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1. Extended derivation

1.1. Transfer properties

Consider a closed system with two phases in equilibrium. The total internal energy is
given by:

U = U II + U I (1)

For a multicomponent system, these total internal energies can be expressed in
terms of their partial molar contributions:
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Now, the system will change from an initial state 0 to a final state f , during which
some amount of species j is transferred between the two phases.

∆Utr,j = Uf − U0 = U II,f − U II,0 + U I,f − U I,0 (3)

∆Utr,j =
∑

iN
II,f
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Separating out the contribution from species j gives:
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i Ū I,f

i −
∑

i 6=j N
II,0
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Because the number of molecules Ni 6=j in each phase is not changing, this simplifies
to:
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j Ū II,0

j −N I,0
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i (Ū II,f

i − Ū II,0
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Assuming a sufficiently small perturbation, the partial molar internal energies in each
phase are invariant to the perturbation in the system, and this simplifies to:

∆Utr,j = (N II,f
j −N II,0

j )Ū II
j + (N I,f

j −N I,0
j )Ū I

j (7)

because the number of molecules i 6= j is not changing. Note - if the perturbation in
j causes the partial molar internal energy of any species to change significantly, then
the total change in internal energy may be influenced not only by changes in j but
also by changes in Ūi.

The mass balance gives us:
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which allows us to simplify ∆Utr,j to
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which we abbreviate to:

∆Ūtr,j = Ū II
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Likewise, the enthalpy of transfer is given by:

∆Htr,j = ∆Utr,j + p∆Vtr,j (12)
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which can be decomposed into its separate contributions from Ū and pV̄ (p being
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equal for both phases).

∆Htr,j = N II,f
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Equation 14 holds in general. For a sufficiently small perturbation such that partial
molar internal energies and partial molar volumes in each phase are invariant, it may
be simplified to:
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which, after applying the mass balance, becomes:
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We use this rather extended derivation in order to highlight a potential pitfall.
Equation 12 is generally valid, but

∆H̄tr,j = H̄II
j − H̄I

j (17)

is ONLY valid when a sufficiently small perturbation does not result in changes to H̄i

within each phase.

1.2. Enthalpies of adsorption

We also use this derivation to explore the validity of this approach in constant-volume
systems. Consider adsorption into a porous material with a constant volume Vad.
Phase II is the adsorbent and phase I is a fluid mixture. The expression for enthalpy
of transfer of species j in an NpT -Gibbs ensemble is given by:

∆Htr,j = ∆Utr,j + p∆Vtr,j (18)

Here, ∆Vtr,j needs clarification. We can express it as

∆Vtr,j = V f − V 0 = V II,f − V II,0 + V I,f − V I,0, (19)

noticing that V II,f −V II,0 = 0 for an incompressible adsorbent. Consequently, ∆Vads,j

only depends on changes in the fluid,

∆Vads,j = V I,f − V I,0 (20)

which, for a sufficiently small perturbation, may be evaluated by changes in the partial
molar volume.
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2. SI for natural gas condensate

2.1. Benchmarking with numerical differentiation

Figure S1.: V , U , and H are calculated in the NpT ensemble at different compositions
by varying the number of molecules of methane, butane and decane separately. Partial
molar properties are calculated by fitting a straight line to the data. Data shown here
for the vapor phase.
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2.2. Correlations in V , U , and p

Figure S2 is provided to visualise correlations between V , U , and p in the liquid and
the vapor of the model natural gas condensate. V is strongly correlated with U in
both the liquid and the vapor phase - this is to be expected as a larger simulation box
can accommodate more molecules and a larger energy. The instantaneous pressure is
uncorrelated with both V and U .

(a) (b) (c)

(d) (e) (f)

Figure S2.: Correlations between instantaneous observables V , U , and p in the liquid
(a-c) and vapor (d-f) phase of the model natural gas condensate with N = 1825 in the
NpT -Gibbs ensemble.
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2.3. Uncertainty analysis

Table S1.: Volume, internal energy, and enthalpy balances on model natural gas con-
densate at 333 K, in the NV T -Gibbs and NpT -Gibbs ensembles. Uncertainties re-
ported are 95% confidence intervals from 64 independent measurements of V̄i. H̄inst,i

were calculated using N · H̄ = H and instantaneous measurements of the enthalpy of
each fluid box at each frame. H̄ave,i were calculated using using H̄i = Ūi + pV̄i, and
the ensemble average pressure of the vapor box for each independent simulation.

