Online Appendix

A Comparison with Horowitz (1998)

It is possible to study Horowitz's (1998) smoothed QR estimator using the same tools we employ to document the asymptotic behavior of our convolution-type kernel QR estimator. Let $\tau \in (0,1)$ and Assumptions X, Q and K hold. Let now $\mathfrak{R}_h^{(j)}(b;\tau) := \mathbb{E}[\widehat{\mathfrak{R}}_h^{(j)}(b;\tau)]$ for j=0,1,2 and $\mathfrak{b}_h(\tau) := \arg\min_b \mathfrak{R}_h(b;\tau)$. The latter corresponds to the unique solution of the first-order condition $\mathfrak{R}_h^{(1)}(\mathfrak{b}_h(\tau);\tau) = 0$ for h small enough. It turns out that $\widehat{\mathfrak{R}}_h^{(2)}(b;\tau) = \frac{1}{n} \sum_{i=1}^n X_i X_i' \kappa(e_i(b)/h)$, where $\kappa(t) := 2k(t) + tk^{(1)}(t)$. Integrating by parts shows that $\int t^j t k^{(1)}(t) dt = -(j+1) \int t^j k(t) dt$, so that $\kappa(\cdot)$ is a kernel function with the same order than $k(\cdot)$. Accordingly, Horowitz's (1998) smoothed objective function also satisfies Lemma 1.

Along the same lines as in the proof of Theorem 1,

$$\mathfrak{b}_{h}(\tau) - \beta_{h}(\tau) = -\left[\mathfrak{R}^{(2)}(\beta(\tau);\tau) + o(1)\right]^{-1}\mathfrak{R}_{h}^{(1)}(\beta_{h}(\tau);\tau)$$
$$= \left[D^{-1}(\tau) + o(1)\right]\mathbb{E}\left[X\frac{e(\beta_{h}(\tau))}{h}k\left(-\frac{e(\beta_{h}(\tau))}{h}\right)\right].$$

Because $k(\cdot)$ is symmetric and of order s+1, Theorem 1 implies that

$$\mathbb{E}\left[X\frac{e(\beta_h(\tau))}{h}k\left(-\frac{e(\beta_h(\tau))}{h}\right)\right] = h\mathbb{E}\left[X\int zk(z)f(X'\beta_h(\tau) + hz \mid X)k(z)\,\mathrm{d}z\right]$$
$$= h^{s+1}\frac{\int z^{s+1}k(z)\mathrm{d}z}{s!}\mathbb{E}\left[Xf^{(s)}(X'\beta(\tau) \mid X)\right] + o(h^{s+1})$$

and that $\mathfrak{b}_h(\tau) = \beta_h(\tau) + (s+1)h^{s+1}B(\tau) + o(h^{s+1}) = \beta(\tau) + sh^{s+1}B(\tau) + o(h^{s+1})$. This means that $\mathfrak{b}_h(\tau) - \beta(\tau) = -s(\beta_h(\tau) - \beta(\tau)) + o(h^{s+1})$, so that Horowitz's (1998) smoothing approach amplifies the bias by a factor -s asymptotically.

We next consider the asymptotic covariance matrix of Horowitz's smoothed QR estimator. Consider $b_h(\tau) = \beta(\tau) + O(h^2)$ and let $\Delta_h(\tau) := \widehat{\mathfrak{R}}_h^{(1)}(b_h(\tau);\tau) - \widehat{R}_h^{(1)}(b_h(\tau)b;\tau)$. We first observe that $\mathbb{V}\left[\sqrt{n}\Delta_h(\tau)\right] = O(h)$, whereas using the fact $y = X'b_h(\tau) - hu$ yields under Assumption Q2 that

$$n\operatorname{Cov}(\widehat{R}_{h}^{(1)}(b_{h}(\tau);\tau),\Delta_{h}(\tau)) = \mathbb{E}\left\{XX'\int\left[\tau - K\left(-\frac{e(b_{h}(\tau))}{h}\right)\right]\frac{e(b_{h}(\tau))}{h}k\left(-\frac{e(b_{h}(\tau))}{h}\right)f(y|X)\,\mathrm{d}y\right\}$$

$$= h\int\left[K(u) - \tau\right]uk(u)\,\mathrm{d}u\,\mathbb{E}\left[XX'f\left(X'b_{h}(\tau)|X\right)\mathrm{d}y\right] + O(h^{2})$$

