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Appendix. A. Summary of the Notation

Table 8 Summary of the notation

I Set of patients
k Health states {0,1}
t Periods
T Final period
N Number of patients
β Discounting factor
l Type of appointments
o Office appointments
v Virtual appointments
P Disease progression matrix
Qo Treatment matrix for OAs
Qv Treatment matrix for VAs
p Probability of staying in the controlled health state at the beginning of period

t+ 1, if a patient is in the controlled health state at the beginning of period t
qo Probability of being in the controlled health state after an OA at the end of

period t, if a patient is in the uncontrolled health state at the beginning of
period t

qv Probability of being in the controlled health state after a VA at the end of
period t, if a patient is in the uncontrolled health state at the beginning of
period t

πi,t Probability of patient i being in the controlled health state at the beginning
of period t

ek Diagnosis vector for health state k
xli,t 1 if a patient i∈ I is scheduled for an appointment type l ∈ {v, o}

in period t, 0 otherwise.
C l Capacity for appointment type l
µ∗t (π1,t, . . . , πN,t) The value function in period t
πi,t Average of initial probabilities of patients being in the controlled health state
∆πi,t Gap between maximum and minimum initial probabilities of patients being

in the controlled health state
nv Minimum required number of VAs to substitute for one additional OA
n Number of baseline OAs.
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Appendix. B. Tables and Figures

Table 9 summarizes the change in the number of scheduled OAs (the change in office RVIs) for individual

patients when VAs are introduced when the disease progression is 0.4 (i.e., p= 0.4).

qv/qo Percent of patients that
the number of OAs decreases

0.0 13%
0.1 15%
0.5 19%
0.9 20%

Table 9 Percentage of patients where the number of scheduled OAs decrease when p = 0.4

In Figure 7, the percent change in the average office RVIs for the Myopic Heuristic with respect to VA

capacity/OA capacity is summarized for three patient groups.

Figure 7 Change in the value of average office RVIs for three patient groups with respect to VA Capacity/OA

Capacity for Model TD when p=0.9

(a) Model TD when qv/qo=0.5 (b) Model TD when qv/qo=0.9

In Figure 8, the percent change in the average office RVIs for the Myopic Heuristic with respect to VA

capacity/OA capacity is summarized for five patient groups.
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Figure 8 Change in the value of average office RVIs for five patient groups with respect to VA Capacity/OA Capacity

for Model TD when p=0.9

(a) Model TD when qv/qo=0.5 (b) Model TD when qv/qo=0.9
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Appendix. C. Proofs

Table 10: An Overview/Road-map of Proofs

Proofs The Purpose Technical Results Used
Theorem 1 To characterize the optimal scheduling policy

for OAs and VAs in Models TD and T
Proposition 1 Item 1, Proposition
1 Item 2, and Lemma 11

Proposition 1 Item 1 To characterize the optimal scheduling
policy for OAs when the VA scheduling decisions
are fixed in Models TD and T

Lemma 1, Lemma 2, Lemma
3, and Lemma 4

Lemma 1 To show u∗t (π1,t, ..., πN,t) is
nondecreasing in πi,t in Model TD.

Lemma 2 To show u∗t (π1,t, ..., πN,t) is
componentwise convex in each πi,t in Model TD.

Lemma 3 To show u∗t (π1,t, ..., πN,t) is
nondecreasing in πi,t in Model T.

Lemma 4 To show u∗t (π1,t, ..., πN,t) is
componentwise convex in πi,t in Model T.

Proposition 1 Item 2 To characterize the optimal scheduling
policy for VAs when the OA scheduling decisions
are fixed in Models TD and T

Lemma 5, Lemma 6, Lemma 7,
Lemma 8,Lemma 9, and Lemma 10

Lemma 5 An intermediate finding to show that Proposi-
tion 1 Item 2 holds in Model TD

Lemma 6 An intermediate finding to show that Proposi-
tion 1 Item 2 holds in Model TD

Lemma 7 An intermediate finding to show that Proposi-
tion 1 Item 2 holds in Model TD

Lemma 8 An intermediate finding to show that Proposi-
tion 1 Item 2 holds in Model T

Lemma 9 An intermediate finding to show that Proposi-
tion 1 Item 2 holds in Model T

Lemma 10 An intermediate finding to show that Proposi-
tion 1 Item 2 holds in Model T

Lemma 11 To characterize the optimal scheduling
policy for OAs and VAs when the non-scheduled
patients are fixed in Models TD and T

Theorem 2 To characterize the optimal scheduling
policy for OAs in Model D

Proposition 1 Item 1 and
Lemma 11

Corollary 1 To characterize the optimal scheduling
policy for VAs in Model D

Lemma 12 and Lemma 13

Lemma 12 An intermediate finding to show that Corollary
1 holds in Model TD

Lemma 13 An intermediate finding to show that Corollary
1 holds in Model T

Theorem 3 Item 1 To show the value of VAs under perfect OA
treatment and under capacity conditions

Lemma 14

Lemma 14 An intermediate finding to show that Theorem
3 Item 1 holds in Model D

Theorem 3 Item 2 To show the value of VAs under perfect OA
treatment and under capacity conditions

Theorem 3 Item 3 To show the value of VAs under imperfect OA
treatment
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Theorem 1 characterizes the optimal scheduling policy for OAs and VAs in Models TD and T and it is

presented as follows:

Proof of Theorem 1 Suppose there are N patients and Condition 1 and Condition 2 in Section 4 are

met. Reindex the patients by their information vectors such that π1,t ≤ π2,t ≤ ... ≤ πN,t. Then the optimal

policy is to schedule patients 1,2, ...,Co for OAs and patients Co + 1,Co + 2, ...,Co +Cv for VAs in a period

t∈ {1,2, ..., T − 1}.

Proposition 1 Item 1 and Item 2 and Lemma 11 describe the steps of the proof of Theorem 1 in order. When

these steps are performed in order by fixing the previous step, the optimal policy becomes to schedule patients

1,2, ...,Co for OAs and patients Co + 1,Co + 2, ...,Co +Cv for VAs in any period t∈ {1,2, ..., T − 1}.

As a simplified illustrative example, consider that there are N patients and without loss of generality assume

that there 3 VA and 4 OA capacities. At the first step, according to the Proposition 1 Item 1, reindex the

patients by their information vectors such that π1,t ≤ π2,t ≤ ...≤ πN,t and arbitrarily schedule patients for VAs,

such as Patients 1,3 and N . Then, among the remaining patients, the sickest ones, Patients 2, 4, 5 and 6 should

be scheduled for OAs according to the optimal policy. At the second step, according to the Proposition 1 Item

2, fix patients who are scheduled for OAs at the first step. Patients 2, 4, 5 and 6 are fixed and among the

remaining patients, the sickest patients, Patients 1,3 and 7 are scheduled for VAs according to the optimal policy

defined through Proposition 1 Item 2. At the last step let fix the patients who are not scheduled for any type of

appointment at the first two steps. Patients 8, 9, 10, ..., N are fixed. Among the remaining patients, Patients 1,

2, 3 and 4 (the sickest patients) are scheduled for OAs and patients 5, 6 and 7 are scheduled for VAs through

Lemma 11. Thus, by the argument in the beginning of the proof, the sickest patients should be scheduled for

OAs and the next sickest patients should be scheduled for VAs.

We next present the proof of Proposition 1 to characterize the optimal scheduling policy for OAs when the

VA scheduling decisions are fixed in Models TD and T.

�

Proof of Proposition 1 Item 1 Suppose there are N patients and Condition 1 and Condition 2 in Section

4 are met. Consider any arbitrary allocation of Cv patients to VAs capacity in a period t ∈ {1,2, ..., T − 1}.

Reindex the remaining patients by their information vectors such that π1,t ≤ π2,t ≤ ... ≤ πN−Cv ,t. Then the

optimal policy is to schedule patients 1,2, ...,Co for OAs in a period t ∈ {1,2, ..., T − 1}. Note that this proof

would be the same for both T and TD models as the scheduling decisions for VAs are fixed.

For a scheduled Patient i for appointment type l, if the diagnosed health state is k, after one period of disease

progression, the information vector is πi,t+1 = ekQlP , which we denote by γli,t = [γl0, γ
l
1]. γ

l
0 represents the

realization of controlled health state after appointment type l, while γl1 denotes the realization of uncontrolled

health state after appointment type l. For unscheduled Patient j after one period of disease progression, the

information vector is πj,t+1 =πj,tP , which we denote by z(πj,t).

Without loss of generality, let us define two policies;

Policy 1: Patients {1,3, ...,Co+1} are scheduled for OAs and patients {2,Co+2, ...,CN−Cv} are not scheduled

(NS) in period t.
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Policy 2: Patients {2,3, ...,Co+1} are scheduled for OAs and patients {1,Co+2, ...,CN−Cv} are not scheduled

(NS) in period t.

We define µ′t+1 which represents the information vector of all patients except Patient 1 and Patient 2 in period

t+ 1.

µ′t+1 =
(
γo3,t, ..., γ

o
Co+1,t, z(πCo+2,t), z(πCo+3,t), ..., z(πN−Cv ,t)

)
(7)

If optimal policy is followed from period t+ 1 to the end of the horizon, we define the value of Policy 1 as

follows:

ut
(
π1,t, ..., πN,t; 1∈OA,2∈NS

)
=

N∑
i=1

πi,t +βEµ′
t+1

[
π1,tu

∗
t+1(γ

o
0 , z(π2,t),µ

′
t+1)

+ (1−π1,t)u
∗
t+1(γ

o
1 , z(π2,t),µ

′
t+1)

]
(8)

=

N∑
i=1

πi,t +βEµ′
t+1

[
u∗t+1(p, z(π2,t),µ

′
t+1)

]
(9)

where γo0 = γo1 = p since office appointments provide perfect treatment according to Condition 1.

Similarly, if patient 2 is scheduled instead of patient 1 in period t and the optimal policy is followed from

period t+ 1 until the end of the horizon, the value of Policy 2 can be expressed as follows:

ut
(
π1,t, ..., πN,t; 2∈OA,1∈NS

)
=

N∑
i=1

πi,t +βEµ′
t+1

[
π2,tu

∗
t+1(z(π1,t), γ

o
0 ,µ

′
t+1)

(1−π2,t)u
∗
t+1(z(π1,t), γ

o
1 ,µ

′
t+1)

]
(10)

=

N∑
i=1

πi,t +βEµ′
t+1

[
u∗t+1(z(π1,t), p,µ

′
t+1)

]
(11)

Now we show that ut
(
π1,t, ..., πN,t; 1∈OA,2∈NS

)
≤ ut

(
π1,t, ..., πN,t; 2∈OA,1∈NS

)
by showing that for any

given realization µ′t+1 the following inequality holds,

u∗t+1(p, z(π2,t),µ
′
t+1)≤ u∗t+1(z(π1,t), p,µ

′
t+1) (12)

As the value function is nondecreasing componentwise convex function for both model TD and model T according

to the Lemmas 1, 2, 3, and 4, this inequality holds if and only if z(π2,t)≤ z(π1,t)→ π2,t · p≤ π1,t · p.

Therefore by the argument in the beginning of the proof, every patient in the scheduled group must have a

smaller information value than patients in the unscheduled group; i.e., to schedule patients with the smallest

information is the optimal policy when Condition 1 is met.

�

Next, we show that u∗t (π1,t, ..., πN,t) is nondecreasing in πi,t for Model TD thorugh Lemma 1.

Lemma 1. Suppose there are N patients. For all i ∈ {1,2, ...,N} and for all t ∈ {1,2, ..., T}, u∗t (π1,t, ..., πN,t)

is nondecreasing in πi,t for Model TD.

Proof:

Consider two systems, where the information for all patients at the beginning of Period t is

denoted by u∗t (π1,t, ..., πj,t, ..., πN,t) and u∗t (π1,t, ..., π
′
j,t, ...πN,t), respectively such that πj,t ≤ π′j,t. We prove
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u∗t (π1,t, ..., πj,t, ..., πN,t)≤ u∗t (π1,t, ..., πj,t, ..., πN,t) using induction. From the following equality uT (π1,T , ..., πN,T ) =∑N

i=1
πi,T , it can be shown that the value function is nondecreasing in each πi,T . Now assume

ut+1(π1,t+1, π2,t+1, ..., πN,t+1) is nondecreasing in πi,t+1, and let consider the following cases to show that

ut(π1,t, π2,t, ..., πN,t) is also nondecreasing in all πi,t.

Case(1) Patient j with information πj,t is scheduled for an OA while patient k is scheduled for

a VA with information πk,t

We define µ′j,t+1 to represent the information of all patients except for patient j and patient k in period t+ 1.

µ′j,t+1 =
(
γo1,t, ..., γ

o
j−1,t, γ

o
j+1,t, ..., γ

o
Co,t, γ

v
Co+1,t, ..., γ

v
k−1,t, γ

v
k+1,t, ..., γ

v
Co+Cv ,t

, z(πCo+Cv+1,t), ..., z(πN,t)
)

(13)

Then, the value function in period t can be represented as follows:

u∗t (π1,t, .., πj,t, .., πk,t, .., πN,t) =

N∑
i=1

πi,t +βEµ′
j,t+1

[
πj,tπk,tu

∗
t+1(γ

o
0 , γ

v
0 ,µ

′
j,t+1) + (1−πj,t)πk,tu∗t+1(γ

o
1 , γ

v
0 ,µ

′
j,t+1)

+πj,t(1−πk,t)u∗t+1(γ
o
0 , γ

v
1 ,µ

′
j,t+1) + (1−πj,t)(1−πk,t)u∗t+1(γ

o
1 , γ

v
1 ,µ

′
j,t+1)

]
(14)

For the system with state (π1,t, .., π
′
j,t, .., πk,t, .., πN,t) the optimal future discounted value function is no less

than the future discounted value function following any feasible policy. Thus;

u∗t (π1,t, .., π
′
j,t, .., πk,t, .., πN,t)≥ π′j,t +πk,t +

N∑
i=1,6=j, 6=k

πi,t +βEµ′
j,t+1

[
π′j,tπk,tu

∗
t+1(γ

o
0 , γ

v
0 ,µ

′
j,t+1)

+ (1−π′j,t)πk,tu∗t+1(γ
o
1 , γ

v
0 ,µ

′
j,t+1) +π′j,t(1−πk,t)u∗t+1(γ

o
0 , γ

v
1 ,µ

′
j,t+1)

+ (1−π′j,t)(1−πk,t)u∗t+1(γ
o
1 , γ

v
1 ,µ

′
j,t+1)

]
(15)

where left hand side represents the objective function value for the system with state (π1,t, .., π
′
j,t, .., πk,t, .., πN,t)

in period t and the right hand side of the inequality is the discounted present value following the optimal action

for the system with state (π1,t, .., πj,t, .., πk,t, .., πN,t).

For any realization of µ′j,t+1,

u∗t+1(γ
o
0 , γ

v
0 ,µ

′
j,t+1) ≥ u∗t+1(γ

o
1 , γ

v
0 ,µ

′
j,t+1) by induction hypothesis as γo0 ≥ γo1 . Therefore

Eµ′
j,t+1

[
πk,tu

∗
t+1(γ

o
0 , γ

v
0 ,µ

′
j,t+1)

]
≥ Eµ′

j,t+1

[
πk,tu

∗
t+1(γ

o
1 , γ

v
0 ,µ

′
j,t+1)

]
, and similarly Eµ′

j,t+1

[
(1 −

πk,t)u
∗
t+1(γ

o
0 , γ

v
1 ,µ

′
j,t+1)

]
≥Eµ′

j,t+1

[
(1−πk,t)u∗t+1(γ

o
1 , γ

v
1 ,µ

′
j,t+1)

]
.

