24
APPENDICES
A SINGLE VARIABLE CALCULUS

A.1 INTRODUCTION TO MATLAB PROGRAMMING

Matlab is a very powerful programming system that can be used to
solve much bigger, more complicated, and more interesting problems
than what we can do by hand. When most people do calculus today,
they do it using computers, so learning to do calculus on a computer is
an essential part of this course.

There are two places where we can run commands in Matlab. In the
“Command Window” we can give Matlab commands to run one at a
time. But if we want to run a series of commands in order, a program,
then we should create a “Script.” In the upper left corner of the screen
is the “New Script” button. You can type a series of commands in a
script, save this script file, and then run your program by either pressing
the “Run” button, or by typing control-enter.

Variables

In Matlab variables start with letters. So I can create variables and

store numbers in them with the following commands:

x =4
weight = 150
al2 = 156

We can then do mathematics with these numbers just by typing

things like

x + al2
al2 - weight
weight * x

al2 / x

25

1. In algebra, a=b means the same thing as b=a. However, when
we are using computers, those two statements mean very different

things. Run the following lines in Matlab:

a=2
b=4
a=b

After running these lines, what is the value of a? What is the

value of b?

2. Now, run the following lines in Matlab:

a=2
b=4
b=a

After running these lines, what is the value of a? What is the
value of b?

3. Write a sentence or two explaining why you got different results for

#1 and for #2.

Looping

Computers are very good at doing repetitive tasks again and again.
One way to do this is with a structure called a loop. One type of loop
Matlab can do is called a “for” loop, and we usually use it when we
know in advance the number of times we want to go through the loop.
For example, suppose we create a new script in Matlab that says the

following:

x=5
for i=1:10

xX=x+2

26

end

The first time through this loop we will have i = 1. The command
x = x 4 2 takes the current value of x, adds 2 to it, and makes this the
new value of x. So we have x = 5 + 2 = 7. The second time through
the loop we will have i = 2, and x = 7 + 2 = 9. This will continue
until the last time through the loop we will have i = 10. As a result, the
command x = x + 2 will run ten times, meaning that we start with 5
and add 2 ten times, and so in the end we find out that x = 25. Suppose

we want to add up all the odd numbers from 25 to 35:

x=0

for i=25:2:35
x=x+1

end

X

We start with x = 0. Now, the first time through the loop we have
i= 2580 x =0+ 25 = 25. The second time through the loop i is 2
more, and so we have i = 27. As a result we have x = 25 + 27 = 52.
The third time through the loop, we have i = 29. As a result we have
x = 52 + 29 = 81. Another type of loop that Matlab can do is called
a while loop. In this case, we keep running through the loop as long as

something is true. For example, take a look at the following program:

x=25
while (x > 1)
x=x/3

end

We start with x = 25. Then we say that this loop will continue as

long as x is greater than 1. Inside the loop we replace x with x / 3. So

27

the first time through the loop we have x = 25 / 3 = 8.333. This is
greater than 1, so we run the loop again and compute x = 8.333 / 3 =
2.777. This is greater than 1, so we run the loop again and compute x
= 2.777 / 3 = 0.9259. This is not greater than 1, so the loop does not

run again and the program is finished.

4. What do we get when we add up all the even numbers, starting

with 50 and going to 707

t

What do we get when we add up all the numbers 2.50 + 2.51 +

2.52 4+ 2.53 and going up all the way to 5.57

6. Start with the number 275. Divide this by 2 again and again until
you get a result that is less than 0.5. What do you get?

7. Start with the number 12. Multiply this by 1.25 again and again

until your result is larger than 100. What do you get?

If Statements
In MATLAB we use an “if” statement to check if something is true.

For example, consider the following program:

n=>5

if (n > 2)
n = n+6
end

n

This program sets n to be 5, checks to see if n is greater than 2, and
if so, adds 6 to n. As a result at the end n is equal to 11. Now consider

this:

n=1
if (n > 2)

n = n+6

28

end

In this program, the if statement finds that n is not greater than 2,
and so and the end of the program n is still equal to 1.

When we need an if statement to check whether or not two numbers
are equal, we must use two equals signs: = = This is because a single
equals sign (like when we say n = 1) makes a variable equal a certain

number. So, we can write code like the following:

n=17

for i = 1:5
if (1 == 3)
n = n+i
end

end

n

The for loop has i go through the numbers from 1 to 5. When i is
equal to 3, then we add i to n, and so at the end of the program, n =

10.

We can check for a series of different things with the “elseif” com-

mand:
n=7

for i = 1:5
if (4 == 3)
n = nt+i

elseif (i == 4)
n =n + 2*i
end

end

29

Here, we first check if i is equal to 3, and if it is, we add i to n. If i
is not equal to 3, then we check if it is equal to 4, and if so, we add 2*i
to n. As a result we end up with 7 + 3 + 2*4 = 18.

Now, suppose we want to check whether a particular number is a
multiple of 4. To do this, we divide the number by 4, and see whether
we get a whole number or if we have a decimal. To test whether or not
we have a whole number, we use a MATLAB function called “floor.”
The floor function takes any number and rounds it down to the nearest
whole number. So, for example, floor(3) = 3, floor(3.2)=3, and floor(3.9)
= 3. We can check whether a particular number is a multiple of 4 by
dividing our number by 4, then seeing if the floor function changes it.
If we get the same thing out of the floor function that we put in, then
it must have been a whole number, and so we have a multiple of 4: if(
number/4 == floor(number/4))

As a result, we can add up all the multiples of 4, 5, or 6 between 1

and 9 with the following program:

total = 0

for i = 1:9

if(i/4 == floor(i/4))
total = total + i

elseif(i/5 == floor(i/5))
total = total + i

elseif (i/6 == floor(i/6))
total = total + i

end

end

This program adds up 4 + 5 + 6 4+ 8 to get 23.