$$= h\int_{0}^{\infty}\left[K(u) - K(-u)\right]uk(u)\,\mathrm{d}u\,\mathbb{E}\left[XX'f\left(X'\beta(\tau)|X\right)\mathrm{d}y\right] + O(h^{2})$$

for any symmetric kernel $k(\cdot)$. Because $\int_0^\infty [K(u) - K(-u)] u k(u) du > 0$ for second-order and bona fide higher-order kernels, there exists a symmetric positive M_τ such that

$$\mathbb{V}\left[\sqrt{n}\,\widehat{\mathfrak{R}}_{h}^{(1)}\big(\beta(\tau);\tau\big)\right] = \mathbb{V}\left[\sqrt{n}\,\widehat{R}_{h}^{(1)}\big(\beta(\tau);\tau\big)\right] + h\big[M_{\tau} + o(1)\big].$$

It then follows from Lemma 1 that $\mathfrak{R}_h^{(2)}(\mathfrak{b}_h(\tau);\tau)=D(\tau)+o(1)$, and hence

$$\mathbb{V}\Big[\mathfrak{R}_{h}^{(2)}\big(\mathfrak{b}_{h}(\tau);\tau\big)^{-1}\,\widehat{\mathfrak{R}}_{h}^{(1)}\big(\mathfrak{b}_{h}(\tau);\tau\big)\Big] = \mathbb{V}\Big[R_{h}^{(2)}\big(\beta_{h}(\tau);\tau\big)^{-1}\widehat{R}_{h}^{(1)}\big(\beta_{h}(\tau);\tau\big)\Big] + h\,D^{-1}(\tau)M_{\tau}D^{-1}(\tau) + o(h).$$

Horowitz's estimator has a Bahadur-Kiefer representation as in Theorem 2, ergo the above equality shows that the asymptotic covariance matrix of Horowitz's estimator is larger than ours at the second order.

B Technical proofs

Proof of Lemma 1 Under Assumption Q2, a Taylor expansion with integral remainder yields

$$f(v + hz \mid x) = \sum_{\ell=0}^{s} f^{(\ell)}(v \mid x) \frac{(hz)^{\ell}}{\ell!} + \frac{(hz)^{s}}{(s-1)!} \int_{0}^{1} (1-w)^{s-1} \left[f^{(s)}(v + whz \mid x) - f^{(s)}(v \mid x) \right] dw.$$

(i) Assumption K1 ensures that

$$\mathbb{E}[k_h(v-Y) \mid x] - f(v \mid x) = \int k_h(v-y) f(y \mid x) \, dy - f(v \mid x)$$

$$= \int k(z) \Big[f(v+hz \mid x) - f(v \mid x) \Big] \, dz$$

$$= \int_0^1 (1-w)^{s-1} \int \frac{(hz)^s}{(s-1)!} k(z) \Big[f^{(s)}(v+whz \mid x) - f^{(s)}(v \mid x) \Big] \, dz \, dw \quad (23)$$

through a change of variables y = v + hz. Now, the check function is such that

$$\int \rho_{\tau}(v) \, dG(v) = (1 - \tau) \int_{-\infty}^{0} G(v) \, dv + \tau \int_{0}^{\infty} [1 - G(v)] \, dv$$

for any arbitrary $\operatorname{cdf} G$, and hence

$$R(b;\tau) = \int \left\{ (1-\tau) \int_{-\infty}^{0} \int_{-\infty}^{t+x'b} f(v \mid x) \, \mathrm{d}v \, \mathrm{d}t + \tau \int_{0}^{\infty} \int_{t+x'b}^{\infty} f(v \mid x) \, \mathrm{d}v \, \mathrm{d}t \right\} \mathrm{d}F_X(x),$$

where $F_X(x)$ is the cdf of X. Similarly,

$$R_h(b;\tau) = \int \left\{ (1-\tau) \int_{-\infty}^0 \int_{-\infty}^{t+x'b} \mathbb{E}[k_h(v-Y) \mid x] \, \mathrm{d}v \, \mathrm{d}t + \tau \int_0^\infty \int_{t+x'b}^\infty \mathbb{E}[k_h(v-Y) \mid x] \, \mathrm{d}v \, \mathrm{d}t \right\} \mathrm{d}F_X(x).$$