Since πj,t ≤ π′j,t,

Eµ′
j,t+1

[
πj,tπk,tu

∗
t+1(γ

o
0 , γ

v
0 ,µ

′
j,t+1) + (1−πj,t)πk,tu∗t+1(γ

o
1 , γ

v
0 ,µ

′
j,t+1)

]
≤Eµ′

j,t+1

[
π′j,tπk,tu

∗
t+1(γ

o
0 , γ

v
0 ,µ

′
j,t+1) + (1−π′j,t)πk,tu∗t+1(γ

o
1 , γ

v
0 ,µ

′
j,t+1)

]
(16)

and

Eµ′
j,t+1

[
πj,t(1−πk,t)u∗t+1(γ

o
0 , γ

v
1 ,µ

′
j,t+1) + (1−πj,t)(1−πk,t)u∗t+1(γ

o
1 , γ

v
1 ,µ

′
j,t+1)

]
≤Eµ′

j,t+1

[
π′j,t(1−πk,t)u∗t+1(γ

o
0 , γ

v
1 ,µ

′
j,t+1) + (1−π′j,t)(1−πk,t)u∗t+1(γ

o
1 , γ

v
1 ,µ

′
j,t+1)

]
(17)

Also by knowing that;

N∑
i=1

πi,t = πj,t +

N∑
i=1, 6=j

πi,t ≤ π′j,t +

N∑
i=1, 6=j

πi,t (18)
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It then implies that

u∗t (π1,t, .., πj,t, .., πk,t, .., πN,t)≤ u∗t (π1,t, .., π
′
j,t, .., πk,t, .., πN,t)

Similarly, for the system with state (π1,t, .., πj,t, .., π
′
k,t, .., πN,t) the optimal future discounted value function is

no less than the future discounted value function following any feasible policy. Thus;

u∗t (π1,t, .., πj,t, .., π
′
k,t, .., πN,t)≥ πj,t +π′k,t +

N∑
i=1, 6=j, 6=k

πi,t +βEµ′
j,t+1

[
πj,tπ

′
k,tu

∗
t+1(γ

o
0 , γ

v
0 ,µ

′
j,t+1)

+ (1−πj,t)π′k,tu∗t+1(γ
o
1 , γ

v
0 ,µ

′
j,t+1) +πj,t(1−π′k,t)u∗t+1(γ

o
0 , γ

v
1 ,µ

′
j,t+1)

+ (1−πj,t)(1−π′k,t)u∗t+1(γ
o
1 , γ

v
1 ,µ

′
j,t+1)

]
(19)

where left hand side is the value for the system with state (π1,t, .., πj,t, .., π
′
k,t, .., πI,t) in period t and the right

hand side of the inequality is the discounted present value following the optimal action for the system with state

(π1,t, .., πj,t, .., πk,t, .., πN,t).

For any realization of µ′j,t+1, u
∗
t+1(γ

o
0 , γ

v
0 ,µ

′
j,t+1) ≥ u∗t+1(γ

o
1 , γ

v
0 ,µ

′
j,t+1) by induction hypothesis as γo0 ≥

γo1 . Therefore Eµ′
j,t+1

[
πj,tu

∗
t+1(γ

o
0 , γ

v
0 ,µ

′
j,t+1)

]
≥ Eµ′

j,t+1

[
πj,tu

∗
t+1(γ

o
1 , γ

v
0 ,µ

′
j,t+1)

]
, and similarly Eµ′

j,t+1

[
(1 −

πj,t)u
∗
t+1(γ

o
0 , γ

v
1 ,µ

′
j,t+1)

]
≥Eµ′

j,t+1

[
(1−πj,t)u∗t+1(γ

o
1 , γ

v
1 ,µ

′
j,t+1)

]
.

Since πk,t ≤ π′k,t,

Eµ′
j,t+1

[
πj,tπk,tu

∗
t+1(γ

o
0 , γ

v
0 ,µ

′
j,t+1) +πj,t(1−πk,t)u∗t+1(γ

o
0 , γ

v
1 ,µ

′
j,t+1)

]
≤Eµ′

j,t+1

[
πj,tπ

′
k,tu

∗
t+1(γ

o
0 , γ

v
0 ,µ

′
j,t+1) +πj,t(1−π′k,t)u∗t+1(γ

o
0 , γ

v
1 ,µ

′
j,t+1)

]
(20)

and

Eµ′
j,t+1

[
(1−πj,t)πk,tu∗t+1(γ

o
1 , γ

v
0 ,µ

′
j,t+1) + (1−πj,t)(1−πk,t)u∗t+1(γ

o
1 , γ

v
1 ,µ

′
j,t+1)

]
≤Eµ′

j,t+1

[
(1−πj,t)π′k,tu∗t+1(γ

o
1 , γ

v
0 ,µ

′
j,t+1) + (1−πj,t)(1−π′k,t)u∗t+1(γ

o
1 , γ

v
1 ,µ

′
j,t+1)

]
(21)

Also by knowing that;

N∑
i=1

πi,t = πk,t +

N∑
i=1,6=k

πi,t ≤ π′k,t +

N∑
i=1,6=k

πi,t (22)

It then implies that

u∗t (π1,t, .., πj,t, .., πk,t, .., πN,t)≤ u∗t (π1,t, .., πj,t, .., π
′
k,t, .., πN,t)

Case(2) Patient j with information πj,t is not scheduled for any appointment while patient k is

scheduled for a VA with information πk,t

We define µ′j,t+1 to represent information vector of all patients except Patients j and k as follows:

µ′j,t+1 =
(
γo1,t, ..., γ

o
Co,t, γ

v
Co+1,t, ..., γ

v
k−1,t, γ

v
k+1,t, ..., γ

v
Co+Cv ,t, z(πCo+Cv+1,t), ..., z(πj−1,t)

, z(πj+1,t), ..., z(πN,t)
)

(23)

Then the optimally equation can be stated as follows:

u∗t (π1,t, .., πj,t, .., πk,t, .., πN,t) =

N∑
i=1

πi,t +βEµ′
j,t+1

[
πk,tu

∗
t+1(z(πj,t), γ

v
0 ,µ

′
j,t+1)
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+ (1−πk,t)u∗t+1(z(πj,t), γ
v
1 ,µ

′
j,t+1)

]
(24)

Similarly the optimality inequality for the state (π1,t, .., π
′
j,t, .., πk,t, .., πN,t) can be stated as follows:

u∗t (π1,t, .., π
′
j,t, .., πk,t, .., πN,t)≥ π′j,t +

N∑
i=1,i6=j

πi,t +βEµ′
j,t+1

[
πk,tu

∗
t+1(z(π

′
j,t), γ

v
0 ,µ

′
j,t+1)

+ (1−πk,t)u∗t+1(z(π
′
j,t), γ

v
1 ,µ

′
j,t+1)

]
(25)

Since z(.) is nondecreasing and πj,t ≤ π′j,t, z(πj,t) ≤ z(π′j,t). Thus, by induction hypothesis,

Eµ′
j,t+1

[
πk,tu

∗
t+1(z(πj,t), γ

v
0 ,µ

′
j,t+1) + (1−πk,t)u∗t+1(z(πj,t), γ

v
1 ,µ

′
j,t+1)

]
≤Eµ′

j,t+1

[
πk,tu

∗
t+1(z(π

′
j,t), γ

v
0 ,µ

′
j,t+1) + (1−

πk,t)u
∗
t+1(z(π

′
j,t), γ

v
1 ,µ

′
j,t+1)

]
.

It then implies that

u∗t (π1,t, .., πj,t, .., πk,t, .., πN,t)≤ u∗t (π1,t, .., π
′
j,t, .., πk,t, .., πN,t)

Similarly, the optimality inequality for the state (π1,t, .., πj,t, .., π
′
k,t, .., πN,t) can be stated as follows:

u∗t (π1,t, .., πj,t, .., π
′
k,t, .., πI,t)≥ π′k,t +

N∑
i=1,i 6=k

πi,t +βEµ′
j,t+1

[
π′k,tu

∗
t+1(z(πj,t), γ

v
0 ,µ

′
j,t+1)

+ (1−π′k,t)u∗t+1(z(πj,t), γ
v
1 ,µ

′
j,t+1)

]
(26)

Since πk,t ≤ π′k,t, u∗t+1(z(πj,t), γ
v
1 ,µ

′
j,t+1) ≤ u∗t+1(z(πj,t), γ

v
0 ,µ

′
j,t+1). Thus by induction hypothesis,

Eµ′
j,t+1

[
πk,tu

∗
t+1(z(πj,t), γ

v
0 ,µ

′
j,t+1) + (1−πk,t)u∗t+1(z(πj,t), γ

v
1 ,µ

′
j,t+1)

]
≤Eµ′

j,t+1

[
π′k,tu

∗
t+1(z(πj,t), γ

v
0 ,µ

′
j,t+1) + (1−

π′k,t)u
∗
t+1(z(πj,t), γ

v
1 ,µ

′
j,t+1)

]
.

It then implies that

u∗t (π1,t, .., πj,t, .., πk,t, .., πN,t)≤ u∗t (π1,t, .., πj,t, .., π
′
k,t, .., πN,t)

Case(3) Patient j with information πj,t is scheduled for an OA while patient k is not scheduled

for any appointment with information πk,t

We define a random realization vector µ′k,t+1 except patients k and j as follows:

µ′k,t+1 =
(
γo1,t, ..., γ

o
j−1,t, γ

o
j+1,t, ..., γ

o
Co,t, γ

v
Co+1,t, ..., γ

v
Co+Cv ,t, z(πCo+Cv+1,t), ..., z(πk−1,t)

, z(πk+1,t), ..., z(πN,t)
)

(27)

Similar to the previous cases, then the optimality equation can be stated as follows:

u∗t (π1,t, .., πj,t, .., πk,t, .., πN,t) =

N∑
i=1

πi,t +βEµ′
k,t+1

[
πj,tu

∗
t+1(γ

o
0 , z(πk,t), µ

′
k,t+1)

+ (1−πj,t)u∗t+1(γ
o
1 , z(πk,t), µ

′
k,t+1)

]
(28)

Similarly, the optimality inequality for the state (π1,t, .., πj,t, .., π
′
k,t, .., πN,t) can be stated as follows:

u∗t (π1,t, .., πj,t, .., π
′
k,t, .., πN,t)≥ π′k,t +

N∑
i=1,i 6=k

πi,t +βEµ′
k,t+1

[
πj,tu

∗
t+1(z(π

′
k,t), γ

v
0 ,µ

′
j,t+1)

+ (1−πj,t)u∗t+1(z(π
′
k,t), γ

v
1 ,µ

′
j,t+1)

]
(29)
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Since z(.) is nondecreasing and πk,t ≤ π′k,t, z(πk,t) ≤ z(π′k,t). So Eµ′
k,t+1

[
πj,tu

∗
t+1(z(πk,t), γ

v
0 , µ

′
k,t+1) + (1 −

πj,t)u
∗
t+1(z(πk,t), γ

v
1 , µ

′
k,t+1)

]
≤Eµ′

k,t+1

[
πj,tu

∗
t+1(z(π

′
k,t), γ

v
0 , µ

′
k,t+1) + (1−πj,t)u∗t+1(z(π

′
k,t), γ

v
1 , µ

′
k,t+1)

]
.

It then implies that:

u∗t (π1,t, .., πj,t, .., πk,t, .., πN,t)≤ u∗t (π1,t, .., πj,t, .., π
′
k,t, .., πN,t) (30)

We then define the optimality inequality for the state (π1,t, .., π
′
j,t, .., πk,t, .., πN,t) as follows:

u∗t (π1,t, .., π
′
j,t, .., πk,t, .., πN,t)≥ πj,t +

N∑
i=1, 6=j

πi,t +βEµ′
j,t+1

[
π′j,tu

∗
t+1(z(πk,t), γ

v
0 ,µ

′
j,t+1)

+ (1−π′j,t)u∗t+1(z(πk,t), γ
v
1 ,µ

′
j,t+1)

]
(31)

Since πj,t ≤ π′j,t and u∗t+1(z(πk,t), γ
v
1 ,µ

′
j,t+1) ≤ u∗t+1(z(πk,t), γ

v
0 ,µ

′
j,t+1), the following inequality holds:

Eµ′
k,t+1

[
πj,tu

∗
t+1(z(πk,t), γ

v
0 , µ

′
k,t+1) + (1−πj,t)u∗t+1(z(πk,t), γ

v
1 , µ

′
k,t+1)

]
≤Eµ′

k,t+1

[
π′j,tu

∗
t+1(z(πk,t), γ

v
0 , µ

′
k,t+1) + (1−

π′j,t)u
∗
t+1(z(πk,t), γ

v
1 , µ

′
k,t+1)

]
.

It then implies that

u∗t (π1,t, .., πj,t, .., πk,t, .., πN,t)≤ u∗t (π1,t, .., π
′
j,t, .., πk,t, .., πN,t) (32)

Case(4) Patient j with information πj,t is not scheduled for any appointment while patient k is

not scheduled for any appointment with information πk,t

let us define a random realization vector µ
′

k,t+1 except patients k and j as follows:

µ′k,t+1 =
(
γo1,t, ..., γ

o
Co,t, γ

v
Co+1,t, ..., γ

v
Co+Cv ,t, z(πCo+Cv+1,t), ..., z(πj−1,t), z(πj+1,t), ..., z(πk−1,t)

, z(πk+1,t), ..., z(πN,t)
)

(33)

Similar to the previous cases, then the optimality equation can be stated as follows:

u∗t (π1,t, .., πj,t, .., πk,t, .., πN,t) =

N∑
i=1

πi,t +βEµ′
k,t+1

[
u∗t+1(z(πj,t), z(πk,t), µ

′
k,t+1)

]
(34)

Similarly, the optimality inequality for the state (π1,t, .., πj,t, .., π
′
k,t, .., πN,t) can be stated as follows:

u∗t (π1,t, .., πj,t, .., π
′
k,t, .., πN,t)≥ π′k,t +

N∑
i=1,i 6=k

πi,t +βEµ′
j,t+1

[
u∗t+1(z(πj,t), z(π

′
k,t),µ

′
j,t+1)

]
(35)

Since z(.) is nondecreasing and πk,t ≤ π′k,t, z(πk,t) ≤ z(π′k,t). So Eµ′
j,t+1

[
u∗t+1(z(πj,t), z(πk,t), µ

′
k,t+1)

]
≤

Eµ′
j,t+1

[
u∗t+1(z(πj,t), z(π

′
k,t),µ

′
j,t+1)

]
.

It then implies that

u∗t (π1,t, .., πj,t, .., πk,t, .., πN,t)≤ u∗t (π1,t, .., πj,t, .., π
′
k,t, .., πN,t)

Similarly, we then define the optimality inequality for the state (π1,t, .., π
′
j,t, .., πk,t, .., πN,t) as follows:

u∗t (π1,t, .., π
′
j,t, .., πk,t, .., πN,t)≥ π′j,t +

N∑
i=1, 6=j

πi,t +βEµ′
j,t+1

[
u∗t+1(z(π

′
j,t), z(πk,t),µ

′
j,t+1)

]
(36)

Since z(.) is nondecreasing and πj,t ≤ π′j,t, z(πj,t) ≤ z(π′j,t). So Eµ′
j,t+1

[
u∗t+1(z(πj,t), z(πk,t), µ

′
k,t+1)

]
≤

Eµ′
j,t+1

[
u∗t+1(z(π

′
j,t), z(πk,t), µ

′
k,t+1)

]
.
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It then implies that

u∗t (π1,t, .., πj,t, .., πk,t, .., πN,t)≤ u∗t (π1,t, .., π
′
j,t, .., πk,t, .., πN,t)

Then this completes the proof that for Model TD, u∗t (π1,t, .., πN,t) is nondecreasing in πi,t for all i∈ {1,2, ...,N}

and for all t∈ {1,2, ..., T}.

�

In the next Lemma, Lemma 2, we show that u∗t (π1,t, ..., πN,t) is componentwise convex in πi,t for Model TD.

Lemma 2. Suppose there are N patients. For all i ∈ {1,2, ...,N} and for all t ∈ {1,2, ..., T}, u∗t (π1,t, ..., πN,t)

is componentwise convex in πi,t for Model TD.

