
Supplementary Material: Classifying Hate
Speech Using a Two-Layer Model

Yiwen Tang∗

Department of Mathematics and Statistics, Wake Forest University
and

Nicole Dalzell
Department of Mathematics and Statistics, Wake Forest University

July 29, 2019

SUPPLEMENTAL MATERIALS

Wikipedia dataset: the data used in Section 3 are available here (.csv file)

Twitter dataset: the dataset used in Section 4 are available Here (.csv file)

Code: the codes used to run the analyses in Section 3 and 4 are available on GitHub here

(.rmd file)

R Packages: the R packages used for the applications in Sections 3 and 4 include:

caret [5]; dplyr [14]; tm [4]; readr [15]; stringr [13]; text2vec [10]; magrittr [2];

textclean [9]; hunspell [7]; Basic R [8].

∗The authors gratefully acknowledge funding from the Wake Forest Summer Research Fellowship and
the Starr Travel Grant, both offered by the URECA Center at Wake Forest University.

1

https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/download/train.csv
https://www.kaggle.com/crowdflower/twitter-airline-sentiment/downloads/Tweets.csv/2
https://github.com/tonytang731/Classifying-Hate-Speech-Using-a-Two-Layer-Model.git


References

[1] Asad Abdi, Siti Mariyam Shamsuddin, Shafaatunnur Hasan, and Jalil Piran. Ma-

chine learning-based multi-documents sentiment-oriented summarization using linguis-

tic treatment. Expert Systems with Applications, 109:6685, 2018.

[2] Stefan Milton Bache and Hadley Wickham. magrittr: A Forward-Pipe Operator for

R, 2014. R package version 1.5.

[3] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. CoRR,

abs/1603.02754, 2016.

[4] Ingo Feinerer and Kurt Hornik. tm: Text Mining Package, 2017. R package version

0.7-3.

[5] Max Kuhn. Contributions from Jed Wing, Steve Weston, Andre Williams, Chris

Keefer, Allan Engelhardt, Tony Cooper, Zachary Mayer, Brenton Kenkel, the

R Core Team, Michael Benesty, Reynald Lescarbeau, Andrew Ziem, Luca Scrucca,

Yuan Tang, Can Candan, and Tyler Hunt. caret: Classification and Regression Train-

ing, 2017. R package version 6.0-78.

[6] H. P. Luhn. Key word-in-context index for technical literature (kwic index). American

Documentation, 11(4):288–295, 1960.

[7] Jeroen Ooms. hunspell: High-Performance Stemmer, Tokenizer, and Spell Checker,

2017. R package version 2.9.

[8] R Core Team. R: A Language and Environment for Statistical Computing. R Foun-

dation for Statistical Computing, Vienna, Austria, 2017.

[9] Tyler W. Rinker. textclean: Text Cleaning Tools. Buffalo, New York, 2018. version

0.9.2.

[10] Dmitriy Selivanov and Qing Wang. text2vec: Modern Text Mining Framework for R,

2018. R package version 0.5.1.

2



[11] Julia Silge and David Robinson. tidytext: Text mining and analysis using tidy data

principles in r. JOSS, 1(3), 2016.

[12] Peng Sun, Lihua Wang, and Qianchen Xia. The keyword extraction of chinese medi-

cal web page based on wf-tf-idf algorithm. 2017 International Conference on Cyber-

Enabled Distributed Computing and Knowledge Discovery (CyberC), 2017.

[13] Hadley Wickham. stringr: Simple, Consistent Wrappers for Common String Opera-

tions, 2017. R package version 1.2.0.

[14] Hadley Wickham, Romain Franois, Lionel Henry, and Kirill Mller. dplyr: A Grammar

of Data Manipulation, 2018. R package version 0.7.5.

[15] Hadley Wickham, Jim Hester, and Romain Francois. readr: Read Rectangular Text

Data, 2017. R package version 1.1.1.

3



A Appendix: L2CL Features

A.1 Feature Engineering for Layer 2: Use the Scores (cont.)

In this section, we show the process of constructing (1) the P1 Feature, (2) the P2 Feature,

and (3) the P3 Feature for each comment under every sub-category. For every sub-category

j, the four scores (the SCS and P1 - P3 scores) are used to generate four features for each

comment c = 1, . . . , ntarget. The four features are called the Sub-Category Feature (SCF),

P1 Feature, P2 Feature, and P3 Feature.