It follows from (23) that

$$L_{1} := \left| \int_{-\infty}^{0} \int_{-\infty}^{t+x'b} \left\{ \mathbb{E}[k_{h}(v-Y) \mid x] - f(v \mid x) \right\} dv dt \right|$$

$$= \left| \int_{0}^{1} (1-w)^{s-1} \int \frac{(hz)^{s}}{(s-1)!} k(z) \int_{-\infty}^{0} \int_{-\infty}^{t+x'b} \left[f^{(s)}(v+whz \mid x) - f^{(s)}(v \mid x) \right] dv dt dz dw \right|$$

$$= \left| \int_{0}^{1} (1-w)^{s-1} \int \frac{(hz)^{s}}{(s-1)!} k(z) \left[f^{(s-2)}(x'b+whz \mid x) - f^{(s-2)}(x'b \mid x) \right] dz dw \right|$$

given that $\int |z^{s+1}k(z)| dz < \infty$ by Assumption K1 and that $f^{(s-2)}(\cdot | \cdot)$ is Lipschitz. Analogously, $\left| \int_0^\infty \int_{t+x'b}^\infty \mathbb{E}[k_h(v-Y) | x] - f(v | x) dv dt \right| \le C h^{s+1}$, establishing the result.

(ii) By the definitions of $R(b;\tau)$ and $R_h(b;\tau)$, it follows from the Lebesgue dominated convergence theorem that

$$R^{(1)}(b;\tau) = \mathbb{E}\left[X\left(F(X'b\mid X) - \tau\right)\right] = \int x\left[\int_{-\infty}^{x'b} f(y\mid x) \,\mathrm{d}y - \tau\right] \,\mathrm{d}F_X(x),$$

and that

$$R_h^{(1)}(b;\tau) = \mathbb{E}\left\{X\left[K\left(\frac{X'b-Y}{h}\right) - \tau\right]\right\} = \int x\left\{\int_{-\infty}^{x'b} \mathbb{E}\left[k_h(v-Y) \mid x\right] dv - \tau\right\} dF_X(x). \tag{24}$$

In view that $\int z^s k(z) dz = 0$ and $\int |z^{s+1} k(z)| dz < \infty$, integrating (23) yields

$$L_{2} := \left| \int_{-\infty}^{x'b} \mathbb{E} \left[k_{h}(v - Y) \mid x \right] - f(v \mid x) \, dv \right|$$

$$= \left| \int_{0}^{1} (1 - w)^{s-1} \int \frac{(hz)^{s}}{(s-1)!} \, k(z) \int_{-\infty}^{x'b} \left[f^{(s)}(v + whz \mid x) - f^{(s)}(v \mid x) \right] \, dv \, dz \, dw \right|$$

$$= \left| \int_{0}^{1} (1 - w)^{s-1} \int \frac{(hz)^{s}}{(s-1)!} \, k(z) \left[f^{(s-1)}(x'b + whz \mid x) - f^{(s-1)}(x'b \mid x) \right] \, dz \, dw \right|$$

$$= \left| \int_{0}^{1} w(1 - w)^{s-1} \int \frac{(hz)^{s+1}}{(s-1)!} \, k(z) \int_{0}^{1} f^{(s)}(x'b + twhz \mid x) \, dt \, dz \, dw \right| \le C \, h^{s+1}, \tag{25}$$

uniformly given that $f^{(s)}$ is bounded. The result then readily follows from Assumption X.

(iii) Differentiating $R^{(1)}(b;\tau)$ with respect to b results in

$$R^{(2)}(b;\tau) = \mathbb{E}[XX'f(X'b \,|\, X)] = \int xx'f(x'b \,|\, x) \,dF_X(x)$$

and, likewise,

$$R_h^{(2)}(b;\tau) = \mathbb{E}\big[XX'k_h(X'b-Y)\big] = \int xx' \,\mathbb{E}\big[k_h(x'b-Y) \,|\, x\big] \,\mathrm{d}F_X(x).$$

Setting v = x'b in (23) then yields

$$\begin{aligned} \left\| R_h^{(2)}(b;\tau) - R^{(2)}(b;\tau) \right\| &\leq C \left| \mathbb{E} \left[k_h(v-Y) \, | \, x \right] - f(v \, | \, x) \right| \\ &\leq C \, h^s \int |z^s K(z)| \sup_{(x,y) \in \mathbb{R}^{d+1}} \sup_{t: \, |t| \leq hz} \left| f^{(s)}(y+t \, | \, x) - f^{(s)}(y \, | \, x) \right| \, \mathrm{d}z = o(h^s), \end{aligned}$$

under Assumptions X and Q2 by the Lebesgue dominated convergence theorem, as stated.