Proof:

We show that the following inequality holds to prove that the u∗t (π1,t, ..., πN,t) function is convex in each πj,t,

∀j ∈ {1,2, ...,N} and all t∈ {1,2, ..., T}.

u∗t (π1,t, ..., νπj,t + (1− ν)π′j,t, ..., πN,t)

≤ νu∗t (π1,t, ..., πj,t, ..., πN,t) + (1− ν)u∗t (π1,t, ..., π
′
j,t, ..., πN,t) (37)

We use induction to prove equation 37. For period T , u∗T (π1,T , ..., πN,T ) =
∑N

i=1
πi,T , it is linear and so convex

in each πi,T . With induction, we assume that u∗t+1(π1,t+1, ..., πN,t+1) is convex in all πi,t+1. We will be considering

the following three cases to prove that u∗t (π1,t, ..., πN,t) is convex:

Case(1) Patient j with information νπj,t + (1− ν)π′j,t is scheduled for an OA

We define µ′j,t+1 to represent the information of all patients except for patient j in period t+ 1.

µ′j,t+1 =
(
γo1,t, ..., γ

o
j−1,t, γ

o
j+1,t, ..., γ

o
Co,t, ..., γ

v
Co+Cv ,t, z(πCo+Cv+1,t), ..., z(πN,t)

)
(38)

Then we represent the value function as follows:

u∗t (π1,t, ..., νπj,t + (1− ν)π′j,t, ..., πN,t) = [νπj,t + (1− ν)π′j,t] +

N∑
i=1,i 6=j

πi,t

+βEµ′
j,t+1

[(
νπj,t + (1− ν)π′j,t

)[
u∗t+1(γ

o
0 ,µ

′
j,t+1)

]
+
(
1− (νπj,t + (1− ν)π′j,t)

)[
u∗t+1(γ

o
1 ,µ

′
j,t+1)

]]
(39)

= νπj,t + ν

N∑
i=1,i 6=j

πi,t +βνEµ′
j,t+1

[
πj,t
[
u∗t+1(γ

o
0 ,µ

′
j,t+1)

]
+ (1−πj,t)

[
u∗t+1(γ

o
1 ,µ

′
j,t+1)

]]

+ (1− ν)π′j,t + (1− ν)

N∑
i=1,i 6=j

πi,t +β(1− ν)Eµ′
j,t+1

[
π′j,t
[
u∗t+1(γ

o
0 ,µ

′
j,t+1)

]
+ (1−π′j,t)

[
u∗t+1(γ

o
1 ,µ

′
j,t+1)

]]
(40)

By the definition of optimality equation, the value for the system with state (π1,t, ..., πj,t, ..., πN,t) is greater

or equal than the present discounted value if the policy is to schedule Patient 1,2, ...,Co for office appointments

and Patient Co+1, ...,Co+v for virtual appointments in period t. Therefore;

u∗t (π1,t, ..., πj,t, ..., πN,t)≥ πj,t +

N∑
i=1,i 6=j

πi,t +βEµ′
j,t+1

[
πj,t
[
u∗t+1(γ

o
0 ,µ

′
j,t+1)

]
+ (1−πj,t)

[
u∗t+1(γ

o
1 ,µ

′
j,t+1)

]]
(41)

where the left hand side is the value of the system when system state is (π1,t, .., πj,t, .., πN,t) at period t; and

the right hand side is the discounted present value if the action in Period t is to schedule Patient 1,2, ...,Co for
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office appointments and Patient Co+1, ...,Co+v for virtual appointments and from Period t+ 1 on is governed by

optimal policy.

Similarly;

u∗t (π1,t, ..., π
′
j,t, ..., πN,t)≥ π′j,t +

N∑
i=1,i 6=j

πi,t +βEµ′
j,t+1

[
π′j,t
[
u∗t+1(γ

o
0 ,µ

′
j,t+1)

]
+ (1−π′j,t)

[
u∗t+1(γ

o
1 ,µ

′
j,t+1)

]]
(42)

Multiplying equation 41 by ν and equation 42 by (1− ν) and summing, the resulting right hand side is equal

to the right hand side of equation 40.

This implies that:

u∗t (π1,t, ..., νπj,t + (1− ν)π′j,t, ..., πN,t)≤ νu∗t (π1,t, ..., πj,t, ..., πN,t) + (1− ν)u∗t (π1,t, ..., π
′
j,t, ..., πN,t)

Case(2) Patient j with information νπj,t + (1− ν)π′j,t is scheduled for a VA

We define µ′j,t+1 to represent the information of all patients except for patient j in period t+ 1.

µ′j,t+1 =
(
γo1,t, ..., γ

o
Co,t, γ

v
Co+1,t, ..., γ

v
j−1,t, γ

v
j+1,t, ..., γ

v
Co+Cv ,t, z(πCo+Cv+1,t), ..., z(πN,t)

)
(43)

Then we represent the value function as follows:

u∗t (π1,t, ..., νπj,t + (1− ν)π′j,t, ..., πN,t) = [νπj,t + (1− ν)π′j,t] +

N∑
i=1,i 6=j

πi,t

+βEµ′
j,t+1

[(
νπj,t + (1− ν)π′j,t

)[
u∗t+1(γ

v
0 ,µ

′
j,t+1)

]
+
(
1− (νπj,t + (1− ν)π′j,t)

)[
u∗t+1(γ

v
1 ,µ

′
j,t+1)

]]
(44)

= νπj,t + ν

N∑
i=1,i 6=j

πi,t +βνEµ′
j,t+1

[
πj,t
[
u∗t+1(γ

v
0 ,µ

′
j,t+1)

]
+ (1−πj,t)

[
u∗t+1(γ

v
1 ,µ

′
j,t+1)

]]

+ (1− ν)π′j,t + (1− ν)

N∑
i=1,i 6=j

πi,t +β(1− ν)Eµ′
j,t+1

[
π′j,t
[
u∗t+1(γ

v
0 ,µ

′
j,t+1)

]
+ (1−π′j,t)

[
u∗t+1(γ

v
1 ,µ

′
j,t+1)

]]
(45)

By the definition of optimality equation, the value for the system with state (π1,t, ..., πj,t, ..., πN,t) is greater

or equal than the present discounted value if the policy is to schedule Patient 1,2, ...,Co for office appointments

and Patient Co+1, ...,Co+v for virtual appointments in period t. Therefore;

u∗t (π1,t, ..., πj,t, ..., πN,t)≥ πj,t +

N∑
i=1,i 6=j

πi,t +βEµ′
j,t+1

[
πj,t
[
u∗t+1(γ

v
0 ,µ

′
j,t+1) + (1−πj,t)

[
u∗t+1(γ

v
1 ,µ

′
j,t+1)

]]
(46)

where the left hand side is the value of the system when system state is (π1,t, ..., πj,t, ..., πN,t) at period t; and

the right hand side is the discounted present value if the action in Period t is to schedule Patient 1,2, ...,Co for

office appointments and Patient Co+1, ...,Co+v for virtual appointments and from Period t+ 1 on is governed by

optimal policy.

Similarly;

u∗t (π1,t, ..., π
′
j,t, ..., πN,t)≥ π′j,t +

N∑
i=1,i 6=j

πi,t +βEµ′
j,t+1

[
π′j,t
[
u∗t+1(γ

v
0 ,µ

′
j,t+1) + (1−π′j,t)

[
u∗t+1(γ

v
1 ,µ

′
j,t+1)

]]
(47)

Multiplying equation 46 by ν and equation 47 by (1− ν) and summing, the resulting right hand side is equal

to the right hand side of equation 45.
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This implies that:

u∗t (π1,t, ..., νπj,t + (1− ν)π′j,t, ..., πN,t)≤ νu∗t (π1,t, ..., πj,t, ..., πN,t) + (1− ν)u∗t (π1,t, ..., π
′
j,t, ..., πN,t)

Case(3) Patient j with information νπj,t + (1− ν)π′j,t is not scheduled for any appointment

We define µ′j,t+1 to represent information vector of all patients except patient j as follows:

µ′j,t+1 =
(
γo1,t, ..., γ

o
Co,t, γ

v
Co+1,t, ..., γ

v
Co+Cv ,t, z(πCo+Cv+1,t), ..., z(πj−1,t), z(πj+1,t), ..., z(πN,t)

)
(48)

The optimality equation can be stated as follows:

u∗t (π1,t, ..., νπj,t + (1− ν)π′j,t, ..., πN,t) = [νπj,t + (1− ν)π′j,t] +

N∑
i=1,i 6=j

πi,t

+βEµ′
j,t+1

[
u∗t+1(z(νπj,t + (1− ν)π′j,t),µ

′
j,t+1)

]
(49)

= [νπj,t + (1− ν)π′j,t] +

N∑
i=1,i 6=j

πi,t +βEµ′
j,t+1

[
u∗t+1(νz(πj,t) + (1− ν)z(π′j,t),µ

′
j,t+1)

]
(50)

≤ νπj,t + ν

N∑
i=1,i 6=j

πi,t +βνEµ′
j,t+1

[
u∗t+1(z(πj,t),µ

′
j,t+1)

]
+ [(1− ν)π′j,t] + (1− ν)

N∑
i=1,i 6=j

πi,t

+β(1− ν)Eµ′
j,t+1

[
u∗t+1(z(π

′
j,t),µ

′
j,t+1)

]
(51)

Equality 49 holds by the definition of the optimality equation. Equality 50 holds as z(πi,t) is linear in πi,t.

Inequality 51 holds since u∗t+1(·, ..., ·) is componentwise convex by induction assumption and because expectation

is a linear operator. By definition of the optimality equation and an argument similar to equations 41 and 42,

u∗t (π1,t, ..., πj,t, ..., πN,t)≥ πj,t +

N∑
i=1,i 6=j

πi,t +βEµ′
j,t+1

[
u∗t+1(z(πj,t),µ

′
j,t+1)

]
(52)

Similarly;

u∗t (π1,t, ..., π
′
j,t, ..., πN,t)≥ π′j,t +

N∑
i=1,i 6=j

πi,t +βEµ′
j,t+1

[
u∗t+1(z(π

′
j,t),µ

′
j,t+1)

]
(53)

Therefore, multiplying equation 52 by ν and 53 by (1− ν) and summing

νu∗t (π1,t, ..., πj,t, ..., πN,t) + (1− ν)u∗t (π1,t, .., π
′
j,t, .., πk,t, .., πN,t)

≥ νπj,t + ν

N∑
i=1,i 6=j

πi,t +βνEµ′
j,t+1

[
u∗t+1(z(πj,t),µ

′
j,t+1)

]
+ (1− ν)π′j,t + (1− ν)

N∑
i=1,i 6=j

πi,t

+β(1− ν)Eµ′
j,t+1

[
u∗t+1(z(πj,t),µ

′
j,t+1)

]
(54)

≥ u∗t (π1,t, ..., νπj,t + (1− ν)π′j,t, ..., πN,t) (55)

This completes the proof of convexity for Model TD.

�

In Lemma 3 and Lemma 4, we show that similar properties hold for Model T as well. Lemma 3 shows that

u∗t (π1,t, ..., πN,t) is nondecreasing in πi,t for Model T.
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Lemma 3. Suppose there are N patients. For all i ∈ {1,2, ...,N} and for all t ∈ {1,2, ..., T}, u∗t (π1,t, ..., πN,t)

is nondecreasing in πi,t for Model T.

Proof:

Consider two systems, where the information for all patients at the beginning of Period t is

denoted by u∗t (π1,t, ..., πj,t, ..., πN,t) and u∗t (π1,t, ..., π
′
j,t, ...πN,t), respectively such that πj,t ≤ π′j,t. We prove

u∗t (π1,t, ..., πj,t, ..., πN,t)≤ u∗t (π1,t, ..., πj,t, ..., πN,t) using induction. From the following equality uT (π1,T , ..., πN,T ) =∑N

i=1
πi,T , it can be shown that the value function is nondecreasing in each πi,T . Now assume

ut+1(π1,t+1, π2,t+1, ..., πN,t+1) is nondecreasing in πi,t+1, and let consider the following cases to show that

ut(π1,t, π2,t, ..., πN,t) is also nondecreasing in all πi,t.

Case(1) Patient j with information πj,t is scheduled for an OA while patient k is scheduled for

a VA with information πk,t

We define µ′j,t+1 to represent the information of all patients except for patient j and patient k in period t+ 1.

µ′j,t+1 =
(
γo1,t, ..., γ

o
j−1,t, γ

o
j+1,t, ..., γ

o
Co,t, γ

v
Co+1,t, ..., γ

v
k−1,t, γ

v
k+1,t, ..., γ

v
Co+Cv ,t

, z(πCo+Cv+1,t), ..., z(πN,t)
)

(56)

Then, the value function in period t can be represented as follows:

u∗t (π1,t, .., πj,t, .., πk,t, .., πN,t) =

N∑
i=1

πi,t +βEµ′
j,t+1

[
πj,tu

∗
t+1(γ

o
0 , πk,tγ

v
0 + (1−πk,t)γv1 ,µ′j,t+1)

+ (1−πj,t)u∗t+1(γ
o
1 , πk,tγ

v
0 + (1−πk,t)γv1 ,µ′j,t+1)

]
(57)

For the system with state (π1,t, .., π
′
j,t, .., πk,t, .., πN,t) the optimal future discounted value function is no less

than the future discounted value function following any feasible policy. Thus;

u∗t (π1,t, .., π
′
j,t, .., πk,t, .., πN,t)≥π′j,t +πk,t +

N∑
i=1,6=j, 6=k

πi,t

+βEµ′
j,t+1

[
π′j,tu

∗
t+1(γ

o
0 , πk,tγ

v
0 + (1−πk,t)γv1 ,µ′j,t+1)

+ (1−π′j,t)u∗t+1(γ
o
1 , πk,tγ

v
0 + (1−πk,t)γv1 ,µ′j,t+1)

]
(58)

where left hand side represents the objective function value for the system with state (π1,t, .., π
′
j,t, .., πk,t, .., πN,t)

in period t and the right hand side of the inequality is the discounted present value following the optimal action

for the system with state (π1,t, .., πj,t, .., πk,t, .., πN,t).

For any realization of µ′j,t+1,

u∗t+1(γ
o
0 , πk,tγ

v
0 +(1−πk,t)γv1 ,µ′j,t+1)≥ u∗t+1(γ

o
1 , πk,tγ

v
0 +(1−πk,t)γv1 ,µ′j,t+1) by induction hypothesis as γo0 ≥ γo1 .

Since πj,t ≤ π′j,t,

πj,tu
∗
t+1(γ

o
0 , πk,tγ

v
0 + (1−πk,t)γv1 ,µ′j,t+1) + (1−πj,t)u∗t+1(γ

o
1 , πk,tγ

v
0 + (1−πk,t)γv1 ,µ′j,t+1)

≤ π′j,tu∗t+1(γ
o
0 , πk,tγ

v
0 + (1−πk,t)γv1 ,µ′j,t+1) + (1−π′j,t)u∗t+1(γ

o
1 , πk,tγ

v
0 + (1−πk,t)γv1 ,µ′j,t+1) (59)

Thus;

Eµ′
j,t+1

[
πj,tu

∗
t+1(γ

o
0 , πk,tγ

v
0 + (1−πk,t)γv1 ,µ′j,t+1)
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+ (1−πj,t)u∗t+1(γ
o
1 , πk,tγ

v
0 + (1−πk,t)γv1 ,µ′j,t+1)

]
≤Eµ′

j,t+1

[
π′j,tu

∗
t+1(γ

o
0 , πk,tγ

v
0 + (1−πk,t)γv1 ,µ′j,t+1)

+ (1−π′j,t)u∗t+1(γ
o
1 , πk,tγ

v
0 + (1−πk,t)γv1 ,µ′j,t+1)

]
(60)

Also by knowing that;

N∑
i=1

πi,t = πj,t +

N∑
i=1,6=j

πi,t ≤ π′j,t +

N∑
i=1,6=j

πi,t (61)

It then implies that

u∗t (π1,t, .., πj,t, .., πk,t, .., πN,t)≤ u∗t (π1,t, .., π
′
j,t, .., πk,t, .., πN,t)

Similarly, for the system with state (π1,t, .., πj,t, .., π
′
k,t, .., πN,t) the optimal future discounted value function is

no less than the future discounted value function following any feasible policy. Thus;

u∗t (π1,t, .., πj,t, .., π
′
k,t, .., πN,t)≥πj,t +π′k,t +

N∑
i=1, 6=j, 6=k

πi,t

+βEµ′
j,t+1

[
πj,tu

∗
t+1(γ

o
0 , π

′
k,tγ

v
0 + (1−π′k,t)γv1 ,µ′j,t+1)

+ (1−πj,t)u∗t+1(γ
o
1 , π

′
k,tγ

v
0 + (1−π′k,t)γv1 ,µ′j,t+1)

]
(62)

where left hand side is the value for the system with state (π1,t, .., πj,t, .., π
′
k,t, .., πN,t) in period t and the right

hand side of the inequality is the discounted present value following the optimal action for the system with state

(π1,t, .., πj,t, .., πk,t, .., πN,t).

