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Abstract

We introduce a new shrinkage prior on function spaces, called the functional horse-
shoe prior (fHS), that encourages shrinkage towards parametric classes of functions.
Unlike other shrinkage priors for parametric models, the fHS shrinkage acts on the
shape of the function rather than inducing sparsity on model parameters. We study
the efficacy of the proposed approach by showing an adaptive posterior concentration
property on the function. We also demonstrate consistency of the model selection
procedure that thresholds the shrinkage parameter of the functional horseshoe prior.
We apply the fHS prior to nonparametric additive models and compare its perfor-
mance with procedures based on the standard horseshoe prior and several penalized
likelihood approaches. We find that the new procedure achieves smaller estimation
error and more accurate model selection than other procedures in several simulated
and real examples. The supplementary material for this article, which contains ad-
ditional simulated and real data examples, MCMC diagnostics, and proofs of the
theoretical results, is available online.

Keywords: Bayesian shrinkage; nonparametric regression; additive model; posterior con-
traction.
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1 Introduction

Since the seminal work of ?), shrinkage estimation has been immensely successful in var-

ious statistical disciplines and continues to enjoy widespread attention. Many shrinkage

estimators have a natural Bayesian flavor. For example, one obtains the ridge regression

estimator as the posterior mean arising from an isotropic Gaussian prior on the vector

of regression coefficients (??). Along similar lines, an empirical Bayes interpretation of

the positive part of the James–Stein estimator can be obtained (?). Such connections

have been extended to the semiparametric regression context, with applications to smooth-

ing splines and penalized splines (??). Over the past decade and a half, a number of

second-generation shrinkage priors have appeared in the literature for application in high-

dimensional sparse estimation problems. Such priors can be almost exclusively expressed

as global-local scale mixtures of Gaussians (?); examples include the relevance vector ma-

chine (?), normal/Jeffrey’s prior (?), the Bayesian lasso (??), the horseshoe (HS) prior (?),

normal/gamma and normal/inverse-Gaussian priors (??), generalized double Pareto priors

(?) and Dirichlet–Laplace priors (?). These priors typically have a large spike near zero

with heavy tails, thereby providing an approximation to the operating characteristics of

sparsity inducing discrete mixture priors (??). For more on connections between Bayesian

model averaging and shrinkage, refer to ?).

A key distinction between ridge-type shrinkage priors and the global-local priors is that

while ridge-type priors typically shrink towards a fixed point–most commonly the origin–

global-local priors shrink towards the union of subspaces consisting of sparse vectors. The

degree of shrinkage to sparse models is controlled by certain hyperparameters (?). In this

article, we further enlarge the scope of shrinkage priors by proposing a class of functional

shrinkage priors called functional horseshoe (fHS) priors. fHS priors facilitate shrinkage
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towards pre-specified subspaces. The shrinkage factor (defined in Section 3) is assigned

a Beta(a, b) prior with a, b < 1, which has the shape of a HS prior (?). While the HS

prior shrinks towards sparse vectors, the proposed fHS shrinks functions towards arbitrary

subspaces.

To illustrate the proposed methodology, consider a nonparametric regression model with

unknown regression function f : X → R given by

Y = F + ε, ε ∼ N(0, σ2In), (1)

where Y = (y1, . . . , yn)T, F = (f(x1), . . . , f(xn))T = E(Y | x), and covariates xi ∈ X ⊂ R.

In (1), one can either make parametric assumptions (e.g., linear or quadratic depen-

dence on x) regarding the shape of f , or one may model it nonparametrically using splines,

wavelets, Gaussian processes, etc. Scatter plots or goodness-of-fit tests can be used to ascer-

tain the validity of a linear or quadratic model in (1), but such procedures are only feasible

in relatively simple settings. In relatively complex and/or high dimensional problems, there

is clearly a need for an automatic data-driven procedure to adapt between models of vary-

ing complexity. With this motivation, we propose the fHS prior that encourages shrinkage

towards a parametric class of models embedded inside a larger semiparametric model, as

long as a suitable projection operator can be defined. The main difference between the

fHS prior and the standard HS prior is that the fHS prior introduces a more general notion

of shrinkage which operates on the shape of an unknown function rather than shrinking a

vector of parameters to zero. We provide a more detailed discussion on this in Section 5.1.

The continuous nature of the prior allows development of a simple and efficient Gibbs

sampler. As a consequence, the fHS procedure enjoys substantial computational advantages

over traditional Bayesian model selection procedures based on mixtures of point mass priors,

since they require computationally intensive search over large discrete model spaces.
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Our approach is not limited to univariate regression and can be extended to the varying

coefficient model (?), density estimation via log-spline models (?) and additive models

(?), among others. Further details are provided in Section 4. In the additive regression

context, the proposed approach performs comparably to state-of-the-art procedures like

the Sparse Additive Model (SpAM) of ?) and the High-dimensional Generalized Additive

Model (HGAM) of ?).

We provide theoretical justification for the method by showing an adaptive property of

the approach. Specifically, we show that the posterior contracts (?) at the parametric rate if

the true function belongs to the pre-designated subspace, and contracts at the optimal rate

for α-smooth functions otherwise. In other words, our approach adapts to the parametric

shape of the unknown function while allowing deviations from the parametric shape in a

nonparametric fashion. In addition, we describe a model selection procedure obtained by

thresholding the shrinkage factor, and then demonstrate its consistency.