(iv) Recall that

$$R_h^{(2)}(b;\tau) = \mathbb{E}[XX'k_h(X'b-Y)] = \int k(z) \int xx'f(x'b+hz|x) dF_X(x) dz.$$

Under Assumption Q2, it ensues from $f(\cdot|\cdot)$ being Lipschitz that

$$\left\| R_h^{(2)}(b+\delta;\tau) - R_h^{(2)}(b;\tau) \right\| \le C \int |k(z)| \int \|xx'\| |x'\delta| \, dF_X(x) \, dz \le C \|\delta\|,$$

uniformly in (b, h, δ, τ) , completing the proof.

Proof of Lemma 3 For $\eta > 0$,

$$\left\{ \sup_{(\tau,h)} \left\| \widehat{\beta}_h(\tau) - \beta_h(\tau) \right\| \ge 2\eta \right\} = \bigcup_{(\tau,h)} \left\{ \left\| \widehat{\beta}_h(\tau) - \beta_h(\tau) \right\| \ge 2\eta \right\}$$

$$\subset \bigcup_{(\tau,h)} \left\{ \inf_{\{b: \|b - \beta_h(\tau)\| \ge 2\eta\}} \widehat{\mathcal{R}}_h(b;\tau) \le \inf_{\{b: \|b - \beta_h(\tau)\| \le 2\eta\}} \widehat{\mathcal{R}}_h(b;\tau) \right\}$$

$$\subset \bigcup_{(\tau,h)} \left\{ \inf_{\{b: \|b - \beta_h(\tau)\| \ge 2\eta\}} \widehat{\mathcal{R}}_h(b;\tau) \le \widehat{\mathcal{R}}_h(\beta_h(\tau);\tau) \right\}$$

$$= \bigcup_{(\tau,h)} \left\{ \inf_{\{b: \|b - \beta_h(\tau)\| \ge 2\eta\}} \widehat{\mathcal{R}}_h(b;\tau) \le 0 \right\},$$

given that $\widehat{\mathcal{R}}_h(\beta_h(\tau);\tau)=0$. Theorem 1 ensures that

$$\left\{b: \|b - \beta_h(\tau)\| \ge 2\eta\right\} \subset \left\{b: \|b - \beta(\tau)\| + \sup_{(\tau,h)} \|\beta_h(\tau) - \beta(\tau)\| \ge 2\eta\right\}$$

$$\subset \left\{b: \|b - \beta(\tau)\| + O(\overline{h}_n^{s+1}) \ge 2\eta\right\}$$

$$\subset \left\{b: \|b - \beta(\tau)\| \ge \eta\right\}$$

for all (τ, h) provided that n is large enough. This means that

$$\left\{\sup_{(\tau,h)}\left\|\widehat{\beta}_h(\tau)-\beta_h(\tau)\right\|\geq 2\eta\right\}\subset \bigcup_{(\tau,h)}\left\{\inf_{\{b:\|b-\beta(\tau)\|\geq \eta\}}\widehat{\mathcal{R}}_h(b;\tau)\leq 0\right\}.$$

As $t \mapsto \rho_{\tau}(t)$ is 1-Lipschitz, it follows from

$$\widehat{R}_h(b;\tau) = \frac{1}{nh} \sum_{i=1}^n \int \rho_{\tau}(t) \, k\left(\frac{t - (Y_i - X_i'b)}{h}\right) dt = \frac{1}{n} \sum_{i=1}^n \int \rho_{\tau}(Y_i - X_i'b + hz) \, k(z) \, dz$$

that

$$\left|\widehat{R}_h(b;\tau) - \widehat{R}(b;\tau)\right| = \left|\frac{1}{n}\sum_{i=1}^n \int \left[\rho_\tau(Y_i - X_i'b + hz) - \rho_\tau(Y_i - X_i'b)\right] k(z) dz\right| \le h \int |z| k(z) |dz| < \infty,$$

for all b, τ and h by Assumption K1. Theorem 1 and the Lipschitz property of $b \mapsto \widehat{R}(b;\tau)$ then ensures that $\widehat{\mathcal{R}}_h(b;\tau) \geq \widehat{\mathcal{R}}(b;\tau) - Ch$ uniformly in b and τ , so that

$$\left\{ \sup_{(\tau,h)} \left\| \widehat{\beta}_h(\tau) - \beta_h(\tau) \right\| \ge 2\eta \right\} \subset \bigcup_{(\tau,h)} \left\{ \inf_{\{b: \|b-\beta(\tau)\| \ge \eta\}} \widehat{\mathcal{R}}(b;\tau) \le C h \right\}.$$