30

10.

. If we list all of the natural numbers below 10 that are multiples of

3 or 5 we get 3, 5, 6, and 9. The sum of these multiples is 23. Write
MATLAB program that will find the sum of all the multiples of 3
or 5 below 716. What is your result? (Once you have an answer,

you can double check it with me to be sure youve got this right.)

. Modify your program to find the sum of all the multiples of 4 or 6

below 1,546. What is your result?

Modify your program to find the sum of all the multiples of 5 or 9
below 5,291. What is your result?

A.2 DERIVATIVES AND LOOPING

Consider the function g(z) = cosz. Based on the shape of the graph

of this function we know what ¢’(0) is. We can also make a numerical

estimate of ¢’(0) using a specific value of h. This wont give us exactly

the right answer, but as we try smaller and smaller values of h, our

estimates should get better and better, closer and closer to the correct

alnswer.

. What is ¢’(0)? Dont use Matlab for this one. You should be able

to figure this out by yourself.

. Using h = 1, estimate ¢’(0) in Matlab.

To get a better estimate, lets use an interval half as big. Estimate
¢'(0) using h = 0.5.
To get an even better estimate, lets use an interval half as big.

Estimate ¢’(0) using h = 0.25.

How small would h have to be in order to estimate ¢'(0) so accurately

that the absolute value of our error is smaller than 0.0017 Write a Matlab

program that starts by using h = 1 to estimate ¢’(0). Then as long as

the absolute value of the error is greater than 0.001, our program runs

31

a loop which cuts h in half, and makes another estimate of ¢’(0). The
loop stops running when h becomes so small that the absolute value of
the error becomes less than 0.001. In Matlab we take the absolute value

of a number “a” with the function:
abs(a)

As you are writing this program, think carefully about what we are com-
paring with 0.001 in our while statement. (Hint: We are not comparing
either = or h with 0.001.)

To confirm that your program is running correctly, have it begin by
making a plot of our function g(x) and have your program add a secant
line to this plot every time it goes through the loop, using the slope
you get from each value of h. If your program is in error, the plot will
probably look wrong. Choose an appropriate range of x values for your
plot. Hint: In order to have a reasonable range of y values for your
graph, plot g(z) after your while loop. Make the cosine function the
final thing we add to the graph.

When you have your program running correctly, respond to the fol-
lowing:

5. Put in your final plot.
6. What is our final estimate of ¢'(0)?

7. What value of A did our program use to make this final estimate?

8. How many values of h did our program have to try in order to make

an estimate this accurate?

But what happens when we dont know the correct value of the deriva-
tive? Instead we can compare two different estimates made with two

different values of h and see how close they are to each other.

9. Consider the function f(z) = 3cos(72z). Estimate the derivative of

32

this function f’(5) using hy = 0.8. Use the vpa command to get

your answer to 8 decimal places.
10. Estimate f/(5) using a value of h that is half as big: hy = 0.4.

11. What is the difference between these two estimates?

As we choose smaller and smaller values of hy and ho, then our
estimates of the derivative will converge on the correct value. As a
result the difference between two estimates with two values of h will
become closer and closer to each other.

Write a program that starts with hy = 0.8 and hy = 0.4, estimates
the derivative f'(5) using each of them, and then calculates the difference
between our two estimates of the derivative. If the absolute value of this
difference is more than 0.001, our program cuts both of our values of
h in half. Then our program estimates the derivative f’(5) using each
of these two new values of h, and calculates the difference between our
two estimates. Once again, if the absolute value of this difference is
more than 0.001, our program cuts both of our values of h in half. This
process continues until we get a difference that is less than 0.001.

To confirm that your program is running correctly, have it begin by
making a plot of our function f(z) and have your program add our two
secant lines to this plot every time it goes through the loop, using the
slopes you get from each value of h. If your program is in error, the plot
will probably look wrong. Choose an appropriate range of x values for

your plot.

12. Put in your final plot.

13. How many times does your program go through the loop?
14. What are your final two values of h?7

15. What are your final two estimates of f/(5)?

16. What is the final difference between these two estimates?

33

17. Which of these two estimates of f/(5) is probably more accurate?

A.3 NEWTON’S METHOD

We are learning about finding derivatives and writing equations of tan-
gent lines. Now we are going to see how we can use tangent lines to
search for the zeros of a function, using an algorithm called “Newton’s
Method.” In other words, we want to find the values x where the function
crosses the z-axis so that f(z) = 0.

To start Newton’s method we begin with a guess for our x value, call
it zp. We find the equation of the tangent line, and solve for the place
x1 where the tangent line crosses the z-axis. This will probably be close
to the value of x that were looking for. Then we find a tangent line at
the point z1, and find where it crosses the x-axis to give us point zs.
After doing this several times, our = values will usually hone in on the

one were looking for.

1. For our first exercise well start with a simple function f(x) = (z —
1)2. We know what the root of this equation is: For this function,
what value of z makes f(z) = 07

2. Now well use Newton’s method to find this. Well begin with a guess
of g = 2. What is the equation of the tangent line to f(x) at x = 27
Write it in the form: y = f(2) + f/(2)(z2).