Suppose we are constructing the scores for comment c for sub-category j. We first

consider the words wij in L2CLj, where i = 1, . . . , K = 100. Let αcj = (αcj
1 , . . . , α

cj
100) be a

vector of length 100 indicating if each word wij in L2CLj is in comment c. For instance, if

comment c contains the second word in L2CLJ , αcj
2 = 1; otherwise, αcj

2 = 0. To create the

SCF for comment c for sub-category j, we compute,

SCFcj =
K∑
i=1

(
sij × αcj

i

)
. (1)

In other words, the SCF is the sum of all sij such that word wij is in comment c. Similarly,

to create the P1-P3 Features for comment c for sub-category j, we compute,

P1Fcj =
K∑
i=1

(
P1ij × αcj

i

)
, (2)

P2Fcj =
K∑
i=1

(
P2ij × αcj

i

)
, (3)

P3Fcj =
K∑
i=1

(
P3ij × αcj

i

)
. (4)

The P1ij , P2ij , and P3ij are defined in Section 2.3.2 and Section 2.3.3.

4



B Appendix: Feature Engineering for Layer 1

In contrast to classification situations with numeric or categorical features, data for senti-

ment analysis often contains text data rather than distinct features. We use our text data

to create 15 features to use to classify comments in Layer 1. These features are:

1. The Number of Characters (sentence length): This feature reveals the length of

each comment. Negative comments tend to be shorter than the neutral ones.

2. The Number of Capital Letters (num cap): We chose to include this feature be-

cause we believe capital letters tend to convey stronger emotional messages. Negative

comments tend to have a large number of capital letters than neutral ones.

3. The Proportion of Capital Letters (cap density) ((2) divided by (1)): Even

though internet users may not strictly follow the standard rules of grammar, many of

them tend to begin every sentence with a capital letter. Thus, the number of capital

letters is positively correlated (0.46) with the length of the comments. The density

of capitalized letters in negative comments is greater than that in neutral comments.

4. The Number of Words (num word): Similar to feature (1), this feature reveals

the length of the comments. However, since we do not expect words to have the same

number of characters, the number of words may be a good indicator of the number of

messages in the comments. Based on the box plot, negative comments tend to have

less word than the neutral ones do.

5. The Number of Question Marks (num question): The number of question marks

in a comment tells us the possible number of questions in the comment. It may not

give us the exact number because one can put more than one question mark after

the end of a question. For instance, the first sentence in comment 1dcbc678cd6966bc

is “Where are the evidence???”. Additionally, this feature conveys the intensity of

emotion for some comments.

6. The Number of Exclamation Points (num excla): Similar to feature (5), when

one is angry, upset or offended, one may use exclamation points to express the feelings.

5



7. The Number of Periods (num period): This feature is included because it serves

as a representation of the number of sentences in a comment.

8. The Number of Stop Words (num stopword): Hans Luhn introduces the idea

of stop list in his presentation in 1959 [6]. A stop list is a list of common words

which contain minimal information, such as and and also. Many past researchers

chose to remove these in the preprocessing stage [1]. However, we choose to keep

the stop words in order to maintain the integrity of the comments. Words which are

stop words in general speech may, in online comments, contain information helpful

for classification. We extract the stop list from the R package tidytext [11] and count

the amount the stop words in each comment. In the training data, neutral comments

tend to have more stop words than negative ones.

9. The Stop Word Ratio (stopword ratio) ((8) Divided By (4)): Similar to feature

(3), we are interested in the ratio because it takes the number of words in the comment

into account. The proportion of stop words in the comments allow us to conduct

cross-comparison.

10. The Number of Top 20 Negative Words by Frequency (num neg word): To

build this feature, we subset our training data to only the negative comments, and

identified the top 20 most common words. We then counted the number of these top

20 negative words that appeared in each comment.

11. The Negative Word Ratio (neg word ratio) ((10) Divided By (4)): We included

this feature due to a reason similar to the reason we added the feature (9).

12. The Number of Unique Words(num unique word): Feature (12) was needed

because, in the original dataset, many users copied and pasted a single sentence

multiple times to strengthen the intensity of the comments. Therefore, a comment

could be 600 words long, but contain only the phrase I hate that! repeated over and

over. Feature 12 reduced such comments to the unique words contained within the

comment.

6



13. The Unique Word Ratio (unique word ratio): We included this feature due to a

reason similar to the reason we added the feature (9).

14. The Number of Top 20 Negative Words by TF-IDF (num neq word tfidf):

This feature is very similar to feature (10), but in contrast, we chose the top 20 words

by TF-IDF(Term Frequency-Inverse Document Frequency), a popular term-weighting

scheme used in many lexicon-based sentiment analysis studies [12]. However, after

examining the top 20 TF-IDF negative words, we found that 11 out of 20 words were

actually the derivative forms (e.g. incorrectly spelled, truncated, past tense or third

person singular) of some high-frequency words. Because of the typos and other data

quality concerns, TF-IDF proved to be an ineffective metric for our dataset.