NV T -Gibbs NpT -Gibbs
Liquid Vapor Liquid Vapor

V̄iNi [nm3]
C1 893 1684 863 1784
C4 39.713 6.817 47.612 −3.46
C10 28.47 0.3025 27.29 −3.33∑
V̄iNi 1573 1754 1613 1714

Vbox 1573 1753 1613 1714

ŪiNi [K x 103]
C1 55 −1163 −453 −912
C4 −4667 −1054 −4216 −1152
C10 −2457 −6.06 −2517 −12.56∑
ŪiNi −70611 −2285 −71610 −2193

Ubox −7068 −2288 −7169 −2208

H̄i,instNi [K x 103]
C1 585 1004 574 1183
C4 −3689 −1115 −3659 −1195
C10 −2125 −10.79 −2196 −16.412∑
H̄iNi −52211 −227 −52712 −186

Hbox −5215 −224 −5265 −183

H̄i,aveNi [K x 103]
C1 1107 826 594 1173
C4 −41910 −976 −3679 −1195
C10 −2126 −6.08 −2196 −16.412∑
H̄iNi −52214 −229 −52712 −186

Hbox −5215 −224 −5275 −183

2.4. System size effects

Table S2 provides the thermodynamic properties of the natural gas condensate in the
NpT -Gibbs ensemble with N = 873 and N = 3761 in order to compare with the
N = 1825 system described in Table 1. n-decane, which is only a trace compound
in the vapor phase, exhibits a highly skewed distribution in loading that appears to
be truncated in the N = 873 system (Fig. S3). The factor of 4.3 increase in system
size from N = 873 to N = 3761 does not change any measured property, whether
bulk or partial molar, within the 95% confidence interval in either ensemble. A small
deviation may be present in the minor component, n-decane, which had a large variance
in the vapor phase in the small NpT system (xC10 = 0.0137 ± 38 as compared to
around 0.0097 for the others). This is associated with a departure in V̄ in the vapor
phase, but with the exception of this property, all properties are consistent, within
error, across a factor of 4.3 change in system size. As the system gets larger and
the fluctuations decrease, we find partial molar properties are also calculated with
more precision. As the system size approaches the thermodynamic limit, we may, in
theory, be able to compute partial molar properties using MLR, but reaching sufficient
precision will become more challenging because the fluctuations are infinitesimally
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small and numerical issues associated with ill-conditioned matrices may become more
pronounced.

(a) (b) (c)

(d) (e) (f)

Figure S3.: Distributions of molecules in the liquid (a-c) and vapor (d-f) phases of the
model natural gas condensate in the NpT -Gibbs ensemble as a function of system size.
Molecule populations are normalised by the total number of molecules of species i in
the two-box system, Ni/N

total
i . Bin widths for each system size are set to 1/N total

i , so
that each step corresponds to a discrete change in Ni.
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Table S2.: System size effects are explored by comparing the model natural gas con-
densate with N = 873 to that with N = 3761 in the NpT -Gibbs ensemble with p =
16220 MPa. Each system has 50,000 MC cycles of production, though some simula-
tions of the small system finished with fewer than 50,000 MC cycles when one box
shrank to less than 28 Å (twice the force field cutoff of 14 Å). Uncertainties reported
are 95% confidence intervals from 64 independent measurements of each quantity.

Liquid Liquid Vapor Vapor
N = 873 N = 3761 N = 873 N = 3761

NC1 27517 115727 33517 147327
NC4 1426 6267 616 2487
NC10 53.820 239.98 6.220 17.18

xC1 0.58010 0.5713 0.84011 0.8482
xC4 0.3036 0.3102 0.1467 0.1422
xC10 0.1175 0.1192 0.0144 0.00973

p [kPa] 1626070 1622020 1624060 1623010
V [nm3] 764 3255 824 3626
U [K] −33010 −145810 −11713 −46814
EpV, inst [K x 103] 894 3816 965 4268
EpV, ave [K x 103] 894 3816 975 4268
Hinst [K x 103] −24110 −10778 −2110 −425
Have [K x 103] −24110 −10768 −2110 −425

V̄C1 [L/mol] 0.0914 0.088510 0.1522 0.15318
V̄C4 [L/mol] 0.0896 0.0922 −0.01212 −0.0155
V̄C10 [L/mol] 0.142 0.1455 −0.203 −0.25018

ŪC1 [kJ/mol] −0.6919 −0.667 −1.017 −1.083
ŪC4 [kJ/mol] −11.7043 −11.4219 −8.64 −8.3315
ŪC10 [kJ/mol] −16.913 −17.65 −13.211 −13.05

H̄C1,inst [kJ/mol] 0.5182 0.799 1.466 1.413
H̄C4,inst [kJ/mol] −9.9056 −9.93 −8.83 −8.6020
H̄C10,inst [kJ/mol] −135 −15.46 −16.517 −17.07