3. Now lets plot both f and your tangent line y to check your work.
Plot these over the range 0 < = < 3. (Copy this plot into your
Word document.)

4. From your graph, estimate the x value where your tangent line

crosses the z-axis.
5. Now solve for this point using algebra. What is this = value?

6. You can make Matlab solve this equation for you using the solve

34

10.

11.

12.
13.

command. If you have defined your line as y just enter:
solve(y,x)

This will find the value of x that makes y = 0. Does it give you the
same result that you got for question 57
Now we do the same process again, starting with = = 1.5, but this

time lets make Matlab do most of the work:

Syms x a

f(x) = (x-1)"2

fprime(x) = diff(£(x), x)

y2(x) = £(1.5) + fprime(1.5)*(x-1.5)

x2=vpa(solve(y2(x) , x), 8)

What is the new tangent line? Where does it cross the x-axis?

Make a plot showing f(x), the first tangent line y, and the second

tangent line y2, again using the range 0 < x < 3.

. Take another step, now starting with x = 1.25. What is the new

tangent line? Where does it cross the x-axis?

Is each step taking you closer to the correct answer? Predict: What
do you think the next value of z will be?

Now make Matlab take that next step. What is the new tangent

line? Where does it cross the x-axis?
Add the new tangent line to your plot.

All right, lets do something more interesting: Suppose you want to
know where the polynomial g(z) = %x‘l — 2—29x3 + 4822 — 3—251‘ — 40
is equal to zero. Plot this polynomial, and find a range that will
allow you to estimate the locations where this crosses the z-axis.
How many zeros are there? Include your plot and your estimates in

your Word document.

14.

15.
16.

35

Now lets find these values with Newton’s Method. Lets choose x = 1
as our first guess. We can make Matlab do Newton’s method all in

one step if we use the commands:

x0 =1
gprime (x)=diff (g(x), x)
x1 = solve(g(x0)+ gprime(x0)*(x-x0) , x)

What result do you get?
Use the vpa command to change your result into a decimal.

We want to apply Newton’s Method until we find the zero with a
good deal of accuracy. One possibility is to work through these itera-
tions manually, changing the values yourself each time and stopping
when you see that your result doesnt change. Another way to do
this is with a loop. The loop will let us tell Matlab to run Newton'’s
Method over and over again. Lets automate Newton’s Method with
“while” loop command, using the same starting point that we be-
gan working with in #14. Rather than calling the variables x0, x1,
and so on, we really only need to worry about two: xold and xnew.
xold will be the input for the iteration, xnew will be the output,
and then we will reset xold to have the value of xnew for the next
iteration.

If our first guess is © = 1, then we need to initialize xold with

the value 1. So type
xold=1

We also want to count the number of iterations we’re doing, so

let’s initialize a counter:
count=0

We will have to choose an error bound, and then redo all of this

36

17.

18.

(including resetting xold and count) in the “while” statement. Lets
start with an error bound of 0.0000005. We want to run the loop
as long as xnew and xold are different by more than this value.
Create this program. In your lab report, record the sequence of
values you got for xnew. How many iterations did it take before that
value did not change? (Remember we actually need to see it stay
at the same value, so we always end up doing one more iteration
than we really need, so count that confirmation iteration in your
answer.)
As you should have found above, this function crosses the z-axis
twice. In order to find the other solution of this equation, you need
to start with an x value closer to the other crossing point. Try
different starting x values until you can find the other root of this
equation. Give me your starting value, your final result, and tell
me the number of steps it took to find the zero.
Apply Newton’s method to the function g for each starting value
listed below. For each one, explain what is strange about the result

and why that happened.

(a) x0 =3
(b) x0 = 3.5

A.4 PLOTTING DERIVATIVE INFORMATION

In this lab we will use Matlab to create plots that display lots of infor-

mation:

1.

2.

Using different colors where the function is increasing (green) or
decreasing (blue)
Using different symbols where the function is concave up (+) or

concave down (x)

37

3. Putting special symbols at critical points (squares) and inflection

points (circles)

50 : - . : - : -
40 +

301

30 F +

Learning the Commands

ey - M
-40 - $ - - . = E

We can do all of these things using the “plot” command, rather than

the “ezplot” command. The “plot” command plots specific coordinates,

rather than symbolically defined functions. For example we can plot a

single point at x = 3,y = 4 with:

plot(3,4,’0b’)

Here, the option ‘ob’ tells Matlab that we want to plot a circle that

is blue in color.

Suppose we start by defining a function with:

syms x
f(x) = x"3 - 14xx"2 + 49%x - 36

We could plot a single point on this function at * = 3 as a green

square with:

plot(3,£(3),’sg’)

38

We can plot a set of points as red + signs at z coordinates going

from 0 to 10 in steps of 0.3 with the following for-loop:

for(x=0:.3:10)
plot(x,f(x),’+r’)
hold on

end

To see what other colors and symbols we can use, search for “line-
spec” in the Matlab help window (upper right of the command window),
or google: matlab plot linespec

To plot different symbols and colors in different places, we will use
Matlabs “if” command, which only runs a set of lines if a particular
statement is true. For example, we could plot green x symbols where

y > —10 and yellow diamonds at other points:

for(x=0:.3:10)
if (£(x) >= -10)
plot(x,f(x),’xg’)
else
plot(x,f(x),’dy’)
end

end

@

We can even use “if’ commands inside of other “if” commands. For
example, we could plot green x symbols where y > 10, blue squares

where —10 < y < 10, and yellow diamonds where y < —10:

for(x=0:.3:10)
if (£(x) >= -10)
if(£(x) > 10)
plot(x,f(x),’xg’)

39

else
plot(x,f(x),’sb?)
end
else
plot(x,f(x),’dy’)
end

end

If we want to plot special symbols at special points, we can use
Matlabs solve command to locate these points for us. We can make
these symbols very large by setting the “MarkerSize” inside the plot
command. For example, we could plot size 20 magenta asterisks at

points where a function crosses the x axis:

syms X
xz = solve(f(x))

plot(xz,f(xz),’*m’,’MarkerSize’,20)

Note that if we have been using x to represent specific numbers, like
we do in a for-loop, then we must turn x back into a symbolic variable
with “syms x” before we can use the “solve” command to work with it
algebraically.

