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In this supplementary material, we give proofs of theorem 1 to theorem 3 and some additional simulation

results.

We first review and introduce the notation. For any 3 € €2, define

Spo1 I(Pe > Py U ) Xg Ko (X5 Be, — w)

Ejp(w; B) = —— , "
S 1(Pe 2 PLU i) (X5 g, Bp, — w)

, Uen)
and we can rewrite Z;(8) and Z;(3) used in the main text as

Zi(B8) = (Xi;1(j € P) + E;p(X; B;B)I(j € P) : 1 < j < p)

and

Zi(B) = (E;,p,(X;3:8) : 1 < j <p).

Recall

UB) = - ZBY:~ 20 B), u(B) = E [1(B){XIBy — (5 8}].

Recall e; p(w; B) = E(Xi; | X; pBp = w), 2i(B) = (ej,p,(X;pBp;B) : 1 <j <p)T and
2i(8) = (XiI(j € P) +¢jp(X; 3;B)[(j ¢ P): 1 < j <p)T.

Let éx,p(w; B) = 8¢ p(w; B)/0uw?, v = [ v2K (v)dv and Ky (v) = Pa),




1 Proof of Proposition 1

Without loss of generality, given P;, we rewrite X; = (X p, XT ) and By = (Bp,0,8p,0)", then z;(8y) =
T
( P E(szi\XEPiﬁp%o, B)) . First, we prove that 3 is a solution of u(3) = 0. Taking the expectation

on both sides of (2.2) given X7 p 8p, o, we have
E(Yi | Xip,Br.0, Pi) = XipBro+ E(XTP | X3 p.Bp0: Pi)BE, 0 = 2i(Bo)" Bo-

By the condition that E(e; | X;, P;) = 0, we have E (YZ | X;Piﬁpi70,Pi) EX7|XT BP0, Pi)By. There-
fore, we get { E(X]|X] p.8p, 0, Pi) — 2:(8y)" } By = 0, which implies E {(X] — 2;(80)")|X{ p.0p.0, Pi } By =

0. Noting that z;(8,) is a function of (X7 p. 8p, 0, P;), We obtain
w(By) = E{2:i(B0)(X7 By — zi(By) " Bo)} = 0

Next, we prove that u(3) = 0 has a unique solution. We assume there is another solution 8= (/5’ Py B p)t €

Q such that u(,@) = 0. By the simple calculation, we have

| E(Xin | Xy, Br) E(X T X, B, |

[B(Xp,[X 5, Bp, ) E (X2 [ X5, B,)|

(Xir, X p, B2 E(Xp, X, B, |
(Xin | Xip,Br,) B (Xl |X1r, Br,) |
=53 ﬂ By) = 0.

E _
(8 = Bo)
E

By Conditions (C2) and (C4) that S(B) is invertible, we have 3 = @,. Combining the existence and

uniqueness of the solution, we conclude that 3 is the unique solution of u(3) = 0.



2 Proof of Theorem 1

Proof. Decomposing U(3), we have

UB) - ulB) = S ZB{Yi - ZiB)B}  B{m(B)(XIB, ~ %(8)"8)
=1

- Iy @e-aey - LY @emne - wenens
=1

=1

_l’_

% Z [z:(8){X{By — z:(B)"B} — E{z:(B)(X] By — 2z:(8)"B) }] + % Z z;(B)eio
i—1 ;

= L —DL+1I3+ 14
Then, we can get
sup [|U(B) — u(B)l2 < sup [|11[|2 + sup [ 2|2 + sup [ I3]|2 + sup [ La]l2.
BeR BeR BeQ BeQ BeQ

Moreover, supgeq [[3]l2 = 0p(1) can be showed by the fact that function class {fg(X;) = Z:(8)(X; By —
z;(3)"3), 8 € Q} indexed by B is a GC class (van der Vaart, 1998) under Conditions (C2)—(C4). Similarly,

we can get uniform convergence on 1.