The next step is a convexity argument. We first perform the change of variables $b = \beta(\tau) + \rho u$ with ||u|| = 1 and $\rho \ge \eta$. In view that $b \mapsto \widehat{\mathcal{R}}(b;\tau)$ is convex with $\widehat{\mathcal{R}}(\beta(\tau);\tau) = 0$,

$$\frac{\eta}{\rho} \widehat{\mathcal{R}} \big(\beta(\tau) + \rho u; \tau \big) = \frac{\eta}{\rho} \widehat{\mathcal{R}} \big(\beta(\tau) + \rho u; \tau \big) + \left(1 - \frac{\eta}{\rho} \right) \widehat{\mathcal{R}} \big(\beta(\tau); \tau \big) \ge \widehat{\mathcal{R}} \big(\beta(\tau) + \eta u; \tau \big).$$

It follows from the above inequality that

$$\left\{\inf_{\{b:\|b-\beta(\tau)\|\geq\eta\}}\widehat{\mathcal{R}}(b;\tau)\leq C\,h\right\}\subset \left\{\inf_{\{b:\|b-\beta(\tau)\|=\eta\}}\widehat{\mathcal{R}}(b;\tau)\leq C\,h\right\},\,$$

and hence

$$\begin{split} \bigcup_{(\tau,h)} \left\{ \left\| \widehat{\beta}_h(\tau) - \beta_h(\tau) \right\| &\geq 2\eta \right\} \subset \bigcup_{\tau} \left\{ \inf_{\{b: \|b - \beta(\tau)\| = \eta\}} \widehat{\mathcal{R}}(b;\tau) \leq C \, \overline{h}_n \right\} \\ &\subset \left\{ \inf_{\tau} \inf_{\{b: \|b - \beta(\tau)\| = \eta\}} \left[\widehat{\mathcal{R}}(b;\tau) - \mathcal{R}(b;\tau) \right] \leq C \, \overline{h}_n - \inf_{\tau} \inf_{\{b: \|b - \beta(\tau)\| = \eta\}} \mathcal{R}(b;\tau) \right\}. \end{split}$$

We next establish an upper bound for $C \bar{h}_n - \inf_{\tau \in [\tau, \bar{\tau}]} \inf_{\{b: ||b-\beta(\tau)|| = \eta\}} \mathcal{R}(b; \tau)$ using the fact that the eigenvalues of $\mathcal{R}^{(2)}(b; \tau)$ are bounded away from 0 uniformly in b, for $||b-\beta(\tau)|| \le 1$ and $\tau \in [\tau, \bar{\tau}]$. Given that $R^{(1)}(\beta(\tau), \tau) = 0$, a second-order Taylor expansion of $\mathcal{R}(b; \tau) = R(b; \tau) - R(\beta(\tau); \tau)$ gives way to

$$\mathcal{R}(b;\tau) = 0 + \left(b - \beta(\tau)\right)' \left[\int_0^1 (1-t)\mathcal{R}^{(2)} \left(\beta(\tau) + t\left[b - \beta(\tau)\right];\tau\right) dt \right] \left(b - \beta(\tau)\right) \ge C \eta^2$$

for all b such that $||b - \beta(\tau)|| = \eta$. This means that, for any $\eta_2 = \eta - \epsilon_2 < \eta$ with conformable ϵ_2 and \bar{h}_n small enough,

$$\bigcup_{(\tau,h)} \left\{ \left\| \widehat{\beta}_h(\tau) - \beta_h(\tau) \right\| \ge 2\eta \right\} \subset \left\{ \sup_{\tau \in [\tau,\bar{\tau}]} \sup_{\{b: \|b-\beta(\tau)\| = \eta\}} \left| \widehat{\mathcal{R}}(b;\tau) - \mathcal{R}(b;\tau) \right| \ge C \eta_2^2 \right\}.$$

Now, let $Z_i = (Y_i, X_i')'$, $\theta = (\tau, b')'$ and $g_1(Z_i, \theta) = \rho_\tau(Y_i - X_i'b) - \rho_\tau(Y_i - X_i'\beta(\tau))$, so that

$$\widehat{\mathcal{R}}(b;\tau) - \mathcal{R}(b;\tau) = \frac{1}{n} \sum_{i=1}^{n} \left\{ g_1(Z_i,\theta) - \mathbb{E}[g_1(Z_i,\theta)] \right\}.$$