The Laboratory Assignment

1. Write a Matlab program (a script) that begins by defining our func-
tion, clearing the figure, and telling it to hold on to points as we

plot them:

syms X

f(x) = x73 - 14*x"2 + 49*x 36
clf

hold on

40

Then, your script must do items 1, 2, and 3 listed at the begin-
ning of the lab, going from 0 to 10 in steps of 0.3. Your program
should produce a plot identical to the one at the beginning of the
lab. Hint: To do item 3, it can be helpful to compute the derivatives
of the function at the beginning of your program.

Next, make slight modifications of your code to create similar
plots of the following functions:

2. f(x) = 3el — x?) going from -3 to 3 in steps of 0.2.
3. f(x) = —2t +2.22% + 11.42% — 12.62 going from -2.5 to 4.5 in steps
of 0.25.

4. f(z) = 2%el —) going from 0 to 7 in steps of 0.1.

For each of these, please turn in both your plots and your programs.

A.5 RIEMANN SUMS

We have been studying the derivative, which tells us how quickly a
function is changing, giving us the rate of change of a function. A
closely related problem is to figure out the total amount of something,
given its rate of change.

Heres a problem where this is important: During a time of scarce
water, a town wants to monitor how quickly its water supply is being
used, so they send someone down to measure the rate that water is
flowing out of the reservoir throughout a day. We want to use this data
to estimate the total amount of water that flowed out of the reservoir
during this day. If the rate that water flowed was a constant (say 3000
gallons per hour), we could simply multiply this by 24 hours to get
the total amount of water (3,000 gallons per hour x 24 hours = 72,000
gallons). Instead we will use Riemann Sums to estimate the total amount

of water that flowed out of the reservoir during this 24 hour period.

41

The flow rates of the water out of the dam are well modeled by the

following function for 0 < ¢ < 24:

f(t) = 100t'5 sin (0.2618t) + 10,000

Here the input to the function ¢ is the number of hours since 10am,

and the output from the function is in gallons per hour.

1.

10.

What units do the numbers 0.2618 and 10,000 have? What period

of oscillation does the number 0.2618 correspond to?

Plot this function over a full day.

At what rate is water flowing out of the reservoir at 6pm?

If water flowed at this rate for the full 24 hour period, what would
be the total amount of water that left the reservoir?

Estimate from the graph: At what time is the water flowing out of
the reservoir at the slowest rate?

What is this minimum flow rate?

If water flowed at this minimum rate for the full 24 hour period,
what would be the total amount of water that left the reservoir?
Now, write a program in Matlab that breaks the day into n=4
intervals and computes a left Riemann sum to estimate the total
amount of water that flowed out of the reservoir over this 24 hour
period.

Modify your program so that it breaks the day into n=4 intervals
and computes a right Riemann sum to estimate the total amount
of water that flowed out of the reservoir over this 24 hour period.

Average your two previous estimates in order to make a better es-

timate.

When we average the left sum and the right sum, we call this the

trapezoid rule. We can do this directly if in interval we average the rate

42

at the left side and the right side before we multiply by the width of
each interval. Modify your program to do this, and confirm that you get

the same result as you get when you average your left and right sums.

11. Modify your program to estimate the total amount of water that

flows out of the reservoir with the trapezoid rule using n=8 intervals.
12. Which of these two estimates do you expect will be more accurate
the one based on n=4 or based on n=87 Explain your thinking.
13. Modify your program to estimate the total amount of water that
flows out of the reservoir with the trapezoid rule using n=18 inter-
vals.
14. Now, explore increasing the number of intervals until your result
appears to converge to a final correct answer. Make a table listing

all the values of n that you try, and each accompanying estimate.

B YOUTUBE PLAYLISTS

We have used YouTube to supplement programming instruction so that
we can quickly get new students up to speed as well as remind students
of skills that they learned in the past. We also use these videos as pre-lab
activities so they are walking into the lab explorations ready to go. The
following brief list points the interested reader to our relevant YouTube

Playlists.

e MATLAB and IATEX: https://www.youtube.com/watch?v=D21bj-
Elli0&list=PL{t KiHShKwSMnIbkq8nB-HNrlBXsyu04B

e Calculus: https://www.youtube.com/watch?v=aBYSq
exMzUg&list=PL{t KiHShKwSOpsOGvFIdirOMIiPs6mdrc

e Multi-Variable Calculus: https://www.youtube.com/watch?v=CrloQ
ukRu3Y&list=PL{t KiHShKwSMPtP84j3yBoJ2tpt OiRnZf

43

e Differential Equations and Linear Algebra: https://www.youtube.com/watch?v=8eSFdr
sLQlo&list=PL{tKiHShKwSPL60Z_HMwQoOMmxqRBbd10

C MULTI-VARIABLE CALCULUS

C.1 LAGRANGE MULTIPLIERS

In this lab we have the students solve a constrained optimization problem
with Lagrange multipliers.
Problem Statement:
The spread of an aerosol in the atmosphere by a combination of diffu-
sion and wind can be modeled by a function of three variables. If the
coordinates are chosen so that the aerosol is released from the origin and
the wind is blowing in the positive x-direction with velocity vy. After a
period of time, the concentration of the aerosol reaches a steady state
independent of time at a point (z,y, z) that is given by!