Next, we prove that supgeq ||11l2 = 0p(1) can be proved under Conditions (C1)-(C6). Note

_ S 1Py o P U {Xas — e5.p(w3 8) 1K (X5 pfp — w o
E‘%P(w’ﬁ) _ ej,P(w;IB) _ 1 { J 3,P } h( PPP ) = Snl,]<w?67 i; (21)

Sho 1Py 5 P UK (X3 pe —w) Sno,j (w3 B,

where Sy, j(w; 3, P) =n~ 30 _ I(Py D PUj) {Xy; — ej,p(w;,B)}w Ky, (XE,PBP - w) for r = 0,1. By

the arguments in the proof of Lemma 4 in Chen et al. (2010), we can show that

Vlogn

sup [Si.1 (w3 B, P2 = Op(* 22 + h2), (2.2)
Sup [Suno (w3 B, P) — C(PU ) fp(ws B)] = 0,(V2B™ 4 p2). (2.3)

w,B vnh

where fp(w;B) is the density function of X7 pBp, and C(P U j) = Pr(P; O P U j). Thus, we obtain



supgeq [[11]l2 = 0p(1). Similarly, we can get uniform convergence on Ia, thus we have supgeq [|U(8) —

u(B)[l2 = 0.

~

From Proposition 1, we know that 3, is the unique solution to u(8) = 0. Therefore, U(3) = 0 and
u(By) = 0. We next use a proof by contradiction. Suppose B # By in probability. Because {B} CQis
a bounded sequence, there must exist a subsequence {Bn} such that Bn — B* # B in probability by the

Bolzano—Weierstrass theorem. Because U (Bn) = 0, we have

Furthermore, by supgeq [|U(8)—u(8)|2 = 0,(1) and the continuous mapping theorem, we conclude u(3*) =

0 with B* # B, which contradicts that u(3) = 0 has a unique solution 3. Therefore, Theorem 1 holds.

3 Proof of Theorem 2

3.1 A lemma

Lemma 1 Under Conditions (C1), (C2), (C8) and (C5), we have

Zi(80) — (Bo) = Opl(nh) /2 + 2}, (31)
Zi(80) — (Bo) = Opl(nh) /2 + 12}, (32)
S {Z4(B0) — o) o = 0p(n ), (33)
=1

=S (B0 — w80 HK — )7 = oyl 2), (34)

=1
S Z(B0) — 34(80) (B — &), = op(n ), (35)

=1
S {Zi(B0) — (B0 HZi(By) — (80)) By = op(n ), (36)

=1



where we recall
X; =Xl ¢ P),1<j<p), & = (ejn(Wi)l(j¢P)1<j<p)", (3.7)

and define

~ c ~ ~

E; = (Ejp,(Wio)I(j & P),1<j<p)" ¢jp.(Wio) =ejp,(Wio; Bo)s  Ej.p.(Wio) = Ej.p.(Wio; Bo)- (3.8)

Proof. Equations (@), (@), (@) and (@) follow from (@) under Conditions (C1), (C2), (C3) and
(C5). We prove (@), and omit the proof of (@) due to the similarity.

For simplicity, we define

1

e (W) = — > I(Py > PiU§j)Kn(Xs,p,Br0 — Wio),
i

Fip(Wio) = ! > I(Py 5 PUj)Kn(Xsp,3 Wio) Xurs

TP 1 T oa—1 4/75' 4 1 Y] ) p A P, PP; 0 i i'js
7 {2

r;.p,(Wio) = C(P;Uj)fp,(Wio; Bo)ej,r,(Wio; Bo),

fip(Wio) = C(PUJ)fp,(Wio; Bo).-

Using some simple algebra and the kernel theory (Horowitz, 1996), we have

J RPN
- Z{Ej,Pi(WiOE Bo) — €j,p,(Wio; Bo) }eio
=1

1 7 (Wio) —rip(Wi) | 1 ri.2;(Wio) (F3.2(Wio) — fi.2,(Wip))

_ 261‘0{]’1 I P }—Zﬁio J. P 3721 J: P
= fi.p:(Wio) P 13 p,(Wio)

+0,{h* +1/(nh)}. (3.9)

Define €;j0 = €0/ fj,p,(Wio), and write nt o &ijorsp,(Wip) as a second-order U-statistic:

I, 1 , 3 3
- > ot e (Wio) = nn=1) > 1Py D BiU§)Kn(Xa p,Bp0 — Wio){&joXirs + € Xij}-
i=1 il