2 Preliminaries

We begin by introducing some notation. For α > 0, let bαc denote the largest integer

smaller than or equal to α and dαe denote the smallest integer larger than or equal to α.

Let Cα[0, 1] denote the Hölder class of α smooth functions on [0, 1] that have continuously

differentiable derivatives up to order bαc, with the bαcth order derivative being Lipschitz

continuous of order α−bαc. For a vector x ∈ Rd, let
∥∥x∥∥ denote its Euclidean norm. For a

function g : [0, 1]→ R and points x1, . . . , xn ∈ [0, 1], let
∥∥g∥∥2

2,n
= n−1

∑n
i=1 g

2(xi); we shall

refer to
∥∥ ·∥∥

2,n
as the empirical L2 norm. For an m×d matrix A with m > d and rk(A) = d,

let L(A) = {Aβ : β ∈ Rd} denote the column space of A, which is a d-dimensional subspace

of Rm. Let QA = A(ATA)−1AT denote the projection matrix on L(A).
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3 The functional horseshoe prior

In the nonparametric regression model in (1), we model the unknown function f as spanned

by a set of pre-specified basis functions {φj}1≤j≤kn as follows:

f(x) =
kn∑
j=1

βjφj(x). (2)

We work with the B-spline basis (?) for illustrative purposes here. However, the methodol-

ogy trivially generalizes to a larger class of basis functions. A detailed description of the B-

spline basis is provided in Section A in the supplementary material. Let β = (β1, . . . , βkn)T

denote the vector of basis coefficients and let Φ = {φj(Xi)}1≤i≤n,1≤j≤kn denote the n× kn
matrix of basis functions evaluated at the observed covariates. Model (1) can then be

expressed as

Y | β ∼ N(Φβ, σ2In). (3)

A standard choice for a prior on β is a g-prior, β ∼ N(0, g(ΦTΦ)−1)(?). These priors

are commonly used in linear models because they incorporate the correlation structure of

the covariates inside the prior variance. The posterior mean of β under a g-prior can be

expressed as {1− 1/(1 + g)}β̂, where β̂ = QΦY is the maximum likelihood estimate of β.

Thus, the posterior mean shrinks the maximum likelihood estimator towards zero, with

the amount of shrinkage controlled by the parameter g. ?) studied asymptotic properties

of the resulting posterior by providing bounds on the total variation distance between the

posterior distribution and a Gaussian distribution centered at the maximum likelihood

estimator with the inverse Fisher information matrix as covariance. In ?), the g parameter

was fixed a priori depending on the sample size n and the error variance σ2. In particular,

the results of ?) imply minimax optimal posterior convergence for α-smooth functions. In

related work, ?) established minimax optimality with isotropic Gaussian priors on β.
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Our goal is to define a broader class of shrinkage priors on β that facilitate shrinkage

towards a null subspace that is fixed in advance, rather than shrinkage towards the origin or

any other fixed a priori guess β0. For example, if we have a priori belief that the function is

likely to attain a linear shape, then we would like to impose shrinkage towards the class of

linear functions. In general, our methodology allows shrinkage towards any null subspace

spanned by the columns of a null regressor matrix Φ0, with d0 = rank(Φ0) equal to the

dimension of the null space. For example in the linear case, we define the null space as

L(Φ0) with Φ0 = {1,x} ∈ Rn×2, where 1 is a n × 1 vector of ones and d0 = 2. Shrinkage

towards quadratic, or more generally polynomial, regression models is achieved similarly.

With the above notation, we define the fHS prior through the following conditional

specification:

π(β | τ) ∝ (τ 2)−(kn−d0)/2 exp

{
− 1

2σ2τ 2
βTΦT(I−Q0)Φβ

}
, (4)

π(τ) ∝ (τ 2)b−1/2

(1 + τ 2)(a+b)
1(0,∞)(τ), (5)

where a, b > 0. Recall that Q0 = Φ0(ΦT
0 Φ0)−1ΦT

0 denotes the projection matrix of Φ0.

When Φ0 = 0, (4) is equivalent to a g-prior with g = τ 2. The key additional feature in

our proposed prior is the introduction of the quantity (I−Q0) in the exponent, which enables

shrinkage towards subspaces rather than single points. Although the proposed prior may

be singular, it follows from subsequent results that the joint posterior on (β, τ 2) is proper.

Note that the prior on the scale parameter τ follows a half-Cauchy distribution when

a = b = 1/2. Half-Cauchy priors have been recommended as a default prior choice for global

scale parameters in the linear regression framework (?). Using the reparameterization

ω = 1/(1 + τ 2), the prior in (5) can be interpreted as the prior induced on τ through a

Beta(a, b) prior on ω. We work in the ω parameterization for reasons to be evident shortly.

Exploiting the conditional Gaussian specification, the conditional posterior of β is also

6



Gaussian, and can be expressed as

β | Y, ω ∼ N(β̃ω, Σ̃ω), (6)

where

β̃ω =

(
ΦTΦ +

ω

1− ω
ΦT(I−Q0)Φ

)−1

ΦTY, Σ̃ω = σ2

(
ΦTΦ +

ω

1− ω
ΦT(I−Q0)Φ

)−1

. (7)

We now state a lemma which delineates the role of ω as the parameter controlling the

shrinkage.