15. The TF-IDF Negative Word Ratio (num neg tfidf ratio) ((14) Divided By

(4)): We included this feature due to a reason similar to the reason we added the

feature (9).

The distributions of the features are presented in Table 3.

C Appendix: Wikipedia Data Layer 1 Training

Using the features described in Appendix Section B, we used a variety of machine learning

algorithms to classify comments in the training data as Negative or Neutral. We used

the caret package in R to run these models and compare results. For each method, we

conducted 5-fold Cross-Validation and repeated this process there times. Table 4 displays

the distributions of accuracies of each algorithm.

XGBoost Tree stands for “Extreme Gradient Boosting Tree”, and it is a popular ma-

chine learning algorithm that is motivated by the concept of gradient boosting, similar to

other boosted tree models. However, XGBoost Tree adopts a more regularized model to

reduce over-fitting, and therefore it tends to preform better than other tree models. For

more details, please refer to [3].

According to Table 5, using the XGBoost Tree, 83.1% of the Neutral comments and

68.2% of Negative comments are correctly captured in the test dataset. Table 6 displays

7



the 95% confidence interval for the accuracy of the Xgboost approach. It also shows a naive

approach which classifies all comments as neutral and yields an accuracy of 50%.

We display the distributions of the accuracies of the Random Forest models in Table 7.

The importance of the final scores in these six binary classification model is displayed in

six diagrams, starting from Figure 2.

Random Forest is another widely-used machine learning model, and relies on using

bootstrapping to re-sample from the original sample. On each bootstrapped sample, a

classification tree is grown. Predictions are then made either by a voting system, or other

technique of combining the multiple predictions to obtain a single result. Since multiple

trees are used for prediction, it tends to be more robust than a single tree model to small

changes or outliers in the data. For more information, please refer to here.

8

https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm#intro


D Appendix: Tables

Table 1: The Counts and Percentages of the Negative and Neutral Comments

Classification Neutral Negative

Proportion .898 .102

Count 143346 16225

Table 2: Summary Statistics of the comments.

Features Min 1st Qu. Median 3rd Qu. Max.

Character Length 5 96 205 434.5 5000

Number of Capital Letters 0 3 7 15 4717

Proportion of Capital Letters 0 0.02 0.03 0.05 0.996

Number of Words 1 17 37 77 1403

Number of Question Marks 0 0 0 1 209

Number of Exclamation Marks 0 0 0 0 4942

Number of Periods 0 1 3 5 682

9



Table 3: Distributions of the 15 features.

Features Min 1st Qu. Median 3rd Qu. Max

Number of Characters 8 76 168 370 6247

Number of Capital Letters 0 3 6 15 4717

Proportion of Capital Letters 0 0.02 0.03 0.05 0.996

Number of Words 1 14 30 66 1403

Number of Question Marks 0 0 0 1 209

Number of Exclamation Points 0 0 0 0 4942

Number of Periods 0 1 2 5 682

Number of Stop Words 0 6 14 26 175

Stop Word Ratio 0 0.33 0.41 0.5 0.91

Number of Top 20 Negative

Words by Freq.
0 0 1 2 15

Negative Word Ratio 0 0 0.01 0.04 0.8

Number of Unique Words 1 12 25 47 447

Unique Word Ratio 0.0008 0.71 0.81 0.91 1

Number of Top 20 Negative

Words by TF-IDF
0 0 0 0 6

TF-IDF Negative Word Ratio 0 0 0 0 0.67

10



Table 4: The Distributions of the performances of the 10 methods on the training data.

MMLPNN stands for Monotone Multi-Layer Perception Neural Network, NNFE stands for

Neural Networds with Feature Extraction, and GLRLER standard for Generalized Linear

Regression with Lasso and Elastinet Regularization.

Method Min 1st Qu. Median Mean 3rd Qu. Max

Classification Tree 0.657 0.671 0.683 0.679 0.69 0.7

Logistic Regression 0.666 0.699 0.704 0.702 0.708 0.716

Random Forest 0.734 0.737 0.743 0.742 0.746 0.749

XGBoost Tree 0.743 0.752 0.754 0.755 0.76 0.762

MMLPNN 0.747 0.754 0.755 0.756 0.758 0.769

NNFE 0.722 0.729 0.732 0.735 0.74 0.745

Naive Bayes 0.591 0.594 0.599 0.598 0.602 0.603

Boosted Classification Tree 0.703 0.706 0.707 0.708 0.709 0.722

GLRLER 0.692 0.697 0.703 0.701 0.704 0.706

Gradient Boosting Machine 0.706 0.714 0.722 0.721 0.727 0.731

Table 5: The Confusion Matrix of the XGBoost Classification Tree.