Sy, 2) = &~/)

2mvgoy 0, xE

where @ is the rate of release of the chemical and oy,0,, and n are
empirically determined constants. Distances are measured in centime-
ters, velocity in centimeters per second, and concentration in parts per
cubic meter. The values of oy = 0.4, 0, = 0.2, and n = 0.25 give good
results for wind velocities less than 5m/s (vg = 500cm/s) and greater
than 1m/s (vg = 100em/s). Among other applications, this model has
been used to model the diffusion of insect pheromones. Pheromones are
“odor” chemicals that are released by animals for chemical communica-
tion within a species. For example, a single female gypsy moth, Q is on
the order of 3 x 102 particles per cm®. Given that male gypsy moths

I This model is designed only to work for a limited range of velocities. Clearly, if

vo — 0 then this model given a non-physical (infinite) steady state concentration.

44

can detect as as few as 100 particles per cm?, let us investigate the range
over which a male gypsy moth can detect a female gypsy moth.

How would you use the method of Lagrange multipliers to detect the
maximum distance downwind from a female gypsy moth over which a
male gypsy moth can detect a female gypsy moth? In other words, how

would you set up the optimization problem
maximize: distance from female, subject to: S(z,y,z) = 100

using Lagrange multipliers? Write down the mathematical formulation
and provide a thorough explanation describing what the Lagrange mul-
tiplier problem is solving. Implement the problem in MATLAB to find
the maximum distance downwind over which a male gypsy moth can
detect a female when the wind is blowing between 100 c¢cm/s and 500
cm/s. You can safely make this problem simpler by assuming that the
male is on the ground (setting z to 0). This removes 1 dimension from
the problem and should give MATLAB’s vpasolve command a fighting
chance of finding solutions to your Lagrange multiplier system.

When you write your solution provide a plot showing the relationship
between wind velocity (on the x axis) and the maximum separation
distance (on the y axis). These values should be large and should cover
many orders of magnitude, so be sure that your plot is readable with

proper labels, titles, and thorough discussion.

C.2 VECTOR FIELDS

In this lab we have students write MATLAB code to generate visualiza-

tions of parameterized curves and vector fields.

1. Plotting Parameterized Curves in MATLAB:
MATLAB is great for plotting parameterized curves. The following

45

instructions will give a MATLAB plot of the parameterized curve

for 0<t<2m

Follow these steps to get a plot:

e Define the numerical variable ¢ on the domain t € [0, 2x]. (Use

a small step.)

t = 0:0.01:2%pi;

e Define the functions x(t) = 3sin(t) and y(t) = 2cos(t) using

this numerical domain.

™
]

3*sin(t);

2xcos(t);

<
1}

e To plot this function simply type plot(x,y).
this works because you've defined both x and y in terms of the
parameter ¢{. You should now see the resulting ellipse.

e Now we want to animate the parameterization. This requires
the computer science concept of looping. Watch the following
YouTube video to animate this parameterized curve.
http://youtu.be/2viem03vXWI

You don’t need to write anything in your lab report for this

problem.

2. Creativity With 2D Parameterized Curves!
Create parameterized curves that exhibit the behaviors below. There
are many answers for some of these. Be sure to properly label all
of your plots with obvious titles and describe your thought process

for each problem in your lab writeup.

46

(a) A line that starts at the point (1,2) and ends at the point (5, 7).
Hint: Use the parameter 0 <t < 1.

(b) A parameterized curve that starts at the point (1,2) and ends
at the point (5,7) but does not go in a straight line.

(¢) A parameterization of a circle with radius 3 and center (2,4)
so that the circle is completely traced out on t € [0,1].

(d) A spiral that converges in to the origin on the interval 0 <t <
27.

(e) Create a parameterized curve that describes the path a rider
travels on a double ferris wheel (see https://www.youtube.com/watch?v=2DV4hN0c8WU
Describe your thought process in writing this function.
Hint #1: put the main axis of the ferris wheel at the origin.
Hint #2: first model the motion of the axis of the small wheel,
then use that as the center for the motion of the rider.

Hint #3: you get to pick the angular velocities.

3. Vector Fields:
We’ve plotted vector fields before, but most of the ones that we en-
countered thus far came from gradients. Now we’ll define the vector
field directly and plot it. You don’t need to write this problem up
in your lab report.

Let’s get a plot of the vector field

F(mvy) = <33, y2>

(a) First define a mesh grid for (z,y) € [—1,1] x [—1,1] (do you
remember how to do the meshgrid command .. .see lab 1!)

(b) The quiver command gives you the vector field. the syntax is
quiver (xstart , ystart , xdirection , ydirection)

for our problem, the vector field will be quiver(x,y,x,y."2)

47

where x and y come from your meshgrid command.