Using Lemma 5.2.1.A of Serfling (1980, page 183), we have

1. . 1~ :
n Z €ijorj,p,(Wio) — " Z €joE{I(Py D P; U 5)Kn( Xy p,Br,0 — Wio) Xirj|Wio, P} = Op{l/(nhl/Q)},
i=1 i=1
(3.10)
because the left hand side is a degenerated U-statistic. Using the standard method to calculate the bias

in nonparametric regression under Conditions (C1)-(C3), we have

sup |E{I(Py > P; U§)Kn(Xy p,Br.0 — Wio)Xirj | Wio, Pi} — 7j.6,(Wio)| = Op(h?),

0
which implies

R _ _
n > éol E{I(Pr D P U j)Kn(Xy p,Br0 — Wio) Xirj | Wio, P} — 1y, (Wip)] = Op(n™'/21%). (3.11)
=1

Combining (), () and Condition (C5), we have

BN 7,5 (Wio) — rj,p, (Wi )} -1 -1/2 2, —1/2 -1/2
€; L =t =0,{n""h + h°n = 0,(n . 3.12
n 1 0{ fjfi(”iO) p{ } p( ) ( )

1=

Similarly, we have

%Z - {Tj,Pi(Wio)(fjg;(gj[f))— fr.(Wi)) } = 0,(n"1/?). (3.13)
i=1 P

Submitting () and () into (@) and using Condition (C5), we complete the proof of (@)

3.2 Proof

We prove the theorem in four steps.

In step one, we prove
~ 1 LA ~ T T /~ ~
UB) = U(By) = == > Zu(By) {Zi(Bo) + Di By} (B~ B0) + (B =Byl (3.14)

=1

where D; is defined in Section 3.



We write

U(B) - U(By 12 8y)* (B - ﬁo)ﬁzz (80) {Z:(B) - 2:8)} B
+o, (1B = Boll)- (3.15)

3

Denote by Bpo and i the true values of Sp and B, respectively. Recall th = (Xyl(jeP),1<j<p".

Using some algebra, we have

Ej.p,(X; B: B) — Ej.p,(X; Bo: Bo)
'Y I(Py D Pz‘ U 5) X K, (X;f/,pﬁpi,o - XEPZ.BPi,O) P, ([3 ﬂo)
_1 Z i =1 ( i D) P U])Kh ( 1! PZB\PZ - XZT;PZ/BP,L)
n= 0o I(Py O P U ) Xir K, <X§5,pzﬂP¢,o - Xf,piﬁpi,o) X; <B - Bo)
n Y i [Py D P UG Ky ( ;f',PﬁPi _X;f,PiEP@-)

1 & .
- > I(Py > PU§) Xy Ky (X5 p.Bp.0 — X} p,Bp.0)
i'=1

n Y I(Py D PUj)K), (X;F',PiﬁPi,O 0P 5P1,0) (5 50)

W U SE 1P S PO K (XD B0 - sziﬁpi,o)] 2

1 :
ST I(Pe S PG Xy K (X3 p Br0 = X1 Bri0)
=1
N .
nTUSSG L 1P S U)K (X3 pBeo — Xip Br0) Xi (B B0) A
X 5 +op(18 = Boll)
[nfl w1 I(Py D PUj)K, (Xg,plﬂpi,o - X;F,piﬁpi,oﬂ

Using the kernel theory (Horowitz, 1996), we can show that
o~ ~ ~
B:B) — Es.r(X; Bu: Bo) = D (B By) + 0,(I1B — By (3.16)

Substituting () into (), we prove ()

In the second step, we derive the asymptotic expression of nt/ Q(B - Bo)-



From (), we have

1 n

UB)-UB) = — > (80 {z(80) + DB} (B )
=1

. SZi(By) — 7:(80) {z:8) + DB} (B-5))