(By Count) True Neutral True Negative

Predicted Neutral 831 318

Predicted Negative 169 682

Table 6: The Prediction Accuracy of the Xgboost Classification Tree in the Wikipedia

Training Data.

Accuracy 0.7565

95% Confidence Interval (0.7371,0.7752)

No Information Rate(NIR) 0.5

11



Table 7: The Distributions of the Accuracies of the Random Forest Models in the

Wikipedia Training Dataset. We conduct 5-fold cross validation for 3 times to see the

general performance of the models. The five number summaries below indicate the results

across these repetitions.

Random Forest Classification

Models
Min. 1st Qu. Median 3rd Qu. Max.

Toxic 0.9396 0.9406 0.9409 0.9409 0.9415

Severe Toxic 0.9015 0.9034 0.9061 0.9079 0.91

Obscene 0.7549 0.7617 0.7662 0.7708 0.7849

Threat 0.9705 0.9719 0.9728 0.9734 0.9747

Insult 0.6562 0.6642 0.6682 0.6705 0.6808

Identity-Hate 0.913 0.914 0.9146 0.9151 0.9159

Table 8: The Confusion Matrix of the XGBoost Classification Tree in the Twitter Training

Dataset.

(By Count) Actually Positive Actually Negative

Predicted Positive 160 43

Predicted Negative 40 157

12



Table 9: The Performances of the Random Forest Models on the Test Wikipedia Dataset.

RFs on Test Dataset Accuracy Difference

Toxic 0.729

Toxic w/ L2CL Based Features 0.775 0.046

Severe Toxic 0.934

Severe Toxic w/ L2CL Based Features 0.950 0.016

Obscene 0.813

Obscene w/ L2CL Based Features 0.890 0.077

Threat 0.985

Threat w/ L2CL Based Features 0.9855 0.0005

Insult 0.811

Insult w/ L2CL Based Features 0.840 0.029

Identity Hate 0.951

Identity Hate w/ L2CL Based Features 0.954 0.003

13



Table 10: The Distribution of the Negative Reasons. The proportion column indicates

the proportion of the negative comments that fall into each sub-category.

Reason Count Proportion

Customer Service 2910 .32

Late Flight 1665 .18

Cancelled Flight 847 .09

Lost Luggage 724 .08

Bad Flight 580 .06

Flight Booking 529 .06

Flight Attendant 481 .05

Long Lines 178 .02

Damaged Luggage 74 .01

Can’t Tell 1190 .13

14



E Appendix: Figures

Figure 1: Distribution of Accuracy rates on the training sets across different methods.

Figure 2: Variable importance plot for trained Toxic model. Here, toxic score p1 is

the P1 Feature, toxic score p2 is the P2 Feature, toxic score p3 is the P3 Feature, and

toxic score np is the SCF.

15



Figure 3: Variable importance plot for trained Several Toxic model. Here,

sevtox score p1 is the P1 Feature, sevtox score p2 is the P2 Feature, sevtox score p3

is the P3 Feature, and sevtox score np is the SCF.

Figure 4: Variable importance plot for trained Threat model. Here, threat score p1 is

the P1 Feature, threat score p2 is the P2 Feature, threat score p3 is the P3 Feature, and

threat score np is the SCF.

16



Figure 5: Variable importance plot for trained Insult model. Here, insult score p1 is

the P1 Feature, insult score p2 is the P2 Feature, insult score p3 is the P3 Feature, and

insult score np is the SCF.

Figure 6: Variable importance plot for trained Identity Hate model. Here,

idehat score p1 is the P1 Feature, idehat score p2 is the P2 Feature, idehat score p3 is

the P3 Feature, and idehat score np is the SCF.

17



Figure 7: Variable importance plot for trained Late Flight model. Here, late score p1

is the P1 Feature, late score p2 is the P2 Feature, late score p3 is the P3 Feature, and

late score np is the SCF.

18



Figure 8: Variable importance plot for trained Customer Service model. Here,

customer service score p1 is the P1 Feature, customer service score p2 is the P2 Fea-

ture, customer service score p3 is the P3 Feature, and customer service score np is the

SCF.

19



Figure 9: Variable importance plot for trained Lost Luggage model. Here,

lost luggage score p1 is the P1 Feature, lost luggage score p2 is the P2 Feature,

lost luggage score p3 is the P3 Feature, and lost luggage score np is the SCF.

20


	Appendix: L2CL Features
	Feature Engineering for Layer 2: Use the Scores (cont.)

	Appendix: Feature Engineering for Layer 1
	Appendix: Wikipedia Data Layer 1 Training
	Appendix: Tables
	Appendix: Figures