For any realization of µ′j,t+1, u
∗
t+1(γ

o
0 , π

′
k,tγ

v
0 + (1− π′k,t)γv1 ,µ′j,t+1)≥ u∗t+1(γ

o
0 , πk,tγ

v
0 + (1− πk,t)γv1 ,µ′j,t+1) and

u∗t+1(γ
o
1 , π

′
k,tγ

v
0 + (1− π′k,t)γv1 ,µ′j,t+1)≥ u∗t+1(γ

o
1 , πk,tγ

v
0 + (1− πk,t)γv1 ,µ′j,t+1) by induction hypothesis as γv0 ≥ γv1

and π′k,t ≥ πk,t. Therefore;

πj,tu
∗
t+1(γ

o
0 , πk,tγ

v
0 + (1−πk,t)γv1 ,µ′j,t+1) + (1−πj,t)u∗t+1(γ

o
1 , πk,tγ

v
0 + (1−πk,t)γv1 ,µ′j,t+1)

≤ πj,tu∗t+1(γ
o
0 , π

′
k,tγ

v
0 + (1−π′k,t)γv1 ,µ′j,t+1) + (1−πj,t)u∗t+1(γ

o
1 , π

′
k,tγ

v
0 + (1−π′k,t)γv1 ,µ′j,t+1) (63)

and

Eµ′
j,t+1

[
πj,tu

∗
t+1(γ

o
0 , πk,tγ

v
0 + (1−πk,t)γv1 ,µ′j,t+1)

+ (1−πj,t)u∗t+1(γ
o
1 , πk,tγ

v
0 + (1−πk,t)γv1 ,µ′j,t+1)

]
≤Eµ′

j,t+1

[
πj,tu

∗
t+1(γ

o
0 , π

′
k,tγ

v
0 + (1−π′k,t)γv1 ,µ′j,t+1)

+ (1−πj,t)u∗t+1(γ
o
1 , π

′
k,tγ

v
0 + (1−π′k,t)γv1 ,µ′j,t+1)

]
(64)

Also by knowing that;

N∑
i=1

πi,t = πk,t +

N∑
i=1,6=k

πi,t ≤ π′k,t +

N∑
i=1,6=k

πi,t (65)

It then implies that

u∗t (π1,t, .., πj,t, .., πk,t, .., πN,t)≤ u∗t (π1,t, .., πj,t, .., π
′
k,t, .., πN,t)
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Case(2) Patient j with information πj,t is not scheduled for any appointment while patient k is

scheduled for a VA with information πk,t

We define µ′j,t+1 to represent information vector of all patients except Patients j and k as follows:

µ′j,t+1 =
(
γo1,t, ..., γ

o
Co,t, γ

v
Co+1,t, ..., γ

v
k−1,t, γ

v
k+1,t, ..., γ

v
Co+Cv ,t, z(πCo+Cv+1,t), ..., z(πj−1,t)

, z(πj+1,t), ..., z(πN,t)
)

(66)

Then the optimally equation can be stated as follows:

u∗t (π1,t, .., πj,t, .., πk,t, .., πN,t) =

N∑
i=1

πi,t +βEµ′
j,t+1

[
u∗t+1(z(πj,t), πk,tγ

v
0 + (1−πk,t)γv1 ,µ′j,t+1)

]
(67)

Similarly the optimality inequality for the state (π1,t, .., π
′
j,t, .., πk,t, .., πN,t) can be stated as follows:

u∗t (π1,t, .., π
′
j,t, .., πk,t, .., πN,t)≥ π′j,t +

N∑
i=1,i 6=j

πi,t +βEµ′
j,t+1

[
u∗t+1(z(π

′
j,t), πk,tγ

v
0 + (1−πk,t)γv1 ,µ′j,t+1)

]
(68)

Since z(.) is nondecreasing and πj,t ≤ π′j,t, z(πj,t) ≤ z(π′j,t). Thus, by induction hypothesis,

Eµ′
j,t+1

[
u∗t+1(z(πj,t), πk,tγ

v
0 + (1−πk,t)γv1 ,µ′j,t+1)

]
≤Eµ′

j,t+1

[
u∗t+1(z(π

′
j,t), πk,tγ

v
0 + (1−πk,t)γv1 ,µ′j,t+1)

]
.

It then implies that

u∗t (π1,t, .., πj,t, .., πk,t, .., πN,t)≤ u∗t (π1,t, .., π
′
j,t, .., πk,t, .., πN,t)

Similarly, the optimality inequality for the state (π1,t, .., πj,t, .., π
′
k,t, .., πN,t) can be stated as follows:

u∗t (π1,t, .., πj,t, .., π
′
k,t, .., πI,t)≥ π′k,t +

N∑
i=1,i 6=k

πi,t +βEµ′
j,t+1

[
u∗t+1(z(πj,t), π

′
k,tγ

v
0 + (1−π′k,t)γv1 ,µ′j,t+1)

]
(69)

Since πk,t ≤ π′k,t, and γv0 ≥ γv1 the following inequality holds by induction hypothesis: u∗t+1(z(πj,t), πk,tγ
v
0 +(1−

πk,t)γ
v
1 ,µ

′
j,t+1)≤ u∗t+1(z(πj,t), π

′
k,tγ

v
0 + (1−π′k,t)γv1 ,µ′j,t+1)).

Thus, Eµ′
j,t+1

[
u∗t+1(z(πj,t), πk,tγ

v
0 + (1−πk,t)γv1 ,µ′j,t+1)

]
≤Eµ′

j,t+1

[
u∗t+1(z(πj,t), π

′
k,tγ

v
0 + (1−π′k,t)γv1 ,µ′j,t+1)

]
.

It then implies that

u∗t (π1,t, .., πj,t, .., πk,t, .., πN,t)≤ u∗t (π1,t, .., πj,t, .., π
′
k,t, .., πN,t)

Case(3) Patient j with information πj,t is scheduled for an OA while patient k is not scheduled

for any appointment with information πk,t

We define a random realization vector µ′k,t+1 except patients k and j as follows:

µ′k,t+1 =
(
γo1,t, ..., γ

o
j−1,t, γ

o
j+1,t, ..., γ

o
Co,t, γ

v
Co+1,t, ..., γ

v
Co+Cv ,t, z(πCo+Cv+1,t), ..., z(πk−1,t)

, z(πk+1,t), ..., z(πN,t)
)

(70)

Similar to the previous cases, then the optimality equation can be stated as follows:

u∗t (π1,t, .., πj,t, .., πk,t, .., πN,t) =

N∑
i=1

πi,t +βEµ′
k,t+1

[
πj,tu

∗
t+1(γ

o
0 , z(πk,t), µ

′
k,t+1)

+ (1−πj,t)u∗t+1(γ
o
1 , z(πk,t), µ

′
k,t+1)

]
(71)
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Similarly, the optimality inequality for the state (π1,t, .., πj,t, .., π
′
k,t, .., πN,t) can be stated as follows:

u∗t (π1,t, .., πj,t, .., π
′
k,t, .., πN,t)≥ π′k,t +

N∑
i=1,i 6=k

πi,t +βEµ′
k,t+1

[
πj,tu

∗
t+1(γ

o
0 , z(π

′
k,t),µ

′
j,t+1)

+ (1−πj,t)u∗t+1(γ
o
1 , z(π

′
k,t),µ

′
j,t+1)

]
(72)

Since z(.) is nondecreasing and πk,t ≤ π′k,t, z(πk,t) ≤ z(π′k,t). So Eµ′
k,t+1

[
πj,tu

∗
t+1(γ

o
0 , z(πk,t), µ

′
k,t+1) + (1 −

πj,t)u
∗
t+1(γ

o
1 , z(πk,t), µ

′
k,t+1)

]
≤Eµ′

k,t+1

[
πj,tu

∗
t+1(γ

o
0 , z(π

′
k,t), µ

′
k,t+1) + (1−πj,t)u∗t+1(γ

o
1 , z(π

′
k,t), µ

′
k,t+1)

]
.

It then implies that:

u∗t (π1,t, .., πj,t, .., πk,t, .., πN,t)≤ u∗t (π1,t, .., πj,t, .., π
′
k,t, .., πN,t) (73)

We then define the optimality inequality for the state (π1,t, .., π
′
j,t, .., πk,t, .., πN,t) as follows:

u∗t (π1,t, .., π
′
j,t, .., πk,t, .., πN,t)≥ πj,t +

N∑
i=1,6=j

πi,t +βEµ′
j,t+1

[
π′j,tu

∗
t+1(γ

o
0 , z(πk,t),µ

′
j,t+1)

+ (1−π′j,t)u∗t+1(γ
o
1 , z(πk,t),µ

′
j,t+1)

]
(74)

Since πj,t ≤ π′j,t and γo1 ≤ γo0 the following inequality holds by induction: u∗t+1(γ
v
1 , z(πk,t),µ

′
j,t+1) ≤

u∗t+1(γ
o
0 , z(πk,t),µ

′
j,t+1).

Thus,

Eµ′
k,t+1

[
πj,tu

∗
t+1(γ

o
0 , z(πk,t), µ

′
k,t+1) + (1−πj,t)u∗t+1(γ

o
1 , z(πk,t), µ

′
k,t+1)

]
≤Eµ′

k,t+1

[
π′j,tu

∗
t+1(γ

o
0 , z(πk,t), µ

′
k,t+1) + (1−π′j,t)u∗t+1(γ

o
1 , z(πk,t), µ

′
k,t+1)

]
(75)

It then implies that

u∗t (π1,t, .., πj,t, .., πk,t, .., πN,t)≤ u∗t (π1,t, .., π
′
j,t, .., πk,t, .., πN,t) (76)

Case(4) Patient j with information πj,t is not scheduled for any appointment while patient k is

not scheduled for any appointment with information πk,t

We define a random realization vector µ
′

k,t+1 except patients k and j as follows:

µ′k,t+1 =
(
γo1,t, ..., γ

o
Co,t, γ

v
Co+1,t, ..., γ

v
Co+Cv ,t, z(πCo+Cv+1,t), ..., z(πj−1,t), z(πj+1,t), ..., z(πk−1,t)

, z(πk+1,t), ..., z(πN,t)
)

(77)

Similar to the previous cases, then the optimality equation can be stated as follows:

u∗t (π1,t, .., πj,t, .., πk,t, .., πN,t) =

N∑
i=1

πi,t +βEµ′
k,t+1

[
u∗t+1(z(πj,t), z(πk,t), µ

′
k,t+1)

]
(78)

Similarly, the optimality inequality for the state (π1,t, .., πj,t, .., π
′
k,t, .., πN,t) can be stated as follows:

u∗t (π1,t, .., πj,t, .., π
′
k,t, .., πN,t)≥ π′k,t +

N∑
i=1,i 6=k

πi,t +βEµ′
j,t+1

[
u∗t+1(z(πj,t), z(π

′
k,t),µ

′
j,t+1)

]
(79)

Since z(.) is nondecreasing and πk,t ≤ π′k,t, z(πk,t) ≤ z(π′k,t). So Eµ′
j,t+1

[
u∗t+1(z(πj,t), z(πk,t), µ

′
k,t+1)

]
≤

Eµ′
j,t+1

[
u∗t+1(z(πj,t), z(π

′
k,t),µ

′
j,t+1)

]
.
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It then implies that

u∗t (π1,t, .., πj,t, .., πk,t, .., πN,t)≤ u∗t (π1,t, .., πj,t, .., π
′
k,t, .., πN,t)

Similarly, we then define the optimality inequality for the state (π1,t, .., π
′
j,t, .., πk,t, .., πN,t) as follows:

u∗t (π1,t, .., π
′
j,t, .., πk,t, .., πN,t)≥ π′j,t +

N∑
i=1,6=j

πi,t +βEµ′
j,t+1

[
u∗t+1(z(π

′
j,t), z(πk,t),µ

′
j,t+1)

]
(80)

Since z(.) is nondecreasing and πj,t ≤ π′j,t, z(πj,t) ≤ z(π′j,t). So Eµ′
j,t+1

[
u∗t+1(z(πj,t), z(πk,t), µ

′
k,t+1)

]
≤

Eµ′
j,t+1

[
u∗t+1(z(π

′
j,t), z(πk,t), µ

′
k,t+1)

]
.

It then implies that

u∗t (π1,t, .., πj,t, .., πk,t, .., πN,t)≤ u∗t (π1,t, .., π
′
j,t, .., πk,t, .., πN,t)

Then this completes the proof that for Model T, u∗t (π1,t, .., πN,t) is nondecreasing in πi,t for all i∈ {1,2, ...,N}

and for all t∈ {1,2, ..., T}.

�

Similarly, in Lemma 4, we show that u∗t (π1,t, ..., πN,t) is componentwise convex in πi,t for Model T.

Lemma 4. Suppose there are N patients. For all i ∈ {1,2, ...,N} and for all t ∈ {1,2, ..., T}, u∗t (π1,t, ..., πN,t)

is componentwise convex in πi,t for Model T.

Proof:

We show that the following inequality holds to prove that the u∗t (π1,t, ..., πN,t) function is convex in each πj,t,

∀j ∈ {1,2, ...,N} and all t∈ {1,2, ..., T}.

u∗t (π1,t, .., νπj,t + (1− ν)π′j,t, .., πk,t, .., πN,t)

≤ νu∗t (π1,t, .., πj,t, .., πk,t, .., πN,t) + (1− ν)u∗t (π1,t, .., π
′
j,t, .., πk,t, .., πN,t) (81)

We use induction to prove equation 81. For period T , u∗T (π1,T , ..., πN,T ) =
∑N

i=1 πi,T , it is linear and so convex

in each πi,T . With induction, we assume that u∗t+1(π1,t+1, ..., πN,t+1) is convex in all πi,t+1. We will be considering

the following three cases to prove that u∗t (π1,t, ..., πN,t) is convex:

Case(1) Patient j with information νπj,t + (1− ν)π′j,t is scheduled for an OA

We define µ′j,t+1 to represent the information of all patients except for patient j in period t+ 1.