Lemma 3.1. Suppose that L(Φ0) ( L(Φ). Then,

E [Φβ | Y, ω] = Φβ̃ω = (1− ω)QΦY + ωQ0Y,

where QΦ is the projection matrix of Φ.

This lemma shows that the conditional posterior mean of the regression function given

ω is a convex combination of the classical B-spline estimator QΦY and the parametric

estimator Q0Y . The parameter ω ∈ (0, 1) controls the shrinkage effect; the closer ω is to

1, the greater the shrinkage towards the parametric estimator. We learn the parameter ω

from the data with a Beta(a, b) prior on ω. The hyperparameter b < 1 controls the amount

of prior mass near one.

Figure 1 illustrates the connection between the choice of the hyperparameters a and

b and the shrinkage behavior of the prior. The first and the second column in Figure 1,

with a fixed at 1/2, shows that the prior density of ω increasingly concentrates near 1 as

b decreases from 1/2 to 1/10. The third column in Figure 1 depicts the prior probability

that ω > 0.95 and ω < 0.05. Clearly, as b decreases, the amount of prior mass around

one increases, which results in stronger shrinkage towards the parametric estimator. In
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Figure 1: The first two columns illustrate the prior density function of ω with different

hyperparameters (a, b): (1/2, 1/2) for the first column and (1/2, 1/10) for the second col-

umn. The third column shows the prior probability that ω > 0.95 (solid line) and ω < 0.05

(dotted line) for varying b and a fixed a = 1/2.

particular, when a = b = 1/2, the resulting functional “HS” prior density derives its name

from the shape of the prior on ω (?).

When L(Φ0) ( L(Φ), we can orthogonally decompose QΦ = Q1+Q0, where the columns

of Q1 are orthogonal to the columns of Q0, i.e., QT
1 Q0 = 0. For L(Φ0) ( L(Φ), this follows

because we can use Gram-Schmidt orthogonalization to create Φ̃ = [Φ0; Φ1] of the same

dimension as Φ with ΦT
1 Φ0 = 0 and L(Φ) = L(Φ̃). Let Q1 denote the projection matrix on

L(Φ1). Simple algebra shows that

π(ω | Y ) =

∫
π(ω, β | Y )dβ =

π(ω)

m(Y )

∫
f(Y | β, ω)π(β | ω)dβ

= ωa+(kn−d0)/2−1(1− ω)b−1 exp{−Hnω}/m(Y ), (8)

where Hn = Y TQ1Y/(2σ
2) and m(Y ) =

∫ 1

0
ωa+(kn−d0)/2−1(1− ω)b−1 exp {−Hnω} dω.

To investigate the asymptotic behavior of the resulting posterior, it is crucial to find

tight two-sided bounds on m(Y ). Such bounds are specified in Lemma 3.2.
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Lemma 3.2. (Bounds on the normalizing constant) Let An and Bn be arbitrary sequences

satisfying An →∞ as n→∞ and Bn = O(1). Define tn =
∫ 1

0
ωAn−1(1−ω)Bn−1 exp{−Hnω}dω.

Then,

Γ(An)Γ(Bn)

Γ(An +Bn)
exp{−Hn}(1 +QL

n) ≤ tn ≤
Γ(An)Γ(Bn)

Γ(An +Bn)
exp{−Hn}(1 +QU

n ),

where,

QU
n =

Bn

An +Bn

exp(Hn),

QL
n =

BnHn

An +Bn

+
DBn(Bn + Tn)−An

(An +Bn)3/2

(
exp{Hn} − 1−Hn − (Tn + 2)−1/2

)
+
,

where Tn = max{A2
n, 3 dHne} and D is some positive constant.

By setting An = a + kn/2 and Bn = b, Lemma 3.2 shows that the magnitude of

the normalizing constant m(Y ) in (8) is determined by an interplay between the relative

sizes of b and exp(Hn). When b is small enough so that b exp(Hn) ≈ 0, it follows that

m(Y ) ≈ Be(a + kn/2, b) exp(−Hn), where Be(·, ·) denotes the beta function. Otherwise,

ignoring polynomial terms, m(Y ) ≈ Be(a+kn/2, b)b. This asymptotic behavior of m(Y ) is

central to identifying the posterior contraction rate of the fHS prior. We also note that the

magnitude of a asymptotically does not affect the strength of shrinkage for large n as long

as a is a fixed constant, since the prior contribution ωa−1 is dominated by the likelihood

contribution ωkn/2.

3.1 Posterior concentration rate

We assume a set of standard regularity conditions that have been used by others (?), ?)) to

prove minimax optimality of B-spline estimators. These regularity conditions are described

in Section A in the supplementary material. Under the regularity conditions, ?) showed
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that the mean square error of the B-spline estimator QΦY achieves the minimax optimal

rate. If the true function f0 ∈ Cα[0, 1] is α-smooth and the number of basis functions

kn � n1/(2α+1), then they showed that

E0

[∥∥QΦY − F0

∥∥2

2,n

]
= O

(
n−2α/(1+2α)

)
, (9)

where E0(·) represents an expectation with respect to the true data generating distribution

of Y . We now state our main result on the posterior contraction rate of the fHS prior.

