
Supplementary Materials

A Computational strategies

The crux of doing inference with BCR is to calculate the marginal likelihoodsMs(A). We use

the computational strategies in Ma and Soriano (2018) to compute the integrals. Specifically,

for fixed ⌫, the inner integrals on the regression parameters are evaluated based on Laplace

approximation; then the outer integral on ⌫ is calculated with finite Riemann approximation.

With a bit abuse of the notations, in this section, we use �(A) to denote the ‘active’

regression coe�cient in (2.10). That is, under the null, �(A) is just the �(A) in (2.10);

under the alternative, �(A) denotes (�(A)>, �(A))>. xij is redefined to be the ‘active’

covariates in the same sense. With these notations, we have g(✓xij(A)) = x>
ij
�(A) and

✓ij(A) | xij, ⌫(A) ⇠ Beta(✓xij(A)⌫(A), (1�✓xij(A))⌫(A)) for each local beta-binomial model.

The computational strategies are the same under both hypotheses. Let ⇡A(�) be the

prior density of �(A) under either hypothesis. For fixed ⌫ in the support of GA(⌫), by the

Laplace approximation, the inner integral is

L⌫(A) =

Z 2Y

i=1

niY

j=1

LBB(g
�1(x>

ij
�), ⌫ | yij(Al), yij(Ar))⇡A(�)d�

=

Z
exp

(
X

i,j

logLBB(g
�1(x>

ij
�), ⌫ | yij(Al), yij(Ar)) + log ⇡A(�)

)
d�

=

Z
exp {h⌫(�)} d�

⇡ exp
n
h⌫(�̂⌫)

o
· (2⇡)d/2 · |�H⌫(�̂⌫)|�1/2

= L̂⌫(A)

where h⌫(�) =
P

i,j
logLBB(g�1(x>

ij
�), ⌫ | yij(Al), yij(Ar)) + log ⇡A(�), �̂⌫ is the maximizer

of h⌫(�), H⌫(�̂⌫) is the Hessian matrix of h⌫(�) at � = �̂⌫ . d is the degrees of freedom of

�, which is (p+2) under the alternative and (p+1) under the null. We describe a Newton-

S1



Raphson algorithm to solve for �̂⌫ below. The log-likelihood function is strictly log-concave

and the Newton-Raphson method generally converges after only a few iterations. Finally,

to get Ms(A), we compute the outer integral on ⌫,
R
L⌫(A)dGA(⌫), with finite Riemann

approximations. Specifically, after calculating L̂⌫(A) at a grid of ⌫’s: ⌫1, ⌫2, . . . , ⌫M , we have

Z
L⌫(A)dGA(⌫) ⇡

MX

m=2

L̂⌫m(A)(GA(⌫m)�GA(⌫m�1)).

Newton-Rhaphson for �̂⌫ . In this subsection, we shall fix our attention on a specific node

A and suppress the ‘(A)’ in the notations. Moreover, we let yij(Al) = tij for simplicity and

express the local Beta-Binomial regression model on A as

tij ⇠ Binomial(yij, ✓ij), ✓ij ⇠ Beta(✓xij⌫, (1� ✓xij)⌫), and g(✓x) = x>�.

The contribution to the log marginal likelihood from the j-th observation in group i is

lij = logLBB(g
�1(x>

ij
�), ⌫ | tij, yij � tij)

= log�(✓xij⌫ + tij) + log�((1� ✓xij)⌫ + yij � tij)� log�(⌫ + yij)

� log�(✓xij⌫)� log�((1� ✓xij)⌫) + log�(⌫).

Taking the first derivative w.r.t. �,

@lij

@�
=

@lij

@✓xij

·
@✓xij

@⌘ij
· @⌘ij
@�

where ⌘ij = x>
ij
�. Now with � denoting the digamma function,

@lij

@✓xij

= ⌫[�(✓xij⌫ + tij)� �((1� ✓xij)⌫ + yij � tij)� �(✓xij⌫) + �((1� ✓xij)⌫)].
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With the logit link, ✓xij = g
�1(⌘ij) = 1/(1 + e

�⌘ij), and

@✓xij

@⌘ij
= (g�1)0(⌘ij) = ✓xij(1� ✓xij).

