelengths were used in the experiments. A low-molecular-weight 4',6-
diamidin-2-phenylindol dye (DAPI) is able to penetrate intact membranes of living cells and color
nuclei in blue. High-molecular propidium iodide dye penetrates only dead cells with damaged
membranes, staining them in yellow. As a result, living cells are painted in blue and dead cells are
painted in yellow. DAPI and propidium iodide were purchased from Sigma. The M-Hela clone 11
human, epithelioid cervical carcinoma, strain of Hela, clone of M—Hela; human breast adenocarcinoma
cells (MCF-7); PANC-1 is a human pancreatic cancer cell line from the Type Culture Collection of the
Institute of Cytology (Russian Academy of Sciences) and Chang liver cell line (Human liver cells)
from N. F. Gamaleya Research Center of Epidemiology and Microbiology were used in the
experiments. The cells were cultured in a standard Eagle’s nutrient medium manufactured at the
Chumakov Institute of Poliomyelitis and Virus Encephalitis (PanEco company) and supplemented with
10% fetal calf serum and 1% nonessential amino acids. The cells were plated into a 96-well plate
(Eppendorf) at a concentration of 100000 cells/mL, 150 uL of medium per well, and cultured in a CO,
incubator at 37°C. Twenty four hours after seeding the cells into wells, the compound under study was
added at a preset dilution, 150 pL to each well. The dilutions of the compounds were prepared
immediately in nutrient media; 5% DMSO that does not induce the inhibition of cells at this
concentration was added for better solubility. The experiments were repeated three times. Intact cells

cultured in parallel with experimental cells were used as a control.
Flow Cytometry Assay.

Cell Culture. M-Hela cells at 1 x 10° cells/ well in a final volume of 2 mL were seeded into six-well
plates. After 24 h of incubation, various concentrations of the lead compounds 14a,b were added to

wells.



Cell Apoptosis Analysis. The cells were harvested at 2000 rpm for 5 min and, then, washed twice with
ice-cold PBS, followed by resuspension in binding buffer. Next, the samples were incubated with 5 uL.
of annexin V-FITC and 5 uL of propidium iodide for 15 min at room temperature in the dark. Finally,
the cells were analyzed by flow cytometry (Guava easy Cyte, MERCK, USA).

The experiments were repeated three times.

Cell cycle analysis. The DNA content and cell-cycle distribution after genistein treatment were
estimated by flow cytometry. Cell seeding, drug treatment and ethanol fixation were similar to cell
proliferation assay. After washing with PBS, genistein and daidzein-treated and -fixed Caco-2 cells
were suspended in 250 ul of PBS, then 1.0 ml phosphate-citrate buffer (0.05 M, pH 4.0) was added and
the suspension was incubated at room temperature for 5min to facilitate the extraction of low molecular
weight DNA. Following centrifugation the cells were resuspended in 500 ul DNA staining solution (20
ug/ml propidium iodide, 200ug/ml DNase (RNase-free), and 0.1% Triton X-100) and incubated in the
dark at room temperature for 30 min. Cell cycle distribution was determined by fluorescence-activated
cell sorting analysis of propidium iodide-stained ethanol-fixed cells using a Guava EasyCyte (Guava
easy Cyte, MERCK, USA) (Han et al., 2013).

Hemolytic activity of the lead compounds 14a,b was estimated by comparing the optical density of a
solution containing the test compound with the optical density of blood at 100% hemolysis. The
experiments were repeated for three times. A 10% suspension of human erythrocytes was used as an
object of investigation. An erythrocytic mass with heparin was washed three times with physiological
saline (0.9% NaCl) solution, centrifuged for 10 min at 800 rpm, and resuspended in physiological
saline (0.9% NaCl) solution to a concentration of 10%. The concentrations of the compounds that
corresponded to the MIC values for the bacterial test strains were prepared in physiological saline
(0.9% NaCl) solution (supplemented with 5% DMSO), and 450 pL of the compound at the
corresponding dilution was added to 50 uL of a 10% suspension of erythrocytes. The samples were
incubated for 1 h at 37°C and centrifuged for 10 min at 2000 rpm. Release of hemoglobin was
controlled by measuring the optical density of the supernatant on Microplate reader linvitrologic
(Russia) at A 450 nm. The control sample corresponding to zero hemolysis (blank experiment) was
prepared by adding of 50 pL of 10% red blood cell suspension to 450 uL of physiological saline
solution (0.9% NaCl). The control sample corresponding to 100% hemolysis was prepared by adding of

50 pL of 10% red blood cell suspension to 450 L of distilled water.

Statistical analysis



The cytometric results were analyzed by the Cytell Cell Imaging multifunctional system using the Cell
Viability BioApp and Apoptosis BioApp application. The data in the tables and graphs are given as the

mean = standard error.
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Figure S1. Apoptotic ettects of compounds 14a and 14b on M-Hela cells. M-Hela cells were treated
with the mentioned compounds at indicated concentrations for 24 h. Apoptotic effects were measured

by flow cytometry using annexin V- FITC staining protocol. The values are presented as the mean +
SD (n =3).
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Figure S10. **C NMR shifts for compound 14a (CDCl3) ppm
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Figure S12. **C NMR shifts for compound 14b (CDCls) ppm
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Figure S13. *H NMR shifts for compound 14c (CDCls) ppm
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Figure S14. *C NMR shifts for compound 14c (CDCls) ppm
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Figure S16. **C NMR shifts for compound 15a (CDClz+ CD;0D) ppm
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Figure S18. **C NMR shifts for compound 15b (CDCls) ppm
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Figure S$19. *H NMR shifts for compound 15¢ (CDCl3) ppm
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Figure S20. **C NMR shifts for compound 15¢ (CDCls) ppm
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Figure S21. *H NMR shifts for compound 17 (CD30D) ppm
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Figure S22. *C NMR shifts for compound 17 (CD;OD) ppm
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Figure $23. *H NMR shifts for compound 18 (CDCls) ppm
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Figure S24. *C NMR shifts for compound 18 (CDCls) ppm
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Figure $25. *H NMR shifts for compound 20a (CDCls) ppm
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Figure S26. *C NMR shifts for compound 20a (CDCls) ppm
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Figure S27. *H NMR shifts for compound 20b (CDCl3) ppm
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Figure S28. *C NMR shifts for compound 20b (CDCls) ppm