Theorem 3.3. Consider the model (1) equipped with the fHS prior (4)-(5). Assume

L(Φ0) ( L(Φ). Further assume that for some integer α ≥ 1, the true regression func-

tion f0 ∈ Cα[0, 1] and the B-spline basis functions Φ are constructed with kn − bαc knots

and bαc−1 degree, where kn � n1/(1+2α). Suppose that the prior hyperparameters a and b in

(5) satisfy a ∈ (δ, 1− δ) for some constant δ ∈ (0, 1/2), and kn log kn ≺ − log b ≺ (nkn)1/2.

Then, for any diverging sequence ζn, E0[P{
∥∥Φβ − F0

∥∥
2,n

> Mn(f0)1/2 | Y }] = o(1), where

Mn(f0) =

ζnn
−1, if F0 ∈ L(Φ0)

ζnn
−2α/(1+2α) log n, if F T

0 (I−Q0)F0 � n.

Theorem 3.3 exhibits an adaptive property of the fHS prior. If the true function is

α-smooth, then the posterior contracts around the true function at the near minimax

rate of n−α/(2α+1) log n. However, if the true function f0 belongs to the finite dimensional

subspace L(Φ0), then the posterior contracts around f0 in the empirical L2 norm at the

parametric n−1/2 rate. We note that the bound kn log kn ≺ − log b ≺ (nkn)1/2 is a key to the

adaptivity of the posterior, since the strength of the shrinkage towards L(Φ0) is controlled

by b. If − log b ≺ kn log kn, then the shrinkage towards L(Φ0) is too weak to achieve the

parametric rate when F0 ∈ L(Φ0). On the other hand, if − log b � (nkn)1/2, the resulting
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posterior distribution strongly concentrates around L(Φ0) and fails to attain the optimal

nonparametric rate of posterior contraction when F0 6∈ L(Φ0).

We ignore the subspace of functions such that {F ∈ Rn : F T(I − Q0)F = o(n), F 6∈

L(Φ0)} and only focus on functions that can be strictly separated from the null space L(Φ0).

However, we acknowledge that it would be useful to illustrate the shrinkage behavior when

the regression function f approaches the null space under the condition that limn→∞ F
T(I−

Q0)F/n = 0.

3.2 Model selection procedure and its consistency

In this section, we illustrate a model selection procedure based on the fHS priors and

examine their theoretical consistency. As mentioned in Lemma 3.1, ω can be interpreted

as the amount of weight that the posterior mean for function F places on the parametric

estimator Q0Y . Due to this fact, it is natural to consider a model selection procedure by

thresholding the posterior mean of ω analogous to the model selection procedure considered

in ?) for the standard HS prior. Since a posterior mean of ω that is larger than 1/2 indicates

that more weight is imposed on the parametric estimator compared to the amount of the

weight on the nonparametric estimator, it is natural to select the parametric model when

E(ω | Y ) > 1/2.

The asymptotic properties of such a thresholding based model selection procedure de-

pends on the behavior of ω a posteriori. The following theorem states the posterior con-

vergence rate of ω when the true function belongs to the parametric or nonparametric

family.

Theorem 3.4. (posterior convergence rate of ω) Assume conditions from Theorem 3.3

hold. Then, for any diverging sequence ζn and any constant ε0 > 0, E0 [P (ω < 1− ζnS0,n | Y )] =
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o(1) if F0 ∈ L(Φ0), and E0 [P (ω > ζnS1,n | Y )] = o(1) if F T
0 (I − Q0)F0 � n, where

S0,n = k−1
n b1−ε0 and S1,n = (− log b)/n.

Theorem 3.4 indicates that when the true function is parametric, the posterior distri-

bution of ω contracts towards 1 at a rate of at least k−1
n b1−ε0 for any ε0 > 0. On the other

hand, when the true function is strictly separated from the class of parametric functions,

i.e., F T
0 (I−Q0)F0 � n, the posterior distribution of ω converges to zero at a rate of− log b/n.

By the condition kn log kn ≺ − log b ≺ (nkn)1/2 in Theorem 3.3, both k−1
n b1−ε0 and − log b/n

converge to zero. These results guarantee the consistency of the model selection procedure

based on thresholding E(ω | Y ) by any value in (0, 1).

4 Examples for the univariate case

In this section, we consider some applications of the fHS prior for several nonparametric

models:

(i) simple regression model: Yi = f(xi) + εi (10)

(ii) varying coefficient model: Yi = tif(xi) + εi (11)

(iii) density function estimation: p(Yi) =
exp{f(Yi)}∫
exp{f(t)}dt

, (12)

In cases (i) and (ii), we assume that εi
i.i.d∼ N(0, σ2) for i = 1, . . . , n. In (ii), ti and xi

are covariates for i = 1, . . . , n. In (iii), p(·) is the unknown density function of Y . The

varying coefficient model (?) in (11) reduces to a linear model when the coefficient function

f is constant, and the density function p is Gaussian when the log-density function f is

quadratic in the log-spline model (12) (?). These facts motivate the use of the fHS prior

in these examples to shrink towards the respective parametric alternatives.
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Figure 2: Examples when the underlying true functions are parametric. Posterior mean

of each procedure (red solid), its 95% pointwise credible bands (red dashed), and the true

function (black solid) from a single example with n = 200 for each model. The top row is

for the simple regression model; the second row is for the varying coefficient model; the last

row is for density estimation. The Bayesian B-spline procedure, the Bayesian parametric

model procedure, and fHS priors are illustrated in the first, second, and third columns,

respectively. 13
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Figure 3: Examples when the underlying true functions are nonparametric. The description

of the figures are provided in the caption of Figure 2.
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Before providing a detailed simulation study, we illustrate in Figures 2 and 3 what we

generally expect from the fHS procedure. Figure 2 depicts the point estimate (posterior

mean) and pointwise 95% credible bands for the unknown function f for a single data set

for each of the three examples when the true function belongs to the parametric class.