Thus

@lij

@�
= ⌫✓xij(1� ✓xij)[�(✓xij⌫ + tij)� �((1� ✓xij)⌫ + yij � tij)� �(✓xij⌫) + �((1� ✓xij)⌫)]xij.

The second derivative of lij w.r.t. � is

@2lij
@�@�> =

@2lij
@✓2xij

·
✓
@✓xij

@⌘ij

◆2

·
✓
@⌘ij
@�

◆✓
@⌘ij
@�>

◆
+

@lij
@✓xij

·
@2✓xij

@⌘2
ij

·
✓
@⌘ij
@�

◆✓
@⌘ij
@�>

◆
+

@lij
@✓xij

·
@✓xij

@⌘ij

@2⌘ij
@�@�> .

The third term on the right-hand side is equal to zero. With  being the trigamma function,

@
2
lij

@✓2xij

= ⌫
2[ (✓xij⌫ + tij) +  ((1� ✓xij)⌫ + yij � tij)�  (✓xij⌫)�  ((1� ✓xij)⌫)].

Thus the first term is

@2lij
@✓2xij

·
✓
@✓xij

@⌘ij

◆2

·
✓
@⌘ij
@�

◆✓
@⌘ij
@�

◆>

= ⌫2[ (✓xij⌫ + tij) +  ((1� ✓xij )⌫ + yij � tij)�  (✓xij⌫)�  ((1� ✓xij )⌫)]✓
2
xij

(1� ✓xij )
2xijx

>
ij .

The second term, which has expectation zero, is

@lij
@✓xij

·
@2✓xij

@⌘2
ij

·
✓
@⌘ij
@�

◆✓
@⌘ij
@�

◆>

= ⌫[�(✓xij⌫ + tij)� �((1� ✓xij )⌫ + yij � tij)� �(✓xij⌫) + �((1� ✓xij )⌫)]✓xij (1� ✓xij )(1� 2✓xij )xijx
>
ij .
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For each i = 1, 2, j = 1, 2, . . . ni, let

aij = �(✓xij⌫ + tij)� �((1� ✓xij)⌫ + yij � tij)� �(✓xij⌫) + �((1� ✓xij)⌫)

bij =  (✓xij⌫ + tij) +  ((1� ✓xij)⌫ + yij � tij)�  (✓xij⌫)�  ((1� ✓xij)⌫).

Since the total log likelihood is l =
P

i,j
lij,

@l

@�
= ⌫

X

i,j

aij✓xij(1� ✓xij)xij = ⌫X>
W1z,

where the rows ofX are x>
ij
,W1 = diag(aij) and z = (✓x11(1�✓x11), . . . , ✓x1n1

(1�✓x1n1
), . . . , ✓x2n2

(1�

✓x2n2
))>. The rows of X,W1 and the elements of z are ordered first by j and then i.

@
2
l

@�@�> = ⌫
2
X

i,j

bij✓
2
xij

(1� ✓xij)
2xijx

>
ij
+ ⌫

X

i,j

aij✓xij(1� ✓xij)(1� 2✓xij)xijx
>
ij

= �⌫X>
W2X,

where W2 = �diag(⌫bij✓2xij
(1 � ✓xij)

2 + aij✓xij(1 � ✓xij)(1 � 2✓xij)). The columns of W2 is

also ordered first by j and then by i.

When applying Laplace approximation to evaluate the marginal likelihood for a fixed ⌫,

L⌫ =

Z
exp{l(�) + log ⇡(�)}d�,

where ⇡ is the prior on �. For example, with ⇡(�) is the independent normal N(0, �2
k
)

on the k-th element of �, let h⌫(�) = l(�) + log ⇡(�) = l(�) � �>⌃�1�/2, where ⌃ =

diag(�2
1, . . . , �

2
d
), we have

@h⌫(�)

@�
=

@l

@�
� ⌃�1�

@
2
h⌫(�)

@�@�> =
@
2
l

@�@�> � ⌃�1
.
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Hence the Newton-Raphson step for solving the MLE of � given ⌫ is given by

�̂(t+1) = �̂(t) +
⇣
X>

W
(t)
2 X + ⌃�1

/⌫

⌘�1 ⇣
X>

W
(t)
1 z(t) � ⌃�1�̂(t)

/⌫

⌘
.