Under Assumption X, it follows from $\eta \leq 1$ that, for all b such that $||b - \beta(\tau)|| = \eta$ and $\tau \in [\tau, \bar{\tau}]$,

$$|q_1(Z_i, \theta)| < ||X_i|| ||b - \beta(\tau)|| < C,$$

implying that $\mathbb{V}(g_1(Z_i, \theta)) \leq \sigma^2 \leq C$. Observe also that pairing Assumption X with the Lipschitz conditions on $\tau \mapsto \beta(\tau)$ in Assumption Q1 and on $\tau \mapsto \rho_{\tau}(u)$ entails, for all admissible z,

$$|g_1(z,\theta_1 - g_1(z,\theta_2))| \le C \|\theta_1 - \theta_2\|,$$
 (26)

where $\|\theta\|^2 = \|b\|^2 + |\tau|^2$. Next, for $\delta > 0$, let θ_j , with $j = 1, \ldots, J(\delta) \leq C \delta^{-(d+1)}$, be such that

$$\Theta = \left\{ \theta = (b, \tau) : \tau \in [\underline{\tau}, \overline{\tau}], \|b - \beta(\tau)\| = \eta_1 \right\} \subset \bigcup_{j=1}^{J(\delta)} \mathcal{B}(\theta_j, \delta),$$

where $\mathcal{B}(\theta_j, \delta)$ is the $\|\cdot\|$ -ball with center θ_j and radius δ . Define $\underline{g}_{1j}(\cdot)$ and $\overline{g}_{1j}(\cdot)$ respectively as $\underline{g}_{1j}(z) := \inf_{\theta \in \mathcal{B}(\theta_j, \delta)} g_1(z, \theta)$ and $\overline{q}_{1j}(z) = \sup_{\theta \in \mathcal{B}(\theta_j, \delta)} g_1(z, \theta)$, so that $\{g_1(\cdot, \theta) : \theta \in \mathcal{B}(\theta_j, \delta)\} \subset [\underline{g}_{1j}, \overline{g}_{1j}]$. Let $\mathcal{G}_{1,\Theta} := \{g_1(\cdot, \theta) : \theta \in \Theta\} \subset \bigcup_{j=1}^{J(\delta)} [\underline{g}_{1j}, \overline{g}_{1j}]$. It follows from (26) that $|\overline{g}_{1j}(z) - \underline{g}_{1j}(z)| \leq C\delta \leq C$ and $\mathbb{E}\left[\left|\overline{g}_{1j}(Z_i) - \underline{g}_{1j}(Z_i)\right|^2\right] \leq C\delta^2$. By conditions (i) and (ii) in Lemma 2, it follows from (18) that setting $H(\delta) = -(d+1)\ln \delta + C$ leads to

$$\Pr\left(\sup_{\theta\in\Theta}\left|\widehat{\mathcal{R}}(b;\tau)-\mathcal{R}(b;\tau)\right|\geq C\,\frac{1+\sqrt{r}+r/\sqrt{n}}{\sqrt{n}}\right)\leq \exp(-r).$$

This means that, for n large enough with respect to η_2^2 ,

$$\Pr\left(\sup_{\tau}\sup_{\left\{b:\|b-\beta(\tau)\|=\eta_{1}\right\}}\left|\widehat{\mathcal{R}}(b;\tau)-\mathcal{R}(b;\tau)\right|\geq C\eta_{2}^{2}\right)\leq C\exp\left(-n\,C\eta_{2}^{4}\right),$$

and hence

$$\Pr\left(\sup_{(\tau,h)} \left\| \widehat{\beta}_h(\tau) - \beta_h(\tau) \right\| \ge 2\eta \right) \le C \exp\left(-n \, C\eta_2^4\right),\,$$

completing the proof.