Hint: You may want to use the axis command to make the
plot look a bit nicer:

axis([xmin , xmax , ymin , ymax])

You can think of a vector field in several ways. the three most

common are

e The direction of a moving fluid

e The force field induced by a magnet (or by gravity)

e The potential lines in an electric field
In either case, you can think of the arrows as pointing to where
a particle might move if you were to drop it into the vector
field.
Using these analogies, discuss how a particle would behave if

you dropped it into the vector field .

4. Creativity with 2D Vector Fields!
Create 2D vector fields that exhibit the behaviors below. There are

many possible answers to these questions so be creative, label your

plots clearly, and be sure to describe your thought processes. Some

of these will take some experimentation!

(a)

A vector field that mimics the earth’s gravitational pull (google
newton’s law of universal gravitation if you have forgotten your
physics).

Hint: Make the earth the origin and be sure to follow the inverse
square law for gravitational fields!

A vector field that appears to be a pan of water being stirred
counterclockwise (as viewed from above).

A vector field that mimics a swirling drain as viewed from

above.

48

(d) A vector field on the domain [—5, 5] x [—5, 5] for which the flow
does not penetrate these boundaries. For example, when x = 5

or x = —b, the ¢ component is zero.

5. 3D Vector Fields:

D

As a final task, turn all of the vector fields from problem 4 into 3D
vector fields. Try to make them as physically realistic as possible.

Be sure to explain your though processes.

DIFFERENTIAL EQUATIONS AND LINEAR ALGEBRA

D.1 LORENZ SYSTEM

In this lab we have students create stand-alone function for Euler and

Runge-Kutta numerical solvers. Students use these functions to solve

systems of differential equations and to explore the Lorenz attractor.

1. Go back to Lab #2 and remind yourself how the 1D Euler and

Runge-Kutta codes work. Go through the code with your lab part-

ner in great details. Dissect every line so you know what it does.

Euler’s Method in 2D: We wish to (numerically) solve
d t,z, x
d_f = U 2 subject to xp = 0
g(t,z,y) Yo

where f and g are continuous functions. FEuler’s method simply
approximates the slope, so we want to make approximations of x

and y based on

Tpt+1 N Tp + Atf(tnvxnayn)

Yn+1 = Yn + Atg(tnaxna yn)

Create a new function in MATLAB called MyEuler2D. Copy your

1D code from Lab #2 and make all of the necessary changes.

49

3. Runge-Kutta in 2D: Now we are going to make Runge-Kutta

solver that works in 2D. The Runge-Kutta 2D algorithm uses the

following:

ki = f(tnvxnv yn)

hl - g(tnvmnvyn)

At At
kQZf(tn‘i‘?»l’n"‘?klayn‘i‘
At At
h‘Z:g(tn"'?axn"‘?klayn“’
At At
k3:f(tn+?»xn+?k2=yn+
At At

h3 = g(tn + = Tn+ 7k23 Yn +

2

At
2 M

At

_hl)

2
At
2"
At

_h2)

2

ky= f(tn +At, Tn +Atk3, Yn +Ath3)

h4 = g<tn + At, Ty + Atk3 y Yn + Ath3)

Finally culminating with the weighted sums

At
Tntl = Tp + & (k1 + 2ko + 2ks + ky)

At
Yntl = Yn + 5 (h1 + 2hg 4 2h3 + hy) .

Create a new function in MATLAB called MyRungeKutta2D.

Copy your 2D code from Lab #2 and make all of the necessary

changes.

4. Consider the following system of differential equations:

/

x

/

Y

=y
=z + (1 -2y

with 2(0) =1 and y(0) = 2.

This is a non-linear system so we don’t have any analytic techniques

to solve it!

(a) Use the pplane applet linked from Moodle to get a phase plane

diagram for the solution starting at x = 1 and y = 2.

50

(b) Use your MyEuler2D and MyRungeKutta2D codes to solve the
system of differential equations numerically.

(¢) Put plots of your Euler and Runge-Kutta solutions on top of
each other. What do you observe about the Euler solutions as

compared to the Runge-Kutta solutions?

Some Animation: Your job in this problem will be to create a
MATLAB function called DrawPath2D. This code will be a mod-
ification to your Runge-Kutta code so start by making a copy of
the code and giving it the proper file name and function name (no
spaces in file or function names!!). Modify your code so that it plots
a large point at the new iteration and leaves a small trail behind so
you can see the trajectory through time. Your code should animate
over two plots. The left-hand plot should have time on the x axis
and both z(¢) and y(t) plotted as functions of ¢. The right-hand
plot should have x on the z-axis and y on the y-axis and trace out
the phase portrait. Test your code on the system from the previous
problem. (Ask your teacher to show his animation so you know

what you’re aiming for!)

. In the 1960’s the following system of differential equations was de-

veloped as a model for atmospheric convection:

¥ =oly—1)
y =axlp—z)—y - (1)
Z =zy— Bz

The equations are called the Lorenz Equations after the per-
son who discovered them. An interesting set of parameters is o =

10,8 = 8/3, and p = 28.

(a) Create a new function MyRungeKutta3D that adapts your MyRungeKutta2D

code to handle the third dimension. Solve this system of differ-

ential equations using the initial conditions z(0) = 0.5, y(0) =

51

0.2, and z(0) = 10. (Be sure to use LOTS of points in your
solutions)

(b) Create a function called DrawPath3D by modifying your DrawPath2D
and MyRungeKutta3D codes. Use your function to animate your
solution to (a). The left-hand plot should show the three func-
tions evolved over time and the right-hand plot should show
the 3D phase portrait (be sure to use plot3 instead of plot).