Under the alternative, suppose that ⇡(�) = ⇡(�1)⇡(�), where �1 are the coe�cients for

the covariates and � for the group indicator. Instead of using independent normal prior on

�, the LIM g-prior (Li and Clyde, 2015) could be adopted. Using the independent normal

prior for �1, we have

h⌫(�) = l(�) + log ⇡(�)

= l(�)� �>
1 ⌃

�1�1/2� g
�1J⌫(�̂)�

2
/2

= l(�)� �>
1 ⌃

�1�1/2� g
�1
⌫(X>

Ŵ2X)2�/2

where (X>
Ŵ2X)2 denote the block of the Hessian matrix corresponding to �. Therefore,

@h⌫(�)

@�
= ⌫X>

W1z �

0

B@
⌃�1�1

g
�1
⌫(X>

Ŵ2X)2�

1

CA

@
2
h⌫(�)

@�@�> = �⌫X>
W2X �

0

B@
⌃�1

0

0 g
�1
⌫(X>

Ŵ2X)2

1

CA .

The resulting NR update is

�̂(t+1) = �̂(t)+

0

B@X>
W

(t)
2 X +

0

B@
⌃�1

/⌫ 0

0 g
�1(X>

W
(t)
2 X)2

1

CA

1

CA

�1

⇥

0

B@X>
W

(t)
1 z(t) �

0

B@
⌃̂�1�(t)

1 /⌫

g
�1(X>

W
(t)
2 X)2�̂(t)

1

CA

1

CA .
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B More on decision making

We first consider the original hypothesis that there is no cross-group di↵erence. Taking

a decision theoretic perspective, let d(y) 2 {0, 1} be some decision rule, with d(y) = 1

corresponding to the rejection of the global null that there are no cross-group di↵erences in

the OTU composition. When the loss function is

L(d(y), c) = c · [H0 is true]d(y) + (1� c) · [H1 is true](1� d(y))

for some 0  c  1, one can show that the Bayes optimal decision rule is d(y) = [PJAP>c].

In particular, when c = 0.5, this gives the optimal decision under the simple 0-1 loss.

The decision on reporting the significant nodes is essentially a multiple testing problem.

One way to address this problem is to use loss functions specified with the false positives and

false negatives (Müller et al., 2006). For example, let di(y) 2 {0, 1} be the decision rule on

the i-th node; again, di(y) = 1 corresponds to the rejection of the node-specific null. Let FD

and FN denote the number of false positives and false negatives. The posterior expectation

of FD and FN are

FD =
X

(1� PMAPi)⇥ di(y),

FN =
X

PMAPi ⇥ (1� di(y)).

It can be shown that under the loss L(d(y), t) = t⇥FD+FN, the Bayes optimal decision rule,

which minimizes the posterior expected loss L(d(y), t) = t⇥ FD+FN has the form di(y) =

[PMAPi>c0] with the optimal threshold c
0 = t/(t + 1), t � 0 (Müller et al., 2004). In our

application, we use c0 = 0.5 that corresponds to t = 1 which is also recommended by Barbieri

et al. (2004) from a Bayesian model choice perspective. Note that one can also consider loss

functions that directly take into account the dependency among the hypotheses being tested.

In our framework, such dependency is incorporated only through the probability model, not

in the decision theoretic part.
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C Covariate selection

As we noted in Section 2.4, covariate selection is achievable in BGCR by putting a spike-

and-slab prior on the regression coe�cients (George and McCulloch, 1997). For example, let

rl
ind⇠ Bernoulli(ql) where ql 2 (0, 1), l = 2, . . . , p+ 1. For A 2 I, we can modify the prior on

�(A) to be

�l(A)
ind⇠ (1� rl)�0 + rlN(0, �

2
l
(A)), l = 2, . . . , p+ 1, (S1)

where �0 is a point mass at zero, �2
l
(A)’s are chosen for N(0, �2

l
(A)) to cover all reasonable

values of �l(A) while not supporting unreasonable values of �l(A).