=1

S wBZ(Bo) — 7 (B0)Y (B~ Bu) + 0p(IB — Bl
i=1

RS = ~ T T 7~ ~
- niz;zz'(ﬁo) {Zi(ﬁ0)+Di 50} (5*[3()) + 0, (|IB — Boll) (3.17)
where the last equality follows from (@) and (@) in Lemma 1. Because U(f—}) =0, we have

n T -1
(B~ By) = (i >~ 7(80) {i(8,) + Di B} ) Vil (Bo) + 0p(1). (3.18)
i=1

In the third step, we derive the asymptotic expression of U(3;). Write

1 LI ¢ -\T 1 LN ~c _\T
U8 = 5 Y Zi(8) {ewn+ (X -2) Bo} - ALY (Bf &) 8. (3.19)
recalling the definitions in (@) and (@)
Using (@) and Lemma 4 in Chen et al. (2010), we have
~ s, (Wi ) . .
Ejp,(Wio) — ej,p,(Wio) = "0, (Wios B2 {Sno,j(Wio; P) — s0,5(Wio; Pi) }
1 1 2
51 (Wio; P)) + O < +h2> , 3.20
s0,;(Wio; P;) 15(Wioi i) + O Vnh (3:20)

where Snr,j(WzO; H) = n_l Z?’:l I(PZ/ D) Pz Uj) {Xi’j - ei/’pi(Wi())}(g)T Kh (X;F’,P,-/BPM] — Wz()) for r = 0, 1.
50,j(Wio; Pi) = C(P; U j; Wio) fp,(Wio), and fp,(w) = fp,(w; By). Using Lemmas 4 and 5 in Chen et al.

(2010), we obtain

LS 5(80) (B - &) By = 0(%) + 0y (n 7). (3.21)



Substituting (@), (@), (@) and (ﬁl) into (M), we obtain

U(Be) = £ 3 a(80) {e + (X~ )" B} + oyln ). 322

=1

In the fourth step, based on () and (), we can use the central limit theorem and Slutsky’s

theorem to obtain n'/2 (B - 60> — N(0,27'A(Z™HT), where

.=F [ii(ﬂo) {Zi(:@O) + f)z‘Tﬁo}T} ;A =var [ii(ﬁo) {Eio + (X: - éf)TBO}] :

4 Proof of Theorem 3

We use the proving strategy of Jin, Ying, and Wei (2001). Let V; ~ Binomial(n,1/n) with mean 1 and

variance (n — 1)/n in our bootstrap setting. Let
Wa(B) = vnU(B) and Wi(B8) =n""?> ViZ;(B){Yi - Z:(8)"B}.
i=1
Therefore, ,@* is the solution of W (3) = 0. Similar to the proof of Theorem 2, we can show that

Wi (B1) — Wi (B2) = n/?S(B1 — B2) + 0p(V/n|B1 — Bal| + 1),

uniformly in ||81 — Byl < dy, and ||f2 — By || < dy, where {d,,} is any sequence of positive random variables,

converging to 0 almost surely, and ¥ is defined in Theorem 2. Then, in the probability space of {V, X, Y},
n'2(B" = B) = =S'W;(B) + 0,(1+n'?|B" - B, (4.1)

almost surely. It follows from Theorem 2 that the asymptotic distribution of n'/ 2(,@ — B) is the same
as that of 71W,,(B,). Thus, in view of (@), to show that for every realisation that of nl/Q(B - Bo),

it suffices to show that for every realisation of {X,Y} the conditional distribution of W}(3) converges to

normal with mean 0 and covariance matrix A, which is the limiting distribution of W, (3,).



Since 3 is a solution of W, (8) = 0, it implies W,,(3) = 0. Thus, up to an almost surely negligible term,
n

Wi (B) = —WZ(V —1)Z(B){Y; — Z:(8)" B}

- —1/22 i = 1)2:(80) {eio + (X0~ &) 8y} +0p(1): (4.2)

According to the strong law of large number, the covariance matrix of (@) converges almost surely to A.
Moreover, by the usual multivariate central limit theorem (Serfling, 1980, page 30), for every realization of
{X,Y}, the conditional distribution of (@) converges to normal with mean 0 and covariance matrix A.

Hence, nl/Q(B* — ,[Ai) has the same asymptotic distribution as that of nl/Q(B - Bo)-

5 Additional simulation results

We simulate data with n = 500, normal error, and missing proportion 0.5, and apply our method varying
the bandwidth h = en~'/3 with ¢ € {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}. Figure EJ shows the
average root mean squared error of the regression coefficients as a function of the bandwidth h, which

confirms that our method is not sensitive to the choice of h when h is taken in a reasonable interval.
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Figure 1: Sensitivity analysis of the bandwidth based on the simulated data with n = 500, normal error,
and missing proportion 0.5
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