(c) Change the initial conditions to z(0) = 0.51, y(0) = 0.21, and
z(0) = 10.5 and create a new 3D portrait. What effect does a
small change in the initial conditions have on the solution?
Suggestion: Try plotting both solutions on the same 3D phase
graph using different colors.

Once you have a qualitative way to talk about the error, get
RK solutions for both sets of initial conditions and plot the
pythogorean distance between the two solutions as a function
of time (time on the z axis and distance on the y axis). Make

any further observations about the behavior of this system.

D.2 COMPUTER ANIMATIONS

In this lab we introduce students to basic 2D and 3D graphics using linear
transformations. The end result of the lab is a collection of animations
that can be played to show their programming proficiency. A student’s
solution can be found here: https://www.youtube.com/watch?v=l-wmM

Q8Kwew&list=PL{ft KiIHShKwSPL6oZ_HMwQoOMmxqRBbd10&index=23

Two-Dimensional Computer Graphics

Viewing matrices as linear transformations is an important part of the
utility of linear algebra. A linear transformation is a special type

of function that acts on the elements of a vector space. Every linear

52

transformation 71" has the following properties:

T(U1 + UQ) = T(u1) + T(Uz) (2)
T(cu) = T'(u) (3)

where u, w1, uo are vectors in a vector space V and c is a scalar. If the
vector space V' contains elements of R™ then it can be shown that for ev-
ery linear transformation 7" on V' there is a matrix A where T'(u) = Au.
Hence, matrix multiplication is just a linear transformation of vectors.

In this lab we will see how several linear transformations can be
combined to create simple computer generated animations. During the
course of this lab, I will ask you to create several different functions to
apply a variety of different linear transformations.

We can generate images of simple geometric shapes in MATLABby
defining their vertices and using MATLABto “connect the dots” for us.
For instance, to draw a simple triangle in two dimensions, we could use

the following code:

myTriangle=[0 0; 0 1; 1 0; 0 0]°;
plot(myTriangle(l,:) ,myTriangle(2,:));
axis([-2,2,-2,2]);

1. Create a set of points myShape for a convex polygon with one vertex

at the origin.

If we want to make the triangle larger, we can apply a scaling linear
transformation to each of the points that define the triangle.

Scaling Matrices in Two Dimensions: A scaling transformation
in two dimensions acts to elongate each vector in R%. More precisely,
given a vector = (z,y) € R?, we define a transformation S, (%) =

(az,by). We can show (and you should be able to prove) that such a

53

linear transformation can be attained using a matrix

S =

2. Create a new function called Scale2.m. This function should take
as input a two real values a and b and should return a 2 x 2 scaling
matrix that scales the z component by a and the y component by b.
For example, to scale our triangle by a factor of 2 in the x direction

and 3 in the y direction, you should be able to use

s = Scale2(2,3);

newTriangle = s{*}myTriangle;
plot(newTriangle(1,:) ,newTriangle(2,:));
axis([-2,4,-2,6]1);

3. In your master script, use your Scale2 function to plot your shape

scaled by

(a) a factor of 2 in both the x and y directions

1
(b) a factor of 3 in the z direction and 3 in the y direction.

4. In your master script, write a loop to animate the scaling of your
object by the function f(#) = cosé on the interval [0, 27]. (that is,
for each step, you should call Scale2(cos @, cos#).)

If we want to rotate the triangle (about the origin), we can apply a
rotation linear transformation.

Rotation Matrices in Two Dimensions: A rotation transformation
in two dimensions acts to rotate each vector in R? by a fixed angle. To
produce a counter-clockwise rotation by 6 radians, we can show (and

you should be able to verify) that the transformation matrix must have

54
the form
cosf) —siné

sinf cosd

5. Create a new function called Rotation2.m. This function should
take as input a single real value # and should return a 2 x 2 rotation

matrix for 6.

6. In your master script, use your Rotation2 function to plot your

shape rotated by
(a)
(b)

7. In your master script, write a loop to animate the rotation of your

radians counter-clockwise about the origin

radians clockwise about the origin.

w3y

object one time about the origin.

Homogeneous Coordinates

Scaling and rotation matrices are examples of linear transformations.
Another fundamental aspect of computer graphics is translation. Unfor-
tunately, translation is (strictly speaking) not a linear transformation.
We can, however, still use matrix multiplication to represent translation—
we just need to use special coordinates.
Homogeneous Coordinates: Each point (z,y) € R? can be identified
with the point (z,y,1) in R?® that lies one unit above the zy-plane.
We say that (z,y) has homogeneous coordinates (z,y,1). Using these
homogeneous coordinates, we can now define a translation matrix.
The translation of a point (z,y) to (z + h,y + k) can be computed

using homogeneous coordinates and a 3 X 3 matrix:

10 h x x+h

0 1 k y | =] y+k

0 0 1 1 1

55

Rotation, Translation, and Scaling using Homogeneous Coor-
dinates:
To rotate a vector & by 6 radians counter-clockwise about the origin,

we use the homogeneous coordinate rotation matrix

cosf) —sinf 0
RZ=| sinf cosf® 0 |2
0 0 1

To scale a vector & by a in the z-direction and b in the y-direction, we

use the homogeneous coordinate scaling matrix

a 0 O
ST=10 b 0|2
0 0 1

To translate a vector & by h units in the z-direction and k& units in the

y-direction, we use the homogeneous coordinate translation matrix

Combining Transformations:
We may combine several transformations in sequence by repeated
matrix multiplication. For instance, if we wish to apply a rotation R

followed by a translation 7" to a vector Z, we could compute
TRZ.
Be careful-the order of operations matters here!