Let r = (r2, . . . , rp+1) 2 {0, 1}p. The independent Bernoulli priors on rl induce the

following prior on r

⇡(r) =
p+1Y

l=2

q
rl
l
(1� ql)

1�rl .

Conditioning on r, the marginal likelihood of the data, �1(⌦ | r), is available as a byproduct

of the BGCR inference algorithm (Section 2.4). When the number of covariates is not too

large, this allows us to get the posterior of r by Bayes theorem:

⇡(r | Y ) / ⇡(r)�1(⌦ | r).

We modify our simulation scenario IV in Section 3.3 to give a simple illustration of the

covariate selection procedure. Consider the data simulated under the alternative, in which

the counts of OTU ‘4481131’ (!s) are increased by 175% in the second group. Instead of

using “gender” as a confounder, we generate two covariates for each sample:

xij2
iid⇠ N(0, 1), xij3

iid⇠ N(0, 1).

Suppose that the first covariate is relevant to the counts of a specific OTU while the second
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covariate has nothing to do with the OTU counts. Specifically, we increase the counts of

OTU ‘4352657’ (!c) in the j-th sample in group i by (xij2 ⇥ 175%) (when this value is less

than �1, we set the count to zero). We note that due to the large variation in OTU counts,

the signal injected on !c is quite weak.

Consider a specific round of simulation. We let r2 = r3 = 0.5, �2
l
(A) = 10 for l = 2, 3

and fit BGCR with the prior in (S1). Table S1 summaries the posterior probabilities of the

four possible models. In comparison, each model has equal prior probabilities. Therefore,

the important variable is correctly identified.

Covariate in the model None 2 3 2 and 3
Posterior probability 0.223 0.320 0.186 0.270

Table S1: Posterior probabilities of di↵erent models (no confounding).

Although a covariate selection procedure can be incorporated in BGCR, one must proceed

with caution since this can substantially a↵ect or even invalidate the meaning of the testing

result on the two-group di↵erence. To see this intuitively, consider the following simplistic

but representative scenario. Suppose there is a (close-to) perfect confounding covariate

which explains virtually all the di↵erence across the two groups. Once this covariate is

included in the model then there is no remaining cross-group di↵erence and the two-group

comparison will not favor the alternative. However, including the covariate into the model

may not improve the fit to the observed data in any substantive manner as its e↵ect is largely

overlapping with that of the intercept (i.e., the group label). Consequently, statistical model

selection strategies, both Bayesian or frequentist, would very likely to exclude this covariate

from the model. This would lead to a significant testing result on the two-group di↵erences.

As a simple illustration, in the previous example, suppose instead we have

x1j2
iid⇠ N(0, 1), x2j2

iid⇠ N(2, 1).
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In this case, the first covariate is a confounding variable. Table S2 summaries the posterior

probabilities of the four possible models. Due to the strong confounding e↵ect, the first

covariate is excluded from the model, which would lead to false positives in the testing

scenario.

Covariate in the model None 2 3 2 and 3
Posterior probability 0.599 0.001 0.400 ⇡ 0

Table S2: Posterior probabilities of di↵erent models (with confounding).
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D Additional figures
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Figure S1: ROC curves for Scenario I and II with K = 50. The columns are indicated by
the percent of count increased in the second group (p).
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Figure S2: ROC curves for Scenario I and II with K = 75. The columns are indicated by
the percent of count increased in the second group (p).
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Figure S3: BGCR vs BCR under the null in scenario 3. Left: Histogram of the estimated
� in BGCR; Middle: PJAPs of BGCR vs BCR; Right: Histograms of the PJAPs of BGCR
and BCR.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

p = 75%

L

ra
tio

 o
f 
re

je
ct

io
n

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

p = 100%

L

ra
tio

 o
f 
re

je
ct

io
n

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

p = 125%

L

ra
tio

 o
f 
re

je
ct

io
n

BGCR
BCR

Figure S4: Ratio of rejection under the alternatives in Scenario III. The columns are indi-
cated by the percent of count increased in the second group (p).
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Figure S5: Estimated � under the alternatives in scenario 3.
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Figure S6: Histograms of the PJAPs under the alternatives in scenario 3.
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PMAP: Fruit (no cov)