Proof of Lemma 4 We start with the first deviation probability. As $R_h^{(1)}(\beta_h(\tau), \tau) = 0$,

$$\sup_{(\tau,h)} \left\| \sqrt{n} \, \widehat{R}_h^{(1)} \big[\beta_h(\tau), \tau \big] \right\| \le \sup_{(\tau,h)} \sup_{\{b: \|b-\beta_h(\tau)\| \le \eta\}} \left\| \sqrt{n} \, \left(\widehat{R}_h^{(1)}(b,\tau) - R_h^{(1)}(b,\tau) \right) \right\|.$$

However,

$$\widehat{R}_h^{(1)}(b,\tau) = \frac{\partial}{\partial b} \left[\frac{1}{n} \sum_{i=1}^n \int \rho_\tau(Y_i - X_i'b + hz) k(z) dz \right] = \frac{1}{n} \sum_{i=1}^n X_i \left[\int \mathbb{I}(Y_i - X_i'b + hz < 0) k(z) dz - \tau \right],$$

implying that $\widehat{R}_h^{(1)}(b,\tau) = \sum_{i=1}^n g_2(Z_i,\theta)/n$, with

$$g_2(Z_i, \theta) = X_i \left[\int \mathbb{I}(Y_i - X_i'b + hz < 0) k(z) dz - \tau \right],$$

for $Z_i = (Y_i, X_i')'$ and $\theta \in \Theta := \{(b', h, \tau) : (\tau, h) \in [\tau, \overline{\tau}] \times [\underline{h}_n, \overline{h}_n], \|b - \beta_h(\tau)\| \leq \eta \}$. We bound each of the entries of $\widehat{R}_h^{(1)}(b, \tau)$, so that there is no loss of generality in assuming that X_i is univariate. Note that $|g_2(Z_i, \theta)| \leq C$, $\mathbb{V}(g_2(Z_i, \theta)) \leq \sigma^2 \leq C$, and $|g_2(Z_i, \theta_2) - g_2(Z_i, \theta_1)| \leq C$ for all θ_1 and θ_2 . Let $\|\theta\|^2 = \|b\|^2 + |h|^2 + |\tau|^2$ and let $\mathcal{B}(\theta, \delta^2)$ denote the $\|\cdot\|$ -ball with center θ and radius δ^2 . Assumption X ensures that, for any θ_1 and θ_2 in $\mathcal{B}(\theta, \delta^2)$,

$$|g_2(Z_i, \theta_2) - g_2(Z_i, \theta_1)| \le C \left[\int \mathbb{I}\left(Y_i - X_i'b + hz \in [-C\delta^2, C\delta^2]\right) |k(z)| \, dz + \delta^2 \right].$$
 (27)

Consider a covering of Θ with $J(\delta^2) \leq C \, \delta^{-2(d+1)}$ balls $\mathcal{B}(\theta_j, \delta^2)$. Letting $\underline{g}_{2j}(z) := \inf_{\theta \in \mathcal{B}(\theta_j, \delta)} g_2(z, \theta)$ and $\overline{g}_{2j}(z) = \sup_{\theta \in \mathcal{B}(\theta_j, \delta)} g_2(z, \theta)$ implies not only that $\{g_2(\cdot, \theta) : \theta \in \mathcal{B}(\theta_j, \delta)\} \subset [g_{2j}, \overline{g}_{2j}]$, but also that $\mathcal{G}_{2,\Theta} := \{g_2(\cdot, \theta) : \theta \in \Theta\} \subset \bigcup_{j=1}^{J(\delta^2)} [\underline{g}_{2j}, \overline{g}_{2j}]$. Equation (27) ensures that, uniformly in j and $\delta^2 \leq \sigma^2$,

$$\mathbb{E}\left[\left|\bar{g}_{2j}(Z_i) - \underline{g}_{2j}(Z_i)\right|^2\right] \le C\,\delta^4 + C\,\mathbb{E}\left[\int \mathbb{I}\left(Y_i - X_i'b + hz \in [-C\,\delta^2, C\,\delta^2]\right)|k(z)|\,\mathrm{d}z\right]^2.$$

Applying the Cauchy-Schwarz inequality under Assumptions K and Q2 then gives way to

$$L_{4} := \mathbb{E}\left[\int \mathbb{I}\left(Y_{i} - X_{i}'b - hz \in [-C \delta^{2}, C \delta^{2}]\right) k(z) dz\right]^{2}$$

$$\leq \mathbb{E}\left[\int \mathbb{I}\left(Y_{i} - X_{i}'b - hz \in [-C \delta^{2}, C \delta^{2}]\right) |k(z)| dz\right] \times \int |k(z)| dz$$

$$\leq \int \mathbb{E}\left\{\Pr\left(Y_{i} - X_{i}b - hz \in [-C \delta^{2}, C \delta^{2}] |X_{i}\right)\right\} |k(z)| dz \times \int |k(z)| dz$$