8. Create new functions Scale2h.m, Rotate2h.m, and Tranlsate2h.m
that create 3 x 3 matrices for scaling, rotation, and translation,

respectively.

56

9. When we rotated your shape in parts 5 and 6 you should have
noticed that the rotation was about the origin and not the center of
the shape. To make the shape rotate about its center we compose
two operations: (1) translate the shape to the origin, (2) rotate
the shape, (3) translate the shape back to it’s original coordinates.
Create a loop to animate the rotation of your shape once about its

center.

10. OK-let’s put it all together now. Create a loop that animates your
figure by rotating it once about its center while scaling it in both
directions by the function f(0) = 2—cos(@) (over the interval [0, 27])
and translating it from the origin to the point (27, 27). (Hint: Try
doing each action individually first. Then you can combine them

by multiplying the appropriate matrices together).

Homogeneous Coordinates in Three Dimensions: Each point
(z,y,2) € R3 can be identified with the point (x,y,2,1) in R* that
lies one unit away from wyz-space. (It’s really hard to visualize this,
though...). We say that (z,y, z) has homogeneous coordinates (x,y, z,1).
As we did in the two-dimensional case, we can now define our linear
transformations in terms of the homogeneous coordinates.
Rotation, Translation, and Scaling in Three Dimensions using
Homogeneous Coordinates:

To rotate a vector Z by # radians counter-clockwise about the z-axis,

we use the homogeneous coordinate rotation matrix

0 0

cosf) —sinf

8y

sinf) cos®

0 0

o o o =
_ o o O

To rotate a vector & by 0 radians counter-clockwise about the y-axis, we

57

use the homogeneous coordinate rotation matrix

cosf 0 sinf O
. 0 1 0 0.
RyZ = T.
—sind 0 cosf O
0 0 0 1

To rotate a vector & by € radians counter-clockwise about the z-axis, we

use the homogeneous coordinate rotation matrix

cosfd —sinf 0 O
_ sinf cosf O O |
R.Z = T.
0 0 1 0
0 0 0 1

A general rotation about an arbitrary axis can be written as a prod-

uct of the rotations about each axis:
R =R.RyR,.

To scale a vector & by a in the z-direction, b in the y-direction, and

c in the z-direction, we use the homogeneous coordinate scaling matrix

a 0 0 O
~ 0 b 0 0] _
ST = .
0 0 ¢ O
0 0 0 1

To translate a vector # by h units in the z-direction, k& units in the
y-direction, and [units in the z-direction, we use the homogeneous co-

ordinate translation matrix

1 0 0 h
- 010 k|
Ty = T
0 0 1 1
0 0 0 1

58

Combining Transformations:
We may combine several transformations in sequence by repeated
matrix multiplication. For instance, if we wish to apply a rotation R

followed by a translation T" to a vector &, we could compute
TRZ.

Be careful-the order of operations matters here!

11. Create new functions Scale3h.m, Rotate3hx.m, Rotate3hy.m, Rotate3hy.m,
and Tranlsate3h.m that create 4 x 4 matrices for scaling, rotation,
and translation, respectively. Test your functions on the cube with

vertices at the origin, (1,0,0), (0,1,0), and (0,0,1).

myCube = [0 00 1; 0011; 0111; 010 1;
0001; 1001; 1101; 010 1
0001; 0011;1011; 1001,
1101; 1111; 0111; 0011;
1011;1111;1101; 010 1;
0111;1111;1011; 1001,

110 1]7;

12. Create an animation that demonstrates your functions. Your ani-

mation should, in sequence, show your cube:

(a) rotate once about the z-axis;
(b
(c
(d
(e
(f

rotate once about the y-axis;

rotate once about the z-axis;

rotate once about its center (using any axis you like);
scale (in all directions) by the function f(#) = 2 — cos6;

)
)
)
)
)
)

translate around in a circle defined parametrically by (siné,1—

cos 6,0).

59

13. Create an animation of your own choosing. You may choose to
use any shape and apply any transformations you like. The coolest
animation will get a bonus of 5 points on their overall lab grade.

Have fun with it!

E UPPER LEVEL

E.1 DIFFERENCE EQUATIONS AND COMPLEX NUM-
BERS

Consider the difference equation 2,11 = 22 + 2o that starts with a com-
plex number zy. Let us define the set of complex numbers S as the set

of all zp such that lim,, |2,| is bounded.

1. Demonstrate whether or not zy = —1 is a member of this set.

2. Demonstrate whether or not zy = % is a member of this set.

3. Demonstrate whether or not zy = 7 is a member of this set.

4. Demonstrate whether or not zg = —1 + ii is a member of this set.
5. Prove that if |zo| < 1 then z € 5.

6. Prove that if |z9| > 2 then 2o ¢ S.

7. Prove that if zg is in the set, then Z, is also in the set.

8. Now, write a program in Matlab that applies this difference equation
to a Cartesian grid of points in the complex plane representing many
values of zg. Have your program plot out the points based on the
logarithm of the number of iterations it takes for the magnitude
of each zy to exceed 2. I recommend creating a Cartesian grid of
points in the complex plane with the help of the meshgrid command,
applying this difference equation with a for loop, and counting the
number of cycles each point has a magnitude less than 2 by using

the Boolean: count = count + (abs(z) < 2). The logarithm of this

60

matrix can then be plotted with the imagesc command. Please turn

in the code, the m file for your Matlab program.