 

 

 
 

 
 

  

 

 

 
 

 
 

 
 

 
 
 

 
 

 
 

   

 
 

 
   

 
  

 

 
 

 
 

 
 

 

 

 
 

 
 

 
    

 

 

 
 

 
 

 

 

 

 
 

 
 

 

 

 

 
 

 
 

 
 

 

 

 
 

 
 
 

 
 

 
 

 

 

 
 

 

 
 

 

 
 

 
  

PMAP: Seafood (no cov)

 

 

 
 

 
 

  

 

 

 
 

 
 

 
 

 
 
 

 
 

 
 

   

 
 

 
   

 
  

 

 
 

 
 

 
 

 

 

 
 

 
 

 
    

 

 

 
 

 
 

 

 

 

 
 

 
 

 

 

 

 
 

 
 

 
 

 

 

 
 

 
 
 

 
 

 
 

 

 

 
 

 

 
 

 

 
 

 
  

PMAP: Vegetable (no cov)

 

 

 
 

 
 

  

 

 

 
 

 
 

 
 

 
 
 

 
 

 
 

   

 
 

 
   

 
  

 

 
 

 
 

 
 

 

 

 
 

 
 

 
    

 

 

 
 

 
 

 

 

 

 
 

 
 

 

 

 

 
 

 
 

 
 

 

 

 
 

 
 
 

 
 

 
 

 

 

 
 

 

 
 

 

 
 

 
  

PMAP: Grain (no cov)
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Figure S7: PMAPs for the four comparisons that reject the global null. The nodes are
colored by PMAPs reported by BGCR with no covariate adjusted.
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PMAP: Fruit (non−diet cov)

 

 

 
 

 
 

  

 

 

 
 

 
 

 
 

 
 
 

 
 

 
 

   

 
 

 
   

 
  

 

 
 

 
 

 
 

 

 

 
 

 
 

 
    

 

 

 
 

 
 

 

 

 

 
 

 
 

 

 

 

 
 

 
 

 
 

 

 

 
 

 
 
 

 
 

 
 

 

 

 
 

 

 
 

 

 
 

 
  

PMAP: Seafood (non−diet cov)

 

 

 
 

 
 

  

 

 

 
 

 
 

 
 

 
 
 

 
 

 
 

   

 
 

 
   

 
  

 

 
 

 
 

 
 

 

 

 
 

 
 

 
    

 

 

 
 

 
 

 

 

 

 
 

 
 

 

 

 

 
 

 
 

 
 

 

 

 
 

 
 
 

 
 

 
 

 

 

 
 

 

 
 

 

 
 

 
  

PMAP: Vegetable (non−diet cov)

 

 

 
 

 
 

  

 

 

 
 

 
 

 
 

 
 
 

 
 

 
 

   

 
 

 
   

 
  

 

 
 

 
 

 
 

 

 

 
 

 
 

 
    

 

 

 
 

 
 

 

 

 

 
 

 
 

 

 

 

 
 

 
 

 
 

 

 

 
 

 
 
 

 
 

 
 

 

 

 
 

 

 
 

 

 
 

 
  

PMAP: Grain (non−diet cov)
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Figure S8: PMAPs for the four comparisons that reject the global null. The nodes are
colored by PMAPs reported by BGCR with only non-dietary covariates adjusted.
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PMAP (BCR): Fruit
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Figure S9: PMAPs for the four comparisons that reject the global null. The nodes are
colored by PMAPs reported by BCR with both non-dietary covariates and dietary covariates
adjusted.
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