µ′j,t+1 =
(
γo1,t, ..., γ

o
j−1,t, γ

o
j+1,t, ..., γ

o
Co,t, ..., γ

v
Co+Cv ,t, z(πCo+Cv+1,t), ..., z(πN,t)

)
(82)

Then we represent the value function as follows:

u∗t (π1,t, ..., νπj,t + (1− ν)π′j,t, ..., πN,t) = [νπj,t + (1− ν)π′j,t] +

N∑
i=1,i 6=j

πi,t

+βEµ′
j,t+1

[(
νπj,t + (1− ν)π′j,t

)[
u∗t+1(γ

o
0 ,µ

′
j,t+1)

]
+
(
1− (νπj,t + (1− ν)π′j,t)

)[
u∗t+1(γ

o
1 ,µ

′
j,t+1)

]]
(83)

= νπj,t + ν

N∑
i=1,i 6=j

πi,t +βνEµ′
j,t+1

[
πj,t
[
u∗t+1(γ

o
0 ,µ

′
j,t+1)

]
+ (1−πj,t)

[
u∗t+1(γ

o
1 ,µ

′
j,t+1)

]]
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+ (1− ν)π′j,t + (1− ν)

N∑
i=1,i 6=j

πi,t +β(1− ν)Eµ′
j,t+1

[
π′j,t
[
u∗t+1(γ

o
0 ,µ

′
j,t+1)

]
+ (1−π′j,t)

[
u∗t+1(γ

o
1 ,µ

′
j,t+1)

]]
(84)

By the definition of optimality equation, the value for the system with state (π1,t, ..., πj,t, ..., πN,t) is greater

or equal than the present discounted value if the policy is to schedule Patient 1,2, ...,Co for office appointments

and Patient Co+1, ...,Co+v for virtual appointments in period t. Therefore;

u∗t (π1,t, ..., πj,t, ..., πN,t)≥ πj,t +

N∑
i=1,i 6=j

πi,t +βEµ′
j,t+1

[
πj,t
[
u∗t+1(γ

o
0 ,µ

′
j,t+1)

]
+ (1−πj,t)

[
u∗t+1(γ

o
1 ,µ

′
j,t+1)

]]
(85)

where the left hand side is the value of the system when system state is (π1,t, .., πj,t, .., πN,t) at period t; and

the right hand side is the discounted present value if the action in Period t is to schedule Patient 1,2, ...,Co for

office appointments and Patient Co+1, ...,Co+v for virtual appointments and from Period t+ 1 on is governed by

optimal policy.

Similarly;

u∗t (π1,t, ..., π
′
j,t, ..., πN,t)≥ π′j,t +

N∑
i=1,i 6=j

πi,t +βEµ′
j,t+1

[
π′j,t
[
u∗t+1(γ

o
0 ,µ

′
j,t+1)

]
+ (1−π′j,t)

[
u∗t+1(γ

o
1 ,µ

′
j,t+1)

]]
(86)

Multiplying equation 85 by ν and equation 86 by (1− ν) and summing, the resulting right hand side is equal

to the right hand side of equation 84.

This implies that:

u∗t (π1,t, ..., νπj,t + (1− ν)π′j,t, ..., πN,t)≤ νu∗t (π1,t, ..., πj,t, ..., πN,t) + (1− ν)u∗t (π1,t, ..., π
′
j,t, ..., πN,t)

Case(2) Patient j with information νπj,t + (1− ν)π′j,t is scheduled for a VA

We define µ′j,t+1 to represent the information of all patients except for patient j in period t+ 1.

µ′j,t+1 =
(
γo1,t, ..., γ

o
Co,t, γ

v
Co+1,t, ..., γ

v
j−1,t, γ

v
j+1,t, ..., γ

v
Co+Cv ,t, z(πCo+Cv+1,t), ..., z(πN,t)

)
(87)

Then we represent the value function as follows:

u∗t (π1,t, ..., νπj,t + (1− ν)π′j,t, ..., πN,t) = [νπj,t + (1− ν)π′j,t] +
N∑

i=1,i 6=j

πi,t

+βEµ′
j,t+1

[[
u∗t+1(

(
νπj,t + (1− ν)π′j,t

)
γv0 +

(
1− (νπj,t + (1− ν)π′j,t)γ

v
1 ,µ

′
j,t+1)

)]]
(88)

By the definition of optimality equation, the value for the system with state (π1,t, ..., πj,t, ..., πN,t) is greater

or equal than the present discounted value if the policy is to schedule Patient 1,2, ...,Co for office appointments

and Patient Co+1, ...,Co+v for virtual appointments in period t. Therefore;

u∗t (π1,t, ..., πj,t, ..., πN,t)≥ πj,t +

N∑
i=1,i 6=j

πi,t +βEµ′
j,t+1

[[
u∗t+1(πj,tγ

v
0 + (1−πj,t)γv1 ,µ′j,t+1)

]]
(89)

where the left hand side is the value of the system when system state is (π1,t, ..., πj,t, ..., πN,t) at period t; and

the right hand side is the discounted present value if the action in Period t is to schedule Patient 1,2, ...,Co for

office appointments and Patient Co+1, ...,Co+v for virtual appointments and from Period t+ 1 on is governed by

optimal policy.
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Similarly;

u∗t (π1,t, ..., π
′
j,t, ..., πN,t)≥ π′j,t +

N∑
i=1,i 6=j

πi,t +βEµ′
j,t+1

[[
u∗t+1(π

′
j,tγ

v
0 + (1−π′j,t)γv1 ,µ′j,t+1)

]]
(90)

Multiplying equation 89 by ν and equation 90 by (1− ν) and summing, the resulting right hand side is equal

to the following equation:

(1− ν)π′j,t + (1− ν)

N∑
i=1,i6=j

πi,t + (1− ν)βEµ′
j,t+1

[[
u∗t+1(π

′
j,tγ

v
0 + (1−π′j,t)γv1 ,µ′j,t+1)

]]

νπj,t + ν

N∑
i=1,i 6=j

πi,t + νβEµ′
j,t+1

[[
u∗t+1(πj,tγ

v
0 + (1−πj,t)γv1 ,µ′j,t+1)

]]
(91)

Since u∗t+1(·, ..., ·) is componentwise convex by induction the following inequality holds.

(1− ν)π′j,t + (1− ν)

N∑
i=1,i6=j

πi,t + (1− ν)βEµ′
j,t+1

[[
u∗t+1(π

′
j,tγ

v
0 + (1−π′j,t)γv1 ,µ′j,t+1)

]]

νπj,t + ν

N∑
i=1,i 6=j

πi,t + νβEµ′
j,t+1

[[
u∗t+1(πj,tγ

v
0 + (1−πj,t)γv1 ,µ′j,t+1)

]]
(92)

≥ [νπj,t + (1− ν)π′j,t] +

N∑
i=1,i6=j

πi,t

+βEµ′
j,t+1

[[
u∗t+1(

(
νπj,t + (1− ν)π′j,t

)
γv0 +

(
1− (νπj,t + (1− ν)π′j,t)γ

v
1 ,µ

′
j,t+1)

)]]
(93)

This implies that:

u∗t (π1,t, ..., νπj,t + (1− ν)π′j,t, ..., πN,t)≤ νu∗t (π1,t, ..., πj,t, ..., πN,t) + (1− ν)u∗t (π1,t, ..., π
′
j,t, ..., πN,t)

Case(3) Patient j with information νπj,t + (1− ν)π′j,t is not scheduled for any appointment

We define µ′j,t+1 to represent information vector of all patients except patient j as follows:

µ′j,t+1 =
(
γo1,t, ..., γ

o
Co,t, γ

v
Co+1,t, ..., γ

v
Co+Cv ,t, z(πCo+Cv+1,t), ..., z(πj−1,t), z(πj+1,t), ..., z(πN,t)

)
(94)

The optimality equation can be stated as follows:

u∗t (π1,t, ..., νπj,t + (1− ν)π′j,t, ..., πN,t) = [νπj,t + (1− ν)π′j,t] +

N∑
i=1,i 6=j

πi,t

+βEµ′
j,t+1

[
u∗t+1(z(νπj,t + (1− ν)π′j,t),µ

′
j,t+1)

]
(95)

= [νπj,t + (1− ν)π′j,t] +

N∑
i=1,i 6=j

πi,t +βEµ′
j,t+1

[
u∗t+1(νz(πj,t) + (1− ν)z(π′j,t),µ

′
j,t+1)

]
(96)

≤ νπj,t + ν

N∑
i=1,i 6=j

πi,t +βνEµ′
j,t+1

[
u∗t+1(z(πj,t),µ

′
j,t+1)

]
+ [(1− ν)π′j,t] + (1− ν)

N∑
i=1,i 6=j

πi,t

+β(1− ν)Eµ′
j,t+1

[
u∗t+1(z(π

′
j,t),µ

′
j,t+1)

]
(97)

Equality 95 holds by the definition of the optimality equation. Equality 96 holds as z(πi,t) is linear in πi,t.

Inequality 97 holds since u∗t+1(·, ..., ·) is componentwise convex by induction assumption and because expectation

is a linear operator. By definition of the optimality equation and an argument similar to equations 41 and 42,

u∗t (π1,t, ..., πj,t, ..., πN,t)≥ πj,t +

N∑
i=1,i 6=j

πi,t +βEµ′
j,t+1

[
u∗t+1(z(πj,t),µ

′
j,t+1)

]
(98)
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Similarly;

u∗t (π1,t, ..., π
′
j,t, ..., πN,t)≥ π′j,t +

N∑
i=1,i 6=j

πi,t +βEµ′
j,t+1

[
u∗t+1(z(π

′
j,t),µ

′
j,t+1)

]
(99)

Therefore, multiplying equation 98 by ν and 99 by (1− ν) and summing

νu∗t (π1,t, ..., πj,t, ..., πN,t) + (1− ν)u∗t (π1,t, .., π
′
j,t, .., πk,t, .., πN,t)

≥ νπj,t + ν

N∑
i=1,i 6=j

πi,t +βνEµ′
j,t+1

[
u∗t+1(z(πj,t),µ

′
j,t+1)

]
+ (1− ν)π′j,t + (1− ν)

N∑
i=1,i 6=j

πi,t

+β(1− ν)Eµ′
j,t+1

[
u∗t+1(z(πj,t),µ

′
j,t+1)

]
(100)

≥ u∗t (π1,t, ..., νπj,t + (1− ν)π′j,t, ..., πN,t) (101)

This completes the proof of convexity for Model T.

�

We next characterize the optimal scheduling policy for VAs when the OA scheduling decisions are fixed in

Model TD and T. We use the following Proposition 1 Item 2 to show the proof of Theorem 1.

Proof of Proposition 1 Item 2 Suppose there are N patients and Condition 1 and Condition 2 in Sec-

tion 4 are met. Consider any arbitrary allocation of Co patients to OAs capacity in a period t∈ {1,2, ..., T −1}.

Reindex the remaining patients by their information vectors such that π1,t ≤ π2,t ≤ ...≤ πN−Co,t. Then the opti-

mal policy is to schedule patients 1,2, ...,Cv for VAs in a period t∈ {1,2, ..., T − 1}. Without loss of generality,

let us define two policies;

Policy 1: Patients {1,3, ...,Cv+1} are scheduled for VAs and patients {2,Cv+2, ...,CN−Co} are not scheduled

(NS) in period t.

Policy 2: Patients {2,3, ...,Cv+1} are scheduled for VAs and patients {1,Cv+2, ...,CN−Co} are not scheduled

(NS) in period t.

We define µ′t+1 which represents the information vector of all patients except patient 1 and patient 2 in period

t+ 1.

µ′t+1 =
(
γv3,t, ..., γ

v
Cv+1,t, z(πCv+2,t), z(πCv+3,t), ..., z(πN−Co,t)

)
(102)

We prove this item for TD and T models separately.

1-Both Treatment and Diagnosis (TD) Model

If optimal policy is followed from period t+ 1 to the end of the horizon, we define the value of Policy 1 as

follows:

ut
(
π1,t, ..., πN,t; 1∈ V A,2∈NS

)
=

N∑
i=1

πi,t +βEµ′
t+1

[
π1,tu

∗
t+1(γ

v
0 , z(π2,t),µ

′
t+1)

+ (1−π1,t)u
∗
t+1(γ

v
1 , z(π2,t),µ

′
t+1)

]
(103)

=

N∑
i=1

πi,t +βEµ′
t+1

[
π1,tu

∗
t+1(p, z(π2,t),µ

′
t+1) + (1−π1,t)u

∗
t+1(qvp, z(π2,t),µ

′
t+1)

]
(104)
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Similarly, if Patient 2 is scheduled instead of Patient 1 in period t and the optimal policy is followed from

period t+ 1 until the end of the horizon, the value of Policy 2 can be expressed as follows:

ut
(
π1,t, ..., πN,t; 2∈ V A,1∈NS

)
=

N∑
i=1

πi,t +βEµ′
t+1

[
π2,tu

∗
t+1(z(π1,t), γ

v
0 ,µ

′
t+1)

(1−π2,t)u
∗
t+1(z(π1,t), γ

v
0 ,µ

′
t+1)

]
(105)

=

N∑
i=1

πi,t +βEµ′
t+1

[
π2,tu

∗
t+1(z(π1,t), p,µ

′
t+1) + (1−π2,t)u

∗
t+1(z(π1,t), qvp,µ

′
t+1)

]
(106)

Now we show that ut
(
π1,t, ..., πN,t; 1∈ V A,2∈NS

)
≥ ut

(
π1,t, ..., πN,t; 2∈ V A,1∈NS

)
by showing that for any

given realization µ′t+1 the following inequality holds:

π1,tu
∗
t+1(p, z(π2,t),µ

′
t+1) + (1−π1,t)u

∗
t+1(qvp, z(π2,t),µ

′
t+1)

≥ π2,tu
∗
t+1(z(π1,t), p,µ

′
t+1) + (1−π2,t)u

∗
t+1(z(π1,t), qvp,µ

′
t+1) (107)

let us define f((π1,t, π2,t);µ
′
t+1), f((π2,t, π1,t);µ

′
t+1) and g((π1,t, π2,t);µ

′
t+1)

f((π1,t, π2,t);µ
′
t+1) = π1,tu

∗
t+1(p, z(π2,t),µ

′
t+1) + (1−π1,t)u

∗
t+1(qvp, z(π2,t),µ

′
t+1)

f((π2,t, π1,t);µ
′
t+1) = π2,tu

∗
t+1(z(π1,t), p,µ

′
t+1) + (1−π2,t)u

∗
t+1(z(π1,t), qvp,µ

′
t+1)

g((π1,t, π2,t);µ
′
t+1) = f((π1,t, π2,t);µ

′
t+1)− f((π2,t, π1,t;µ

′
t+1) (108)

Note that u∗t+1(z(π1,t), p,µ
′
t+1) = u∗t+1(p, z(π1,t),µ

′
t+1) and u∗t+1(z(π1,t), qvp,µ

′
t+1) = u∗t+1(qvp, z(π1,t),µ

′
t+1). To

prove that the inequality 107 holds we need to show that g((π1,t, π2,t);µ
′
t+1)≥ 0

Next, we show Leamma 5. Lemma 5 presents an intermediate result which is used to prove Proposition 1

Item 2.

Lemma 5. Given any 0≤ π1,t ≤ 1 there are two possible cases for g((π1,t,1);µ′t+1) ;

(i) When π1,t = 1, g((π1,t,1);µ′t+1) = 0

(ii) When π1,t < 1, g(π1,t,1);µ′t+1)≥ 0

where g((π1,t,1);µ′t+1) is defined as follows:

g((π1,t,1);µ′t+1) =
[
π1,tu

∗
t+1(p, z(π2,t),µ

′
t+1) + (1−π1,t)u

∗
t+1(qvp, z(π2,t),µ

′
t+1)

]
−u∗t+1(z(π1,t), p,µ

′
t+1)

=
[
π1,tu

∗
t+1(p, p,µ

′
t+1) + (1−π1,t)u

∗
t+1(qvp, p,µ

′
t+1)

]
−u∗t+1(z(π1,t), p,µ

′
t+1) (109)

Proof:

(i) When π1,t = 1, g((π1,t,1);µ′t+1) = u∗t+1(p, p,µ
′
t+1)−

[
u∗t+1(p, p,µ

′
t+1)

]
= 0

(ii) When π1,t < 1, the following inequality holds: g((π1,t,1);µ′t+1) ≥ 0, since both u∗t+1(p, p,µ
′
t+1) and

u∗t+1(qvp, p,µ
′
t+1) are greater and equal to the third term in Equation 109, u∗t+1(z(π1,t), p,µ

′
t+1). Note that

u∗t+1(·, ..., ·) is increasing and according to the Condition 2, the worst possible information value of patient i in

period t+ 1 (πi,t+1) if he was scheduled for a VA in period t (πi,t+1 = qvp), is better than the best possible infor-

mation value of patient k in period t+1 if he was not scheduled in any appointment in period t, πk,t+1 = (z(πk,t))

where qv ≥ p.