That is, a linear function in (10), a constant function in (11), and a quadratic function

in (12). Figure 3 depicts the corresponding estimates when the data generating function

does not fall into the assumed parametric class. It is evident from Figure 2 that when

the parametric assumptions are met, the fHS prior performs similarly to the parametric

model. This fact empirically corroborates our findings in Theorem 3.3 that the posterior

contracts at a nearly parametric rate when the parametric assumptions are met. It is also

evident that the fHS procedure automatically adapts to deviations from the parametric

assumptions in Figure 3, again confirming the conclusion of Theorem 3.3. That is, when

the true function is well-separated from the parametric class, the posterior concentrates at

a near optimal minimax rate. We reiterate that the same hyperparameters a = 1/2 and

b = exp{−kn log n/2} for the fHS prior were used in the examples in Figure 2 and Figure

3.

We now provide the details of a replicated study for the simple regression model. The

details for the varying coefficient model and the log-density model are provided in Section

B of the supplementary documents, with the overall message consistent across the different

problems. We generated the covariates independently from a uniform distribution between

−π and π and set the error variance σ2 = 1. We considered three parametric choices for

f . These include linear, quadratic, and sinusoidal functions. We standardized the true

function so as to obtain a signal-to-noise ratio of 1.0.

To shrink the regression function in (10) towards linear subspaces for the simple regres-

sion model, we set Φ0 = {1,x} in the fHS prior (4) (Φ0 = {1} for the varying coefficient
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model and Φ0 = {1,x,x2} for the log-density model). An inverse-gamma prior with param-

eters (1/100, 1/100) was imposed on σ2 for the fHS prior, and we set b = exp{−kn log n/2}

to satisfy the conditions of Theorem 3.3. We arbitrarily set a = 1/2. We consider the num-

ber of basis functions kn ∈ {5, 8, 11, 35}. In particular, the choice kn = 35 was empirically

recommended when n > 140 in ?).

To compare the fHS prior to the standard horseshoe (HS) prior, we considered a de-

composition F = F0 + F1, where F0 is the parametric function and F1 = Φβ is the non-

parametric component modeled by the B-spline basis functions. The parametric form F0 is

set to be linear. For a performance comparison to our procedure, we imposed the standard

HS prior on the coefficients of the B-spline basis functions to encourage shrinkage of the

nonparametric part towards zero in a different fashion than the fHS method.

We also considered a penalized spline procedure for the performance comparisons. The

object function of the penalized likelihood can be expressed as
∥∥Y −Φβ

∥∥2

2
+λβTΣβ, where

Σ is a kn by kn matrix with Σjk =
∫
φ

′′
j (t)φ

′′

k(t)dt for j, k = 1, . . . , kn. The smoothness

parameter λ was chosen by generalized cross-validation (?).

For each prior, we used the posterior mean f̂ as a point estimate for f , and reported

the empirical Mean Square Error (MSE), i.e.
∥∥f̂−f∥∥2

n,2
. We also compare our approach to

a partial oracle estimator enabled with the knnowledge of the functional form (parameteric

or nonparametric) of the true function. When the true function has a parametric form, the

partial oracle estimator is equivalent to the parametric estimator; otherwise, the partial

oracle estimator is equivalent to the standard B-spline estimator.

Tables 1 lists the MSE of the posterior mean estimator over 100 replicates in estimating

the unknown function f for the simple regression model with sample sizes of n = 200 and

500. When the true function f belongs to the nominal parametric class, the posterior mean

function resulting from the fHS prior outperforms the HS prior. When the true function
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does not belong to the class of the parametric functions, the fHS prior performs comparably

to the partial oracle estimator.

Under nonlinear settings, the penalized spline method and the procedure based on the

standard HS prior show smaller estimation error than that of the fHS prior and the partial

oracle estimator (the standard B-spline estimator). This is because the penalized spline

estimator regularizes the smoothness of the function. In contrast, the fHS prior produces a

fitted function that is almost identical to the standard B-spline estimator in the nonlinear

case. The shrinkage effect of the fHS prior towards a parametric function is only activated

when the shape of the function fits the pre-specified parametric form. Thus, when the

parametric model is true the fHS estimator behaves like the parametric estimator. If not,

it behaves like the B-spline estimator.

5 Simulation studies for additive models

Our regression examples in the previous subsection involved one predictor variable. In the

case of multiple predictors, a popular modeling framework is the class of additive models

(?), where the unknown function relating p candidate predictors to a univariate response

is modeled as the sum of p univariate functions, with the jth function only dependent on

the j-th predictor. In this section, we apply the fHS prior to additive models and compare

results obtained under this prior to several alternative methods. To be consistent with our

previous notation, we express additive models as

Y =

p∑
j=1

Fj + ε, (13)

where Fj = {fj(x1j), . . . , fj(xnj)} for j = 1, . . . , p, and ε ∼ N(0, σ2In). We let Φj denote the

spline basis matrix for Xj and let βj = {βj1, . . . , βjkn} denote the corresponding coefficient.
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In general, each component function can be modeled nonparametrically. For example, using

the B-spline basis functions as described in the previous section, fj(x) =
∑kn

l=1 βjlφl(x), so

that Fj = Φjβj for j = 1, . . . , p. However, if there are many candidate predictors, then

nonparametrically estimating p functions may be statistically difficult and may result in

a loss of precision and overfitting if only a small subset of the variables are significant.