H̄C1,ave [kJ/mol] 0.82 0.778 1.468 1.413
H̄C4,ave [kJ/mol] −10.34 −9.92 −8.85 −8.5821
H̄C10,ave [kJ/mol] −14.716 −15.25 −16.414 −17.17
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3. SI for liquid-liquid equilibrium

Na
1 V̄1 + Na

2 V̄2 + Na
3 V̄3 = V a

N b
1 V̄1 + N b

2 V̄2 + N b
3 V̄3 = V b

N c
1 V̄1 + N c

2 V̄2 + N c
3 V̄3 = V c

(21)

It is possible to use Eq. 21 to predict these partial molar properties using data at
multiple system compositions. This approach would be akin to experimentally char-
acterizing the bulk properties at each of these state points, and solving the system of
equations to compute the partial molar properties. Anderson et al. used this method
to calculate partial molar volumes in binary mixtures of water and silica using least
squares regression, with multiple simulations at constant NpT [1]. By counting each
n-hexane molecule as 1/2 n-dodecane, and using the average values for Ni, V , and U
for each of the three EtOH-rich phases, V̄i, Ūi, and H̄ may be calculated, and once
again for the three n-dodecane-rich phases (Table S4). Eq. 21 should in principle, give
estimates of the partial molar properties that are averaged across the composition
space of the three state points at hand, but in several cases, gives values outside this
range. For example, ŪC12 in the EtOH-rich phase ranges from −6 to −11.1 kJ/mol
by MLR, but ŪC12 by Eq. 21 is −16.2 kJ/mol. Likewise, ŪH2O in the n-dodecane-rich
phase is consistently −32 kJ/mol according to MLR, but only −18.2 kJ/mol by Eq. 21.
These issues arise because of relatively large fluctuations in the loading of trace species
(e.g. H2O); perturbing the mean values of these trace species within the uncertainty of
the simulation ensemble averages and repeating the MLR can cause large variations in
the partial molar properties from Eq. 21. Consequently, we do not recommend using
the system of equations approach for calculating partial molar properties.

Table S3.: Compositions of LLE systems at T = 333 K and p = 0.1 MPa, from Harwood
et al. [2].

EtOH n-Hexane n−Dodecane Water
xtotalH2O=0.1 EtOH-rich Ni 47934 1.63 2911 894

xi 0.80113 0.00264 0.04816 0.1496
C12-rich Ni 11334 3.13 26911 84

xi 0.27955 0.00786 0.696 0.0207
xtotalH2O=0.25 EtOH-rich Ni 55211 1.31 7.68 2923

xi 0.6473 0.001537 0.008910 0.3422
C12-rich Ni 4111 3.435 289.98 4.127

xi 0.122 0.01023 0.863 0.0127
xtotalH2O=0.36 EtOH-rich Ni 5665 1.688 3.74 492.511

xi 0.531917 0.001577 0.00353 0.463116
C12-rich Ni 285 3.087 293.84 2.611

xi 0.08312 0.00942 0.89915 0.0083
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Table S4.: Partial molar properties calculated using Eq. 21, and the ensemble average
Ni, V , and U for three EtOH-rich and three C12-rich mixtures.

V̄i [L/mol] Ūi [kJ/mol] H̄i [kJ/mol]
i EtOH-rich C12-rich EtOH-rich C12-rich EtOH-rich C12-rich
EtOH 0.0612 0.0618 −33.3 −32.9 −33.3 −32.9
C12 0.242 0.234 −16.2 −16.4 −16.2 −16.4
H2O 0.0179 0.0492 −38.6 −18.2 −38.6 −18.2

4. Code and example files

Monte Carlo for Complex Chemical Systems (MCCCS-MN) is the Monte Carlo simu-
lation program developed and used by the Siepmann research group. The source code
for this software, as well as sample input files (fort.4, fort.77, and topmon.inp) and
output files (run1a.dat and fort.12) for a production run of the ternary methane/n-
butane/n-decane mixture at 333 K and 16220 kPa in the NpT -Gibbs ensemble, are
available at https://github.com/SiepmannGroup/PartialMolarProperties.

References

[1] K.E. Anderson, L.C. Grauvilardell, M.M. Hirschmann and J.I. Siepmann, J. of Phys. Chem.
B 112 (41), 13015–13021 (2008).

[2] D.B. Harwood, C.J. Peters and J.I. Siepmann, Fluid Phase Equilib. 407, 269–279 (2016).

10

https://github.com/SiepmannGroup/PartialMolarProperties

	Extended derivation
	Transfer properties
	Enthalpies of adsorption

	SI for natural gas condensate
	Benchmarking with numerical differentiation
	Correlations in V, U, and p
	Uncertainty analysis
	System size effects

	SI for liquid-liquid equilibrium
	Code and example files