�

Through Lemma 6, we define another intermediate result that is used in Proposition 1 Item 2.
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Lemma 6. Given any 0≤ π1,t ≤ 1, there are two possible cases for g((π1,t,0);µ′t+1) ;

(i) When π1,t = 0, g((π1,t,0);µ′t+1) = 0

(ii) When 0≤ π1,t ≤ 1 g((π1,t,0);µ′t+1)≤ 0

where g((π1,t,0);µ′t+1) is defined as follows:

g((π1,t,0);µ′t+1) = π1,tu
∗
t+1(p, z(π2,t),µ

′
t+1) + (1−π1,t)u

∗
t+1(qvp, z(π2,t),µ

′
t+1)−u∗t+1(z(π1,t), qvp,µ

′
t+1) (110)

g((π1,t,0);µ′t+1) = π1,tu
∗
t+1(p,0,µ

′
t+1) + (1−π1,t)u

∗
t+1(qvp,0,µ

′
t+1)−u∗t+1(z(π1,t), qvp,µ

′
t+1) (111)

Proof:

(i) When π1,t = 0, g((π1,t,0);µ′t+1) can be expressed as follows: g((π1,t,0);µ′t+1) = u∗t+1(qvp,0, µ
′
t+1) −

u∗t+1(0, qvp,µ
′
t+1) = 0, since u∗t+1(qvp,0, µ

′
t+1) = u∗t+1(0, qvp,µ

′
t+1).

(ii) We prove this item by contradiction. Suppose g((π1,t,0),µ′t+1)≥ 0

– Let consider the case where π2,t ∈ [π1,t,1]

when π1,t = π2,t, g((π1,t, π1,t);µ
′
t+1) = 0 and g((π1,t;π2,t);µ

′
t+1)> 0 for π2,t ∈ [π1,t,1] by Lemma 5. By symmetry

when π2,t ≤ π1,t, the following equation holds g((π1,t, π2,t);µ
′
t+1)≤ 0. Then, for π2,t = 0 the equation becomes

g((π1,t,0);µ′t+1)≤ 0 which contradicts with the assumption that g((π1,t,0);µ′t+1)> 0

– Let consider the case where π2,t ∈ [0, π1,t] and according to the assumption, the following inequality should

hold: g((π1,t, π2,t);µ
′
t+1)> 0

If this assumption is true, similarly by symmetry when π2,t ≥ π1,t g((π1,t, π2,t);µ
′
t+1) ≤ 0. When π2,t = 1 it

becomes as follows: g((π1,t,1);µ′t+1)≤ 0 which contradicts Lemma 5 where g((π1,t,1);µ′t+1)≥ 0.

Lemma 7 presents an intermediate result which is used to prove Proposition 1 Item 2. �

Lemma 7. For any given π1,t and µ′t+1, we show that the following inequality holds:

g((π1,t, (αx+ (1−α)y));µ′t+1)≤ αg((π1,t, x);µ′t+1) + (1−α)g((π1,t, y);µ′t+1) (112)

where ∀α∈ [0,1] and x, y ∈ [0,1].

Proof:

By definition of g((π1,t, .);µ
′
t+1), the right hand side of Equation 112 can be written as follows:

αg((π1,t, x);µ′t+1) + (1−α)g((π1,t, y);µ′t+1) = π1,t[αu
∗
t+1(p, z(x),µ′t+1) + (1−α)u∗t+1(p, z(y),µ′t+1)]

+ (1−π1,t)[αu
∗
t+1(qvp, z(x),µ′t+1)

+ (1−α)u∗t+1(qvp, z(y),µ′t+1)]

− [αx+ (1−α)y]u∗t+1(z(π1,t), p,µ
′
t+1)

− [α(1−x) + (1−α)(1− y)]u∗t+1(z(π1,t), qvp,µ
′
t+1) (113)

Also, by definition of g((π1,t, .);µ
′
t+1), g((π1,t, (αx+ (1−α)y));µ′t+1) can be written as follows:

g((π1,t, (αx+ (1−α)y));µ′t+1) = π1,tu
∗
t+1(p,αz(x) + (1−α)z(y),µ′t+1)

+ (1−π1,t)u
∗
t+1(qvp,αz(x) + (1−α)z(y),µ′t+1)
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− [αx+ (1−α)y]u∗t+1(z(π1,t), p,µ
′
t+1)

− (1− [αx+ (1−α)y])u∗t+1(z(π1,t), qvp,µ
′
t+1) (114)

Since u∗t+1(p, z(x),µ′t+1) is componentwise convex in each element then;

αu∗t+1(p, z(x),µ′t+1) + (1−α)u∗t+1(p, z(y),µ′t+1)≥ u∗t+1(p,αz(x) + (1−α)z(y),µ′t+1) (115)

αu∗t+1(qvp, z(x),µ′t+1) + (1−α)u∗t+1(qvp, z(y),µ′t+1)≥ u∗t+1(qvp,αz(x) + (1−α)z(y),µ′t+1) (116)

By substituting Equations 115 and 116 into the right hand side of 113, we prove Equation 112.

By Lemmas 5, 6, and 7, g((π1,t, π2,t);µ
′
t+1) is a univariate continuous and convex function, which takes

value g((π1,t, π2,t);µ
′
t+1) ≥ 0 when π2,t = 1 and g((π1,t, π2,t);µ

′
t+1) ≤ 0 when π2,t = 0. We also know that

g((π1,t, π2,t);µ
′
t+1) = 0 for π1,t = π2,t. Thus, ∀ π2,t ≥ π1,t, when Condition 2 is met g((π1,t, π2,t);µ

′
t+1)≥ 0.

Therefore by the argument in the beginning of the proof, every patient scheduled for VAs must have a smaller

information value than patients in the unscheduled group and Condition 2 should be met.

�

2-Only Treatment Case

Consider same policies, i.e., Policy 1 and Policy 2, for Model T. If optimal policy is followed from period t+ 1

to the end of the horizon, Policy 1 can be defined for Model T as follows;

ut
(
π1,t, ..., πN,t; 1∈ V A,2∈NS

)
=

N∑
i=1

πi,t +βEµ′
t+1

[
u∗t+1(π1,tγ

v
0 + (1−π1,t)γ

v
1 , z(π2,t),µ

′
t+1)

]
=

N∑
i=1

πi,t +βEµ′
t+1

[
u∗t+1(π1,tp+ (1−π1,t)qvp, z(π2,t),µ

′
t+1)

]
(117)

Similarly, if optimal policy is followed from period t+ 1 to the end of the horizon, Policy 2 can be defined for

Model T as follows;

ut
(
π1,t, ..., πN,t; 2∈ V A,1∈NS

)
=

N∑
i=1

πi,t +βEµ′
t+1

[
u∗t+1(z(π1,t), π2,tγ

v
0 + (1−π2,t)γ

v
1 ,µ

′
t+1)

]
=

N∑
i=1

πi,t +βEµ′
t+1

[
u∗t+1(z(π1,t), π2,tp+ (1−π2,t)qvp,µ

′
t+1)

]
(118)

Now we show that ut
(
π1,t, ..., πN,t; 1∈ V A,2∈NS

)
≥ ut

(
π1,t, ..., πN,t; 2∈ V A,1∈NS

)
by showing that for any

given realization µ′t+1 the following inequality holds:

u∗t+1(π1,tp+ (1−π1,t)qvp, z(π2,t),µ
′
t+1)≥ u∗t+1(z(π1,t), π2,tp+ (1−π2,t)qvp,µ

′
t+1) (119)

let us define f((π1,t, π2,t);µ
′
t+1), f((π2,t, π1,t);µ

′
t+1) and g((π1,t, π2,t);µ

′
t+1)

f((π1,t, π2,t);µ
′
t+1) = u∗t+1(π1,tp+ (1−π1,t)qvp, z(π2,t),µ

′
t+1)

f((π2,t, π1,t);µ
′
t+1) = u∗t+1(z(π1,t), π2,tp+ (1−π2,t)qvp,µ

′
t+1)

g((π1,t, π2,t);µ
′
t+1) = f((π1,t, π2,t))− f((π2,t, π1,t) (120)

�

Lemma 8 presents an intermediate result which is used to prove Proposition 1 Item 2.
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Lemma 8. Given any 0≤ π1,t ≤ 1, there are two possible cases for g((π1,t,1);µ′t+1);

(i) When π1,t = 1, g((π1,t,1);µ′t+1) = 0

(ii) When π1,t < 1, g(π1,t,1);µ′t+1)≥ 0

Proof: (i) When π1,t = 1, g((π1,t,1);µ′t+1) = 0

g((π1,t,1);µ′t+1) =
[
u∗t+1(π1,tp+ (1−π1,t)qvp, z(π2,t),µ

′
t+1)

]
−u∗t+1(z(π1,t), π2,tp+ (1−π2,t)qvp,µ

′
t+1)

=
[
u∗t+1(π1,tp+ (1−π1,t)qvp, p,µ

′
t+1)

]
−u∗t+1(π1,tp, p,µ

′
t+1) (121)

= u∗t+1(p, p,µ
′
t+1)−

[
u∗t+1(p, p,µ

′
t+1)

]
= 0 (122)

(ii) When π1,t < 1; the following inequality holds;

g((π1,t,1);µ′t+1) =
[
u∗t+1(π1,tp+ (1−π1,t)qvp, z(π2,t),µ

′
t+1)

]
−u∗t+1(z(π1,t), π2,tp+ (1−π2,t)qvp,µ

′
t+1) (123)[

u∗t+1(π1,tp+ (1−π1,t)qvp, p,µ
′
t+1)

]
−u∗t+1(π1,tp, p,µ

′
t+1)≥ 0 (124)

The inequality 124 holds since the value function is a nondecreasing componentwise convex function and π1,tp+

(1−π1,t)qvp≥ π1,tp by Condition 2 where it ensures that qvp≥ p.

�

Lemma 9 presents an intermediate result which is used to prove Proposition 1 Item 2.

Lemma 9. Given any 0≤ π1,t ≤ 1, there are two possible cases for g((π1,t,0);µ′t+1);

(i) When π1,t = 0, g((π1,t,0);µ′t+1) = 0

(ii) When 0≤ π1,t ≤ 1, g((π1,t,0);µ′t+1)≤ 0

Proof:

g((π1,t,0);µ′t+1) =
[
u∗t+1(π1,tp+ (1−π1,t)qvp,0,µ

′
t+1)

]
−u∗t+1(z(π1,t), qvp,µ

′
t+1) (125)

(i) When π1,t = 0, g((π1,t,0);µ′t+1) = u∗t+1(qvp,0,µ
′
t+1) − u∗t+1(0, qvp,µ

′
t+1) = 0, since u∗t+1(qvp,0,µ

′
t+1) =

u∗t+1(0, qvp,µ
′
t+1)

(ii) When 0≤ π1,t ≤ 1, g((π1,t,0),µ′t+1)≤ 0.

We prove this item by contradiction. Suppose g((π1,t,0),µ′t+1)> 0.

– Let consider the case where π2,t ∈ [π1,t,1]

when π1,t = π2,t, g((π1,t, π1,t);µ
′
t+1) = 0 . For the cases where π2,t ∈ [π1,t,1] , g((π1,t;π2,t);µ

′
t+1)≥ 0 by Lemma

8. By symmetry when π2,t ≤ π1,t, the following equation holds g((π1,t, π2,t);µ
′
t+1) ≤ 0. Then, for π2,t = 0 this

inequality becomes g((π1,t,0);µ′t+1)≤ 0 which contradicts with the assumption that g((π1,t,0);µ′t+1)> 0

– Let consider the case where π2,t ∈ [0, π1,t]

With the assumption that the following inequality should hold: g((π1,t, π2,t);µ
′
t+1) > 0 when π2,t ≤ π1,t.

If this assumption is true, similarly by symmetry the following statement should be true; when π2,t ≥

π1,t, g((π1,t, π2,t);µ
′
t+1) ≤ 0. For π2,t = 1 this inequality becomes g((π1,t,1);µ′t+1) ≤ 0 which contradicts the

Lemma 8 which states that g((π1,t,1);µ′t+1) ≥ 0 when π2,t = 1. With Lemma 8 g((π1,t,1);µ′t+1) ≥ 0 therefore

g((1, π1,t);µ
′
t+1)≤ 0 (since g((1, π1,t) =−g((1, π1,t)), so g((π1,t,0);µ′t+1)≤ 0 that contradicts with the assumption

that g((π1,t,0);µ′t+1)≥ 0.
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�

Lemma 10 presents an intermediate result which is used to prove Proposition 1 Item 2.

Lemma 10. For any given π2,t and µ′t+1, we show that g((π1,t, π2,t);µ
′
t+1) is an increasing function in π2,t by

showing that the following inequality holds for π′2,t ≤ π2,t:

g((π1,t, π2,t);µ
′
t+1)− g((π1,t, π

′
2,t);µ

′
t+1)> 0 (126)

Proof:

For π1,t = π2,t >π
′
2,t the inequality 126 can be expressed as follows:

g((π1,t, π2,t);µ
′
t+1)− g((π1,t, π

′
2,t);µ

′
t+1)> 0 (127)

The left hand side of the inequality 127 is stated as follows:

g((π1,t, π2,t);µ
′
t+1)− g((π1,t, π

′
2,t);µ

′
t+1)

= u∗t+1(π1,tp+ (1−π1,t)qvp, z(π1,t),µ
′
t+1)−u∗t+1(z(π1,t), π1,tp+ (1−π1,t)qvp,µ

′
t+1)

−
[
u∗t+1(π1,tp+ (1−π1,t)qvp, z(π

′
2,t),µ

′
t+1)−u∗t+1(z(π1,t), π

′
2,tp+ (1−π′2,t)qvp,µ′t+1)

]
(128)

= 0−
[
u∗t+1(π1,tp+ (1−π1,t)qvp, z(π

′
2,t),µ

′
t+1)−u∗t+1(z(π1,t), π

′
2,tp+ (1−π′2,t)qvp,µ′t+1)

]
(129)

where u∗t+1(π1,tp + (1 − π1,t)qvp, z(π1,t),µ
′
t+1) = u∗t+1(z(π1,t), π1,tp + (1 − π1,t)qvp,µ

′
t+1). To show that

g((π1,t, π
′
2,t);µ

′
t+1) = u∗t+1(π1,tp+ (1− π1,t)qvp, z(π

′
2,t),µ

′
t+1)− u∗t+1(z(π1,t), π

′
2,tp+ (1− π′2,t)qvp,µ′t+1)≤ 0 we use

contradiction. Suppose g((π1,t, π
′
2,t);µ

′
t+1) > 0 when π1,t > π′2,t. This assumption contradicts Lemma 9 where

g((π1,t,0);µ′t+1)≤ 0.

This shows that g((π1,t, π2,t);µ
′
t+1) increases as π2,t increases.

�

By Lemmas 8, 9, 10 g((π1,t, π2,t);µ
′
t+1) is a univariate continuous and increasing function in π2,t, which

takes value g((π1,t, π2,t);µ
′
t+1) ≥ 0 when π2,t = 1 and g((π1,t, π2,t);µ

′
t+1) ≤ 0 when π2,t = 0. Therefore,

g((π1,t, π2,t);µ
′
t+1)≤ 0 when π2,t ≥ π1,t and the Conditions 1.2 is met.

Therefore, by the argument in the beginning of the proof, every patient scheduled for VAs must have a smaller

information value than the patients who are not scheduled for any medical intervention and the effectiveness of

the VAs (qv) should be greater than or equal to disease progression (p).

�

Lemma 11 characterizes the optimal scheduling policy for OAs and VAs when the non-scheduled patients are

fixed in Models TD and T. We use Lemma 1 in the proof of Theorem 1.