With this motivation, we extend the fHS framework to additive models, where we assign

independent fHS priors to the fj’s to facilitate shrinkage of each of these functions towards

the class of pre-specified parametric functions. For β = {β1, . . . , βp}, where βj ∈ Rkn for

j ∈ 1, . . . , p, the resulting prior density can be expressed as the product of independent

fHS prior densities as follows:

π(β | τ 2, σ2) ∝
p∏
j=1

τ kn−d0j exp

{
−
βT
j ΦT

j (I−Q0j)Φjβj

2σ2τ 2
j

}
(14)

π(τ) ∝
p∏
j=1

(τ 2
j )b−1/2

(1 + τ 2
j )(a+b)

1(0,∞)(τj). (15)

Here, τ = {τ1, . . . , τp}. This prior imposes shrinkage on each βT
j ΦT

j (I − Q0j)Φjβj towards

zero so that the resulting posterior distribution contracts towards the class of the parametric

functions. In particular, when Q0j = 0 for j = 1, . . . , p, the resulting posterior distribution

on Fj concentrates on the null function when the marginal effect of Fj is negligible. This

property enables us to select variables by using the thresholding procedure discussed in

Section 3.2.

For shrinkage across many variables, the classical HS prior includes a global shrinkage

parameter common to all variables. In the present context, the role of the global shrinkage

parameter is implicitly replaced by the scale parameter b. We treat b as a fixed hyper-

parameter in the sequel and follow the default recommendation from the earlier section

regarding its choice.
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For the univariate examples considered in the previous section, standard Bayesian model

selection procedures based on the mixture of point mass priors (???) can also be ap-

plied. These approaches have advantages in interpreting the results of model selection

and Bayesian model averaging (?). However, when multiple functions are considered in

model selection, standard procedures with discrete mixture priors can be computationally

demanding in searching the discrete space of models.

5.1 A comparison to the standard horseshoe prior

Under the additive model, one can impose a product of standard HS priors (?) on the spline

coefficients to impose shrinkage towards the null function. The hierarchical structure of

such an HS prior can be expressed as

π(β | λ, ψ, σ2) ∝ exp

{
− 1

σ2λ2

p∑
j=1

kn∑
l=1

β2
jl

ψ2
jl

}
, λ ∼ C+(0, 1), ψjl ∼ C+(0, 1),

where C+(0, 1) is the half-Cauchy distribution. The parameter λ serves a global shrinkage

parameter controlling the concentration near zero, while the ψjl’s are local shrinkage pa-

rameters that control the tail heaviness of the individual coefficients (?). The use of the

standard HS prior imposes strong shrinkage effects towards zero on each coefficient. But

unlike the proposed fHS prior, the HS prior does not account for the grouping structure

in the spline expansions of the components. We illustrate the importance of accounting

for the group structure through a number of simulated and real examples next. We found

that the fHS prior outperforms the vanilla HS prior. An analogy may be drawn to the

superior performance of group lasso (?) over ordinary lasso when a similar group structure

is present in the spline coefficients (?).

It is not immediately clear how to select variables in an additive model by using the
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standard HS prior. On the other hand, the thresholding procedure based on the fHS prior

in (14) performs a natural model selection in this setting.

5.2 Simulation scenarios

For additive models, ?) proposed penalized likelihood procedures called Sparse Additive

Models (SpAM) that combine ideas from model selection and additive nonparametric re-

gression. The penalty term of SpAM can be described as a weighted group Lasso penalty

(?) in which the coefficients for each component function fj for j = 1, . . . , p are forced to si-

multaneously shrink towards zero. ?) proposed the High-dimensional Generalized Additive

Model (HGAM) that differs from SpAM by its penalty term, which imposes both shrinkage

towards zero and regularization on the smoothness of the function. ?) introduced a two

step procedure called adaptive group Lasso (AdapGL) for additive models. The first step

estimates the weight of the group penalty, and the second applies it to the adaptive group

lasso penalty. Since the performance of penalized likelihood methods is sensitive to the

choice of the tuning parameter, in the simulation studies that follow we considered two

criteria for tuning parameter selection: AIC and BIC. R packages SAM, hgam, and grplasso

were used to implement SpAM, HGAM, and AdapGL, respectively. We also considered

the standard HS prior and its computation was implemented by the R package horseshoe.

We develop a blocked Gibbs sampler to fit the fHS procedure; the details are provided in

Section E of the supplemental document. We observed good mixing and convergence of the

algorithm developed based on examination of trace plots; see Section F of the supplemental

document for representative examples. For the fHS prior and HS prior, we imposed a prior

on σ2 proportional to 1/σ2. We utilized 20,000 samples from the MCMC algorithms after

10,000 burn-in iterations to estimate the posterior mean.