Lemma 11. Consider any arbitrary N −Co−Cv patients are not scheduled for any appointments in a period

t ∈ {1,2, ..., T − 1}. Reindex the remaining patients by their information vectors such that π1,t ≤ π2,t ≤ ... ≤

πCo+Cv,t
. Then the optimal policy is to schedule patients 1,2, ...,Co for OA and patients Co+1,Co+2, ...,Co+

Cv for VAs in any period t∈ {1,2, ..., T − 1}.
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Proof:

Without loss of generality, we define the following two policies;

Policy 1: Patients {1,3, ...,Co+1} are scheduled for OAs and patients {2,Co+2, ...,CCo+Cv} are scheduled for

VAs in period t.

Policy 2: Patients {2,3, ...,Co+1} are scheduled for OAs and patients {1,Co+2, ...,CCo+Cv} are scheduled for

VAs in period t.

We define µ′t+1 which represents the information vector of all patients except Patient 1 and Patient 2 in period

t+ 1.

µ′t+1 =
(
γo3,t, γ

o
4,t, ..., γ

o
Co+1,t, γ

v
Co+2,t, γ

v
Co+3,t, ..., γ

v
Co+Cv ,t

)
(130)

We perform our analyses for the following two model (Model TD and Model D) as follows:

1-Both Treatment and Diagnosis Model (Model TD)

If optimal policy is followed from period t+ 1 to the end of the horizon, we define the value of Policy 1 as

follows:

ut
(
π1,t, ..., πN,t; 1∈OA,2∈VA

)
=

N∑
i=1

πi,t +βEµ′
t+1

[
π2,tu

∗
t+1(γ

o
0 , γ

v
0 ,µ

′
t+1)

+ (1−π2,t)u
∗
t+1(γ

o
0 , γ

v
1 ,µ

′
t+1)

]
(131)

=

N∑
i=1

πi,t +βEµ′
t+1

[
π2,tu

∗
t+1(p, p,µ

′
t+1) + (1−π2,t)u

∗
t+1(p, qvp,µ

′
t+1)

]
(132)

where γo0 = γo1 = p, since OAs provide perfect treatment (Condition 1).

Similarly, if optimal policy is followed from period t+ 1 to the end of the horizon, Policy 2 can be defined as

follows:

ut
(
π1,t, ..., πN,t; 2∈OA,1∈VA

)
=

N∑
i=1

πi,t +βEµ′
t+1

[
π1,tu

∗
t+1(γ

v
0 , γ

o
0 ,µ

′
t+1)

(1−π1,t)u
∗
t+1(γ

v
1 , γ

o
0 ,µ

′
t+1)

]
(133)

=

I∑
i=1

πi,t +βEµ′
t+1

[
π1,tu

∗
t+1(p, p,µ

′
t+1) + (1−π1,t)u

∗
t+1(qvp, p,µ

′
t+1)

]
(134)

We show that ut
(
π1,t, ..., πN,t; 1∈OA,2∈VA

)
≥ ut

(
π1,t, ..., πN,t; 2∈OA,1∈VA

)
by showing that for any given

realization of µ′t+1, the following inequality holds:

π2,tu
∗
t+1(p, p,µ

′
t+1) + (1−π2,t)u

∗
t+1(p, qvp,µ

′
t+1)

≥ π1,tu
∗
t+1(p, p,µ

′
t+1) + (1−π1,t)u

∗
t+1(qvp, p,µ

′
t+1) (135)

Since u∗t+1(qvp, p,µ
′
t+1) = u∗t+1(p, qvp,µ

′
t+1) and u∗t+1(p, p,µ

′
t+1)≥ u∗t+1(qvp, p,µ

′
t+1), inequality 135 holds if and

only if π2,t ≥ π1,t. Therefore, by the argument in the beginning of the proof, every patient scheduled for OAs

must have a smaller information value (πi,t) than the patients scheduled for VAs when OAs provide perfect

treatment. �

2-Only Treatment Model (Model T)
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We use the same policies (i.e., Policy 1 and Policy 2) described in Model TD above. If optimal policy is

followed from period t+ 1 to the end of the horizon, Policy 1 can be defined as follows:

ut
(
π1,t, ..., πN,t; 1∈OA,2∈VA

)
=

N∑
i=1

πi,t +βEµ′
t+1

[
u∗t+1(γ

o
0 , π2,tγ

v
0 + (1−π2,t)γ

v
1 ,µ

′
t+1)

]
(136)

=

N∑
i=1

πi,t +βEµ′
t+1

[
u∗t+1(p,π2,tp+ (1−π2,t)qvp,µ

′
t+1)

]
(137)

Similarly, if optimal policy is followed from period t+ 1 to the end of the horizon, Policy 2 can be defined as

follows:

ut
(
π1,t, ..., πN,t; 2∈OA,1∈VA

)
=

N∑
i=1

πi,t +βEµ′
t+1

[
u∗t+1(π1,tγ

v
0 + (1−π1,t)γ

v
1 , γ

o
0 ,µ

′
t+1)

]
(138)

=

N∑
i=1

πi,t +βEµ′
t+1

[
u∗t+1(π1,tp+ (1−π1,t)qvp, p,µ

′
t+1)

]
(139)

We show that ut
(
π1,t, ..., πN,t; 1∈OA,2∈VA

)
≥ ut

(
π1,t, ..., πN,t; 2∈OA,1∈VA

)
by showing that for any given

realization of µ′t+1, the following inequality holds:

u∗t+1(p,π2,tp+ (1−π2,t)qvp,µ
′
t+1)≥ u∗t+1(π1,tp+ (1−π1,t)qvp, p,µ

′
t+1) (140)

where π2,tp + (1 − π2,t)qvp ≥ π1,tp + (1 − π1,t)qvp when π2,t ≥ π1,t. Then u∗t+1(p,π2,tp + (1 − π2,t)qvp,µ
′
t+1) ≥

u∗t+1(π1,tp+ (1−π1,t)qvp, p,µ
′
t+1) since u∗t+1(., .,µ

′
t+1) is a univariate continuous convex and increasing function.

Therefore, by the argument in the beginning of the proof, every patient scheduled for OAs must have a smaller

information value than the patients who are scheduled for VAs.

�

Through Theorem 2, we characterize the optimal scheduling policy for OAs in Model D.

Proof of Theorem 2 Suppose there are N patients and OAs provide perfect treatment (i.e., qo = 1).

Reindex the patients by their information vectors such that π1,t ≤ π2,t ≤ ...≤ πN,t. The optimal scheduling policy

for OAs in any period t∈ {1,2, ..., T − 1} is to schedule patients 1,2, ...,Co.

The proof of this item is same with the proof of Proposition 1 Item 1 and Lemma 11 since Model D has a

similar structure with Model TD when qv = 0.

�

Next, Corollary 1 is used to characterize the optimal scheduling policy for VAs in Model D.

Proof of Corollary 1 Suppose there are N patients and OAs provide perfect treatment (i.e., qo = 1). If

Co +Cv =N − 1 and Cv = 1, it is optimal to schedule either patient for VA among the patients who are not

scheduled for OAs.

Since OAs provide perfect treatment, any patient scheduled for an OA will be the healthiest patient group

in the next period. When the sickest patients are scheduled for OAs according to the optimal policy stated in

Theorem 2 Item 1, there remains two patients and one of the remaining two patients can be scheduled for the

VA slot. This item states that, with this setting it is optimal to schedule any of these remaining patients to

the VA. Suppose that the office appointment scheduling decisions are fixed and we define two policies without
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loss of generality. If these two policies are found to be equal to each other, this means that it is indifferent to

schedule any of the remaining patient for the VA with this setting.

We define the following two policies:

Policy 1: Patients {1,4, ...,Co+1} are scheduled for OAs, Patient 2 is scheduled for VA and Patient 3 is not

scheduled (NS) for any type of appointment in period t.

Policy 2: Patients {1,4, ...,Co+1} are scheduled for OAs, Patient 3 is scheduled for VA and Patient 2 is not

scheduled (NS) for any type of appointment in period t.

We define µ′t+1 which represents the information vector of all patients except Patient 1, Patient 2 and Patient

3 in period t+ 1.

µ′t+1 =
(
γo4,t, γ

o
5,t..., γ

o
N,t

)
(141)

If optimal policy is followed from period t+ 1 to the end of the horizon, Policy 1 can be defined as follows;

ut
(
π1,t, ..., πN,t; 1∈OA,2∈ V A,3∈NS) =

N∑
i=1

πi,t +βEµ′
t+1

[
π2,tu

∗
t+1(γ

o
0 , γ

v
0 , z(π3,t),µ

′
t+1)

+ (1−π2,t)u
∗
t+1(γ

o
0 , γ

v
1 , z(π3,t),µ

′
t+1)

]
(142)

=

N∑
i=1

πi,t +βEµ′
t+1

[
π2,tu

∗
t+1(p, p,π3,tp,µ

′
t+1)

+ (1−π2,t)u
∗
t+1(p,0, π3,tp,µ

′
t+1)

]
(143)

Note that VAs in Model D only provide diagnosis, so γv0 = p and γv1 = 0.

Similarly, if optimal policy is followed from period t+ 1 to the end of the horizon, Policy 2 can be expressed

as follows:

ut
(
π1,t, ..., πN,t; 1∈OA,2∈NS,3∈ V A) =

N∑
i=1

πi,t +βEµ′
t+1

[
π3,tu

∗
t+1(γ

o
0 , z(π2,t), γ

v
0 ,µ

′
t+1)

]
(144)

+ (1−π3,t)u
∗
t+1(γ

o
0 , z(π2,t), γ

v
1 ,µ

′
t+1)

]
(145)

=

N∑
i=1

πi,t +βEµ′
t+1

[
π3,tu

∗
t+1(p,π2,tp, p,µ

′
t+1)

+ (1−π3,t)u
∗
t+1(p,π2,tp,0,µ

′
t+1)

]
(146)

Note that µ′t+1 = {p, p, ..., p}, as OAs are providing perfect treatment. We show that ut
(
π1,t, ..., πN,t; 1∈OA,2∈

V A,3∈NS
)

= ut
(
π1,t, ..., πN,t; 1∈OA,2∈NS,3∈ V A

)
by showing that the following equality holds:

π2,tu
∗
t+1(p, p,π3,tp,µ

′
t+1) + (1−π2,t)u

∗
t+1(p,0, π3,tp,µ

′
t+1)

= π3,tu
∗
t+1(p,π2,tp, p,µ

′
t+1) + (1−π3,t)u

∗
t+1(p,π2,tp,0,µ

′
t+1) (147)

We define g((π2,t, π3,t);p,µ
′
t+1)

g((π2,t, π3,t);p,µ
′
t+1) =

[
π2,tu

∗
t+1(p, p,π3,tp,µ

′
t+1) + (1−π2,t)u

∗
t+1(p,0, π3,tp,µ

′
t+1)

]
−
[
π3,tu

∗
t+1(p,π2,tp, p,µ

′
t+1) + (1−π3,t)u

∗
t+1(p,π2,tp,0,µ

′
t+1)

]
(148)

To prove equality 147, we need to show g((π2,t;π3,t);p,µ
′
t+1) = 0

Lemma 12 presents an intermediate result which is used to prove Corollary 1.
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Lemma 12. Given any 0≤ π2,t ≤ 1 there are three possible cases for g((π2,t,1);p,µ′t+1) :

(i) When π2,t = 1, g((π2,t,1);p,µ′t+1) = 0

(ii) When π2,t = 0, g(π2,t,1);p,µ′t+1) = 0

(iii) When 0<π2,t < 1, g(π2,t,1);p,µ′t+1) = 0

Proof:

g((π2,t,1);p,µ′t+1) =
[
π2,tu

∗
t+1(p, p, p,µ

′
t+1) + (1−π2,t)u

∗
t+1(p,0, p,µ

′
t+1)

]
−u∗t+1(p,π2,tp, p,µ

′
t+1) (149)

(i) When π2,t = 1, g((π2,t,1);p,µ′t+1) = 0

g((π2,t,1);p,µ′t+1) = u∗t+1(p, p, p,µ
′
t+1)−

[
u∗t+1(p, p, p,µ

′
t+1)

]
= 0 (150)

(ii) When π2,t = 0, g((π2,t,1);p,µ′t+1) = 0

g((π2,t,1);p,µ′t+1) = u∗t+1(p,0, p,µ
′
t+1)−

[
u∗t+1(p,0, p,µ

′
t+1)

]
= 0 (151)

(iii) We show one more decision period to clearly observe the impact of VAs when they provide only diag-

nosis. For the defined policies, when π3,t = 1, in period t + 1, except the sickest patient (Patient 2) all the

other patients will have the health state of “p”, which is the healthiest state as it is stated through Policy 1

(π2,tu
∗
t+1(p, p, p,µ

′
t+1)+(1−π2,t)u

∗
t+1(p,0, p,µ

′
t+1)) and Policy 2 (u∗t+1(p,π2,tp, p,µ

′
t+1)). In both policies through

Theorem 2 item 2 the sickest patient (Patient 2) will be certainly scheduled for an OA in period t+ 2. Since

all other patients have the health state of p, any patient can be scheduled for VA slot in period t+ 1. For that

reason we define µ′t+2 to represent the information vector of all patients except Patient 2 in period t+ 2.

µ′t+2 =
(
γv4,t, γ

o
3,t, γ

o
5,t..., γ

o
N,t

)
(152)

Thus, we rewrite the value function considering that the optimal policy is applied starting from period t+ 2

to the end of the horizon. With Theorem 2 item 2 the sickest patient will be scheduled for OA in period t+ 1.

ut
(
π1,t, ..., πN,t; 1∈OA,2∈ V A,3∈NS) =

N∑
i=1

πi,t +

N∑
i=1

πi,t+1 +βEµ′
t+2

[
π2,tu

∗
t+2(µ

′
t+2, z(p))

+ (1−π2,t)u
∗
t+2(µ

′
t+2, z(p))

]
(153)

=

N∑
i=1

πi,t +

N∑
i=1

πi,t+1 +βEµ′
t+2

[
u∗t+2(µ

′
t+2, z(p))

]
(154)

Similarly Policy 2 also can be expressed as follows:

ut
(
π1,t, ..., πN,t; 1∈OA,2∈NS,3∈ V A) =

N∑
i=1

πi,t +

N∑
i=1

πi,t+1 +βEµ′
t+2

[
u∗t+2(µ

′
t+2, z(p))

]
(155)

Then it is observed that Equation 154 is same with Equation 155. Thus, when 0<π2,t < 1, g(π2,t,1);µ′t+1) = 0

Lemma 13 presents an intermediate result which is used to prove Corollary 1.

Lemma 13. Given any 0≤ π2,t ≤ 1 there are three possible cases for g((π2,t,0);p,µ′t+1) ;

(i) When π2,t = 1 g((π2,t,0);p,µ′t+1) = 0

(ii) When π2,t = 0, g(π2,t,0);p,µ′t+1) = 0

(iii) When 0<π2,t < 1, g(π2,t,0);p,µ′t+1) = 0
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Proof:

g((π1,t,0);p,µ′t+1) =
[
π2,tu

∗
t+1(p, p,0,µ

′
t+1) + (1−π2,t)u

∗
t+1(p,0,0,µ

′
t+1)

]
−u∗t+1(p,π2,tp,0,µ

′
t+1) (156)

(i) When π2,t = 1, g((π2,t,0);p,µ′t+1) = 0

g((π2,t,0);p,µ′t+1) = u∗t+1(p, p,0,µ
′
t+1)−

[
u∗t+1(p, p,0,µ

′
t+1)

]
= 0 (157)

(ii) When π2,t = 0, g((π2,t,0);p,µ′t+1) = 0

g((π2,t,0);p,µ′t+1) = u∗t+1(p,0,0,µ
′
t+1)−

[
u∗t+1(p,0,0,µ

′
t+1)

]
= 0 (158)

(iii) When 0<π2,t < 1, g((π2,t,0);p,µ′t+1) = 0.

We prove this item by contradiction. Suppose g((π2,t,0);p,µ′t+1) 6= 0.

– For the cases where π3,t ∈ [π2,t,1], g((π2,t, π3,t);p,µ
′
t+1) = 0 by Lemma 12. By symmetry when π3,t ≤ π2,t,

the following equality should hold as well: g((π2,t, π3,t);p,µ
′
t+1) = 0. Then, when π3,t = 0 ; g((π2,t,0);p,µ′t+1) = 0

which contradicts the assumption that g((π2,t,0);p,µ′t+1) 6= 0.

– For the cases where π3,t ∈ [0, π2,t], according to the assumption the following equality should hold:

g((π2,t, π3,t);p,µ
′
t+1) 6= 0. If this assumption is true, by symmetry g((π2,t, π3,t);p,µ

′
t+1) 6= 0 should also hold, when

π3,t ≥ π2,t. Then, when π3,t = 1; g((π2,t,1);p,µ′t+1) 6= 0 which contradicts the Lemma 12 that g((π2,t,1);p,µ′t+1) =

0.

Therefore, by the argument in the beginning of the proof, if Co +Cv =N1, Cv = 1, and qo = 1 it is optimal

to schedule either patient for VA among the patients who are not scheduled for OAs.

�

Theorem 3 Item 1 characterizes the cases where VAs having only diagnosis do not improve the overall health

status of the patients.

Proof of Theorem 3 Item 1 Suppose there are N patients 1,2, ...,N ∈ I and OAs provide perfect treat-

ment (i.e., qo = 1). If Co+Cv =N and Co ≥Cv, then the VAs do not improve overall health status of patient

population. Through these conditions, it is guaranteed that every patient is scheduled for either an office or a

virtual appointment in a period t and all patients scheduled for a VA in period t will be scheduled for an OA

in period t+ 1 according to optimal policy since there are enough number of OA slots.

In order to show the impact of VAs that provide only diagnosis, without loss of generality we define two

policies as follows:

Policy 1: Patients {2,3, ...,Co+1} are scheduled for OAs and patients {1,Co+2,Co+3, ...,N} are scheduled

for VAs with diagnosis

Policy 2: Patients {2,3, ...,Co+ 1} are scheduled for OAs, patients {Co+ 2,Co+ 3, ...,N} are scheduled for

VAs with diagnosis and patient 1 is not scheduled for any appointment.

We define µ′t+1 which represents the information vector of all patients except patient 1 in period t+ 1.

µ′t+1 =
(
γo2,t, ..., γ

o
Co+1,t, γ

v
Co+2,t, ..., γ

v
CN ,t

)
(159)
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If optimal policy is followed from period t+ 1 to end of the horizon, the value of Policy 1 can be defined as

follows:

ut
(
π1,t, ..., πN,t; 1∈ V A) =

N∑
i=1

πi,t +βEµ′
t+1

[
π1,tu

∗
t+1(γ

v
0 ,µ

′
t+1) + (1−π1,t)u

∗
t+1(γ

v
1 ,µ

′
t+1)

]
(160)

=

N∑
i=1

πi,t +βEµ′
t+1

[
π1,tu

∗
t+1(p,µ

′
t+1) + (1−π1,t)u

∗
t+1(0,µ

′
t+1)

]
(161)

Similarly, if optimal policy is followed from period t+1 to the end of the horizon, we define the value of Policy

2 as follows;

ut
(
π1,t, ..., πN,t; 1∈NS) =

N∑
i=1

πi,t +βEµ′
t+1

[
u∗t+1(z(π1,t),µ

′
t+1)

]
(162)

=

N∑
i=1

πi,t +βEµ′
t+1

[
u∗t+1(π1,tp,µ

′
t+1)

]
(163)

Now we show that ut
(
π1,t, ..., πN,t; 1∈ V A

)
= ut

(
π1,t, ..., πN,t; 1∈NS

)
by showing that for any given realization

of µ′t+1 the following inequality holds:

π1,tu
∗
t+1(p,µ

′
t+1) + (1−π1,t)u

∗
t+1(0,µ

′
t+1) = u∗t+1(π1,tp,µ

′
t+1) (164)

We define g((π1,t);p,µ
′
t+1) as follows:

g((π1,t);p,µ
′
t+1) =π1,tu

∗
t+1(p,µ

′
t+1) + (1−π1,t)u

∗
t+1(0,µ

′
t+1)

−u∗t+1(π1,tp,µ
′
t+1) (165)

To prove equality 164, we need to show that g((π1,t);p,µ
′
t+1) = 0

Lemma 14 presents an intermediate result which is used to prove Theorem 3 Item 1.

Lemma 14. There are three possible cases for g((π1,t);p,µ
′
t+1);

(i) When π1,t = 0; g((π1,t);p,µ
′
t+1) = 0;

(ii) When π1,t = 1; g((π1,t);p,µ
′
t+1) = 0;

(iii) When 0<π1,t < 1; g((π1,t);p,µ
′
t+1) = 0;

Proof:

(i) When π1,t = 0; g((π1,t);p,µ
′
t+1) = 0;

g((0);p,µ′t+1) =u∗t+1(0,µ
′
t+1)−u∗t+1(0,µ

′
t+1) = 0 (166)

(ii) When π1,t = 1; g((π1,t);p,µ
′
t+1) = 0;

g((1);p,µ′t+1) =u∗t+1(p,µ
′
t+1)−u∗t+1(p,µ

′
t+1) = 0 (167)

(iii) We show one more decision period to clearly observe the impact of VAs when they provide only diagnosis.

For Policy 1 and Policy 2 in period t+ 1, except the patients scheduled for VAs (i.e., Patients 1, Co + 2,Co +

3, ...N) all the other patients will have the health status of ”p”, which is the healthiest status. Since the sickest

patients will be scheduled for OAs according to Theorem 2 Item 2, patients that are scheduled for the VA in

period t, will be scheduled for the OA in period t+ 1 and the remaning patients will be scheduled for VAs.
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We define µ′t+2 which represents the information vector of all patients except Patient 1 in period t+ 2, as

they will have the same information vector for both policies.

µ′t+2 =
(
γv2,t, ..., γ

v
Cv+1,t, γ

o
Cv+2,t, ..., γ

o
CN ,t

)
(168)

If optimal policy is followed starting at period t+ 2 to the end of horizon, the value of Policy 1 can be defined

as follows:

ut
(
π1,t, ..., πN,t; 1∈ V A) =

N∑
i=1

πi,t +

N∑
i=1

πi,t+1 +βEµ′
t+2

[
π1,tu

∗
t+2(γ

o
0 ,µ

′
t+2) + (1−π1,t)u

∗
t+2(γ

o
0 ,µ

′
t+2)

]
(169)

=

N∑
i=1

πi,t +

N∑
i=1

πi,t+1 +βEµ′
t+2

[
π1,tu

∗
t+2(p,µ

′
t+2) + (1−π1,t)u

∗
t+2(p,µ

′
t+2)

]
(170)

Similarly, if optimal policy is followed starting at period t+ 2 to the end of horizon, the value of Policy 2 can

be defined as follows:

ut
(
π1,t, ..., πN,t; 1∈NS) =

N∑
i=1

πi,t +

N∑
i=1

πi,t+1 +βEµ′
t+2

[
u∗t+2(γ

o
0 , µ

′
t+2)

]
(171)

=

N∑
i=1

πi,t +

N∑
i=1

πi,t+1 +βEµ′
t+2

[
u∗t+2(p,µ

′
t+2)

]
(172)

Thus, it can be shown that:

g((π1,t);p,µ
′
t+1) =

N∑
i=1

πi,t +

N∑
i=1

πi,t+1 +βEµ′
t+2

[
π1,tu

∗
t+2(p,µ

′
t+2) + (1−π1,t)u

∗
t+2(p,µ

′
t+2)

]
−

N∑
i=1

πi,t +

N∑
i=1

πi,t+1 +βEµ′
t+2

[
u∗t+2(p,µ

′
t+2)

]
= 0 (173)

�

By Lemma 14, g((π1,t);p,µ
′
t+1) is a univariate continuous function which takes values of g((π1,t);p,µ

′
t+1) = 0

for any 0 ≤ πi,t ≤ 1. Therefore, VAs do not improve overall health status of patient population, when OAs

provide perfect treatment (i.e., qo = 1) and Co +Cv =N and Co ≥Cv.

�

Through Theorem 3 Item 2, we define the cases where VAs providing only diagnosis can improve the overall

health status of the patient population by providing information.

Proof of Theorem 3 Item 2 Suppose there are N patients and OAs provide perfect treatment (i.e., qo =

1). If Co+Cv <N and Co <Cv, then VAs can improve overall health status of patient population. To show the

improvement impact of VAs, we define two policies where VAs provide only diagnosis. Without loss of generality,

the policies are defined as follows:

Policy 1: Patients {1,3,4, ...,Cv + 1} are scheduled for a VA with diagnosis and Patients {Cv + 2, ...,Co +

Cv + 1} are scheduled for OA and Patients {2,Co +Cv + 2, ...,CN} are not scheduled for any appointment.

Policy 2: Patients {3,4, ...,Cv + 1} are scheduled for a VA with diagnosis and Patients {Cv + 2, ...,Co +

Cv + 1} are scheduled for OA and Patients {1,2,Co +Cv + 2, ...,CN} are not scheduled for any appointment.
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We define µ′t+1 which represents the information vector of all patients except Patient 1 and Patient 2 in period

t+ 1.

µ′t+1 =
(
γv3,t, ..., γ

v
Cv+1,t, γ

o
Cv+2,t, ..., γ

o
Co+Cv+1,t, z(πCo+Cv+2,t), ..., z(πN,t)

)
(174)

If optimal policy is followed from period t+ 1 to the end of the horizon, the value of Policy 1 is defined as

follows:

ut
(
π1,t, ..., πN,t; 1∈ V A,2∈NS) =

N∑
i=1

πi,t +βEµ′
t+1

[
π1,tu

∗
t+1(γ

v
0 , z(π2,t),µ

′
t+1)

+ (1−π1,t)u
∗
t+1(γ

v
1 , z(π2,t),µ

′
t+1)

]
(175)

=

N∑
i=1

πi,t +βEµ′
t+1

[
π1,tu

∗
t+1(p,π2,tp,µ

′
t+1) + (1−π1,t)u

∗
t+1(0, π2,tp,µ

′
t+1)

]
(176)

Similarly if optimal policy is followed from period t+ 1 to the end of the horizon, the value of Policy 2 is

described as follows:

ut
(
π1,t, ..., πN,t; 1∈NS,2∈NS) =

N∑
i=1

πi,t +βEµ′
t+1

[
u∗t+1(z(π1,t), z(π2,t),µ

′
t+1)

]
(177)

=

N∑
i=1

πi,t +βEµ′
t+1

[
u∗t+1(π1,tp,π2,tp,µ

′
t+1)

]
(178)

If VAs can improve overall health status of patient population; the following inequality should hold:

ut
(
π1,t, ..., πN,t; 1∈ V A,2∈NS

)
≥ ut

(
π1,t, ..., πN,t; 1∈NS,2∈NS

)
We define g((π1,t, π2,t);µ

′
t+1) = π1,tu

∗
t+1(p,π2,tp,µ

′
t+1) + (1−π1,t)u

∗
t+1(0, π2,tp,µ

′
t+1)−u∗t+1(π1,tp,π2,tp,µ

′
t+1)

By definition, u∗t+1(., .,µ
′
t+1) is componentwise convex in each element then;

π1,tu
∗
t+1(p,π2,tp,µ

′
t+1) + (1−π1,t)u

∗
t+1(0, π2,tp,µ

′
t+1)≥ u∗t+1(π1,tp,π2,tp,µ

′
t+1) (179)

Thus, g((π1,t, π2,t);µ
′
t+1)≥ 0

By the argument in the beginning of the proof, VAs can improve the overall health status of patients when

OAs provide perfect treatment (i.e., qo = 1) if Co +Cv <N and Co <Cv.

�

Through Theorem 3 Item 3, we next define another condition under which the VAs that provide only diagnosis

can improve the health status of the population.

Proof of Theorem 3 Item 3 If Co +Cv =N and Co ≥Cv, and the treatment is not perfect, qo = 1− ε

where 0< ε< 1, then VAs can improve overall health status of patient population.

Since there are N patients and total of Co +Cv =N appointments, all patients are scheduled to either an

office or a virtual appointment in a period t. In Theorem 3 item 1, it is shown that VAs do not improve the

overall health status of patients when OAs provide perfect treatment if Co +Cv = N and Co ≥Cv. In this

item, on the other hand, OAs do not provide perfect treatment. Without loss of generality, we define two policies

where VAs provide only diagnosis as follows:

Policy 1: Patient 1 is scheduled for an OA and Patient 2 is scheduled for a VA.

Policy 2: Patient 1 is scheduled for an OA and Patient 2 is not scheduled for any appointment.
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We define µ′t+1 which represents the information vector of all patients except Patients 1 and 2 in period t+1.

µ′t+1 =
(
γo3,t, ..., γ

o
Co+2,t, γ

v
Co+3,t, ..., γ

v
CN ,t

)
(180)

If optimal policy is followed from period t+ 1 to the end of horizon, Policy 1 can be defined as follows:

ut
(
π1,t, ..., πN,t; 1∈OA,2∈ V A) =

N∑
i=1

πi,t +βEµ′
t+1

[
π1,tπ2,tu

∗
t+1(γ

o
0 , γ

v
0 ,µ

′
t+1)

+π1,t(1−π2,t)u
∗
t+1(γ

o
0 , γ

v
1 ,µ

′
t+1) + (1−π1,t)π2,tu

∗
t+1(γ

o
1 , γ

v
0 ,µ

′
t+1)

+ (1−π1,t)(1−π2,t)u
∗
t+1(γ

o
1 , γ

v
1 ,µ

′
t+1)

]
(181)

=

N∑
i=1

πi,t +βEµ′
t+1

[
π1,tπ2,tu

∗
t+1(p, p,µ

′
t+1) +π1,t(1−π2,t)u

∗
t+1(p,0,µ

′
t+1)

+ (1−π1,t)π2,tu
∗
t+1(qop, p,µ

′
t+1) + (1−π1,t)(1−π2,t)u

∗
t+1(qop,0,µ

′
t+1)

]
(182)

Similarly, if optimal policy is followed from t+ 1 to the end of the horizon, Policy 2 can be defined as follows:

ut
(
π1,t, ..., πN,t; 1∈OA,2∈NS) =

N∑
i=1

πi,t +βEµ′
t+1

[
π1,tu

∗
t+1(γ

o
0 , z(π2,t),µ

′
t+1)

+ (1−π1,t)u
∗
t+1(γ

o
1 , z(π2,t),µ

′
t+1)

]
(183)

=

N∑
i=1

πi,t +βEµ′
t+1

[
π1,tu

∗
t+1(p,π2,tp,µ

′
t+1)

+ (1−π1,t)u
∗
t+1(qop,π2,tp,µ

′
t+1)

]
(184)

Now we show that ut
(
π1,t, ..., πN,t; 1∈OA,2∈ V A

)
≥ ut

(
π1,t, ..., πN,t; 1∈OA,2∈NS

)
if the following inequal-

ity holds:

π1,tπ2,tu
∗
t+1(p, p,µ

′
t+1) +π1,t(1−π2,t)u

∗
t+1(p,0,µ

′
t+1) + (1−π1,t)π2,tu

∗
t+1(qop, p,µ

′
t+1)

+ (1−π1,t)(1−π2,t)u
∗
t+1(qop,0,µ

′
t+1)≥ π1,tu

∗
t+1(p,π2,tp,µ

′
t+1) + (1−π1,t)u

∗
t+1(qop,π2,tp,µ

′
t+1) (185)

By definition, u∗t+1(., .,µ
′
t+1) is componentwise convex in each element. Then, Equation 185 holds.