We define the signal-to-noise ratio as SNR = Var(f(X))/V ar(ε), where f is the true

21



underlying regression function, i.e., f =
∑p

j=1 fj, where fj is the true component function

for j = 1, . . . , p. We examine the same simulation scenarios that were considered in ?) as

follows:

Scenario 1: (p = 200, SNR ≈ 15). This is the same scenario as Example 1 in ?). A

similar scenario was also considered in ?) and ?). The true model is Yi = f1(xi1) +

f2(xi2) + f3(xi3) + f4(xi4) + εi, where εi
i.i.d∼ N(0, 1) for i = 1, . . . , n, with f1(x) = − sin(2x),

f2(x) = x2 − 25/12, f3(x) = x, f4(x) = exp{−x} − 2/5 · sinh(5/2). The covariates are

independently generated from a uniform distribution between −2.5 to 2.5.

Scenario 2: (p = 80, SNR ≈ 7.9). This is equivalent to Example 3 in ?) and similar to an

example in ?). The true model is Yi = 5f1(xi1) + 3f2(xi2) + 4f3(xi3) + 6f4(xi4) + εi, where

εi
i.i.d∼ N(0, 1.74) for i = 1, . . . , n, with f1(x) = x, f2(x) = (2x − 1)2, f3(x) = sin(2πx)

2−sin(2πx)
,

f4(x) = 0.1 sin(2πx) + 0.2 cos(2πx) + 0.3 sin2(2πx) + 0.4 cos3(2πx) + 0.5 sin3(2πx). The

covariate xj = (x1j, . . . , xnj)
T for j = 1, . . . , p is generated by xj = (Wj + U)/2, where

W1, . . . ,Wp and U are independently simulated from U(0, 1) distributions.

Scenario 3 (p = 60, SNR ≈ 11.25). This scenario is equivalent to Example 4 in ?), and

a similar example was also considered in ?). The same functions and the same process to

generate the covariates used in Scenario 2 were used in this scenario. The true model is

Yi = f1(xi1) + f2(xi2) + f3(xi3) + f4(xi4) + 1.5f1(xi5) + 1.5f2(xi6) + 1.5f3(xi7) + 1.5f4(xi8) +

2.5f1(xi9) + 2.5f2(xi10) + 2.5f3(xi11) + 2.5f4(xi12) + εi, where εi
i.i.d∼ N(0, 0.5184) for i =

1, . . . , n.

To evaluate the estimation performance of the fHS prior, we report the MSE for each

method. To measure the performance of variable selection, we examined the proportion of

times the true model was selected, as well as the Matthews correlation coefficient (MCC;
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?)), defined as,

MCC =
TP · TN− FP · FN

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
,

where TP, TN, FP, and FN denote the number of true positive, true negatives, false posi-

tives, and false negatives, respectively. MCC is generally regarded as a balanced measure

of the performance of classification methods, which simultaneously takes into account TP,

TN, FP, and FN. We note that MCC is bounded by 1, and the closer MCC is to 1, the

better the model selection performance is.

We used the fHS prior in (14) with Q0j = 0 for all j. This setting of the fHS prior

imposed a shrinkage effect towards the null function so that the posterior distribution of

most component functions contracts towards zero. For model selection using the fHS prior,

we selected variables with E(ωj | Y ) < 1/2 as described in Section 3.2, where ωj = 1/(1+τ 2
j )

is the shrinkage coefficient for the j-th variable. To investigate the performance achieved

by the proposed method, we compared it to a “partial oracle estimator”. The partial oracle

estimator refers to the B-spline least squares estimator when the variables in the true model

are given, but the true component functions in the additive model are not provided.

Results from simulation studies to compare these methods are depicted in Table 2 –

4. In most settings, the procedure based on the fHS prior has smaller MSE than the

estimator based on the HS prior and the penalized likelihood estimators. These results hold

consistently with different hyperparameters (b = exp(−kn log n/A) where kn ∈ {5, 8, 11, 35}

and A ∈ {2, 4, 10}). The SpAM with the tuning parameter chosen by BIC performs

comparable to the fHS procedure in some settings; for example, Scenario 1 with kn = 11,

and Scenario 2 with kn = 5 and kn = 11. However, its estimation performance is clearly

inferior to the fHS procedure. The MSE of SpAM with BIC is at least two times larger

than the estimator based on the fHS prior in all simulation scenarios.
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While the HS prior shows comparable estimation performance to the procedure based

on the fHS prior in Scenario 3, its MSE is unstable and sensitive to the choice of kn in

Scenario 1 and Scenario 2. In particular, in Scenario 1 with kn = 11, the MSE of the HS

prior is almost 9 times larger than the MSE of the fHS prior. When the number of basis

function is chosen to be relatively large (kn = 35), the MSE of the fHS procedures with

three different hyperparameters is uniformly smaller than that of the HS prior through all

considered scenarios. In addition, as we have already discussed, model selection with the

standard HS prior is not immediate in the present context.

6 Real data analysis for sparse additive model under

high-dimensional settings

In this section, we considered the Near Infrared (NIR) Spectroscopy data set to examine

the performance of the fHS prior for sparse additive models in high-dimensional settings.

This data set was previously analyzed in ?) and ?), and is available in the R package

chemometrics. The NIR data includes glucose and ethanol concentration (in g/L) for

166 alcoholic fermentation mashes of different feedstock (rye, wheat and corn). Two hun-

dred thirty-five NIR spectroscopy absorbance values were acquired in the wavelength range

of 115-2285 nanometer (nm) by a transflectance probe (?). We implemented the model

selection procedure on the data values with a response variable defined by ethanol concen-

trations. We have n = 166 and p = 235; we set the training and test set sizes to be 146 and

20, respectively. For each method, the prior specification used in Section 5.2 was applied.

Results are summarized in Table 5 and show that the proposed procedure with the fHS

prior achieves the smallest prediction error among the considered methods. In addition, the

average model size of the fHS procedure was smaller than that selected by the other meth-
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ods. Compared to other procedures, the fHS procedure shows stable performance overall.

This result typically held regardless of the choice of b and kn. The exception occurred

when b = exp(−kn log n/10) and kn = 5. In that case, the average model size was 26.37,

almost double that compared to the fHS procedure with the other hyperparameter values.

One remark is that when kn = 35, all procedures showed poor and unstable prediction

performances, except for the HGAM procedures. We think that this is because the HGAM

imposes extra regularization on the smoothness of the function, unlike other procedures.

So, the corresponding HGAM estimator avoids an overfitting issue caused by a relatively

large kn.

kn = 5 kn = 8 kn = 11 kn = 35

MSPE MS MSPE MS MSPE MS MSPE MS

HS 1.542(0.14) 3.604(0.72) 6.724(1.01) 50.673(4.81)

fHS1 1.450(0.15) 26.37 2.014(0.22) 17.27 3.712(0.96) 12.99 810.826(42.86) 4.80

fHS2 1.637(0.16) 13.57 2.052(0.27) 15.33 2.521(0.46) 12.73 73.996(30.40) 4.78

fHS3 1.446(0.14) 13.78 2.222(0.41) 14.39 2.970(0.80) 12.45 27.400(4.18) 4.50

SpAM (AIC) 13.977(1.38) 38.93 24.707(2.36) 27.89 28.683(2.71) 15.94 111.218(11.12) 2.96

SpAM (BIC) 49.294(6.06) 36.54 65.957(7.84) 24.32 60.924(7.97) 13.86 146.869(14.69) 2.78

HGAM (AIC) 2.036(0.13) 39.69 2.286(0.24) 33.07 2.776(0.29) 34.17 3.911(0.39) 21.60

HGAM (BIC) 1.854(0.12) 45.19 2.285(0.24) 32.86 2.786(0.30) 33.91 3.912(0.39) 21.50

AdapGL (AIC) 19.914(3.57) 38.40 47.016(8.09) 109.93 57.948(8.05) 79.80 75.519(8.53) 7.80

AdapGL (BIC) 10.626(1.42) 14.07 16.370(2.57) 15.06 33.421(4.45) 14.25 476.551(12.96) 0.00

Table 5: NIR data set. “MS” indicates the average model size. The smallest MSPE is

noted in bold.
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7 Conclusion

We have proposed a class of shrinkage priors which we call the fHS priors. These priors im-

pose strong shrinkage towards a pre-specified class of functions. The shrinkage mechanism

in this prior is new. It allows the nonparametric function to shrink towards a parametric

function without performing selection or shrinkage on the basis coefficients towards zero.

By doing so, it preserves the minimax optimal parametric rate of posterior convergence

n−1/2 when the true underlying function is parametric. It also comes within O(log n) of

achieving the minimax nonparametric rate when the true function is strictly separated from

the class of parametric functions. We also investigated the asymptotic properties of model

selection procedure by thresholding the posterior mean of ω. The resulting model selection

procedure consistently selects the true form of the regression function as n increases.

The fHS prior imposes shrinkage on the shape of the function rather than shrinking or

selecting certain basis coefficients. Hence, its scope of applicability is broad and it can be

applied whenever a distance function to the null subspace can be formulated. In contrast,

standard selection/shrinkage priors need an explicit parameterization of the null space in

terms of zero constraints on specific parameters/coefficients.

Like other nonparametric procedures, it is important to choose an appropriate value of

the hyperparameters of the fHS prior (kn for the B-spline basis and b for the hyperprior on

ω). In the real and simulated examples considered here, we used multiple hyperparameters,

kn ∈ {5, 8, 11, 35} and b = exp(−kn log n/A) with A ∈ {2, 4, 10}, and compared the results

with the different choice of the hyperparameters. More formal criterion to choose kn or

b might also be considered, and investigation of such criterion remains an active area of

research.

The novel shrinkage term contained in the proposed prior, F T(I−Q0)F , can be naturally
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applied to a new class of penalized likelihood methods having a general form expressible as

−l(Y | F ) + pλ
(
F T(I−Q0)F

)
, where l(Y | F ) is the logarithm of a likelihood function and

pλ is the penalty function. In contrast to other penalized likelihood methods, this form of

penalty allows shrinkage towards the space spanned by a projection matrix Q0, rather than

simply a zero function.
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Supplementary Material

The supplementary material, which is available online, contains additional simulated and

real data examples, MCMC diagnostics, and proofs of the theoretical results. In Section

A in the supplementary material, a detailed description of the B-spline basis function is

provided. In Section B, we examine additional simulation studies for univariate examples.

These examples include the varying coefficient model and the log-density model introduced

in Section 4. In Section C, we provide additional real data examples for the additive model.

Section D contains the proofs of the theoretical results. In Section E and F, the MCMC

algorithm used to implement the fHS procedure is described and its convergence diagnostics

is examined, respectively.
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