$$\leq C \delta^{2},$$

implying that $\mathbb{E}\left[\left|\bar{g}_{2j}(Z_i) - \underline{g}_{2j}(Z_i)\right|^2\right] \leq C(\delta^4 + \delta^2) \leq C \delta^2$, uniformly in j and $\delta^2 \leq \sigma^2$. As a result, conditions (i) and (ii) in Lemma 2 hold for $\ln H(\delta) = -2(d+1)\ln \delta + C$, so that (18) gives

$$\Pr\left(\sup_{\theta\in\Theta}\left\|\sqrt{n}\left(\widehat{R}_h^{(1)}(b,\tau)-R_h^{(1)}(b,\tau)\right)\right\|\geq C\left(\sqrt{r}+1+r/\sqrt{n}\right)\right)\leq 2\exp(-r).$$

Accordingly, the first bound holds for n large enough. As for the second bound, there is no loss of generality to assume that X_i is unidimensional. Note that $\sqrt{nh/\ln n} \, \widehat{R}_h^{(2)}(b,\tau) = \sum_{i=1}^n g_3(Z_i,\theta)/\sqrt{n}$, with

$$g_3(Z_i, \theta) := \sqrt{\frac{1}{h \ln n}} X_i^2 k \left(\frac{X_i' b - Y_i}{h}\right).$$

Assumptions K and X ensure that, uniformly for $\theta \in \Theta$,

$$|g_3(Z_i,\theta)| \le C\sqrt{\frac{1}{h\ln n}} \le C\frac{O(\sqrt{n})}{\ln^2 n}.$$

It also follows from Assumption Q2 that, uniformly for $\theta \in \Theta$,

$$\mathbb{V}(g_3(Z_i, \theta)) \leq \frac{C}{h \ln n} \int \int k \left(\frac{x'b - y}{h}\right) f(y \mid x) \, dy \, dF_X(x)$$
$$= \frac{C}{\ln n} \times \int \int k(v) f(x'b + hv \mid x) \, dv \, dF_X(x) \leq \frac{C}{\ln n} = \sigma_n^2.$$

Assumption K posits that, for any θ_1 and θ_2 in Θ , $|g_3(Z_i,\theta_1) - g_3(Z_i,\theta_2)| \leq C n^C \|\theta_1 - \theta_2\|$. Consider a covering of Θ with $J(\delta/n^C) \leq C (\delta/n^C)^{-(d+1)}$ balls $\mathcal{B}(\theta_j, \delta/n^C)$ and let $\underline{g}_{3j}(z) := \inf_{\theta \in \mathcal{B}(\theta_j, \delta)} g_3(z, \theta)$ and $\overline{g}_{3j}(z) := \sup_{\theta \in \mathcal{B}(\theta_j, \delta)} g_3(z, \theta)$. It then turns out that $\{g_3(z, \theta) : \theta \in \mathcal{B}(\theta_j, \delta)\} \subset [\underline{g}_{3j}, \overline{g}_{3j}]$ and hence $\mathcal{G}_{3,\Theta} = \{g_3(\cdot, \theta) : \theta \in \Theta\} \subset \bigcup_{j=1}^{J(\delta/n^C)} [\underline{g}_{3j}, \overline{g}_{3j}]$, with $\mathbb{E}\left[\left|\overline{g}_3(Z_i) - \underline{g}_3(Z_i)\right|^2\right] \leq C \delta^2$. Conditions (i) and (ii) in Lemma 2 thus hold for $\ln H(\delta) = -2(d+1) (\ln \delta - C \ln n) + C$, so that (18) results for any u > 0 in

$$\Pr\left(\sup_{\theta\in\Theta}\left\|\sqrt{\frac{nh}{\ln n}}\left(\widehat{R}_h^{(2)}(b,\tau)-R_h^{(2)}(b,\tau)\right)\right\|\geq C\left(1+\frac{\sqrt{u}}{\sqrt{\ln n}}+\frac{u}{\ln n}\right)\right)\leq 2\exp(-u).$$

Setting $u = r \ln n$ then yields the exponential inequality.

Suppose now, without loss of generality, that \mathcal{B} is convex. Recall that

$$\widehat{R}_h^{(2)}(b_1,\tau) - \widehat{R}_h^{(2)}(b_0,\tau) = \frac{1}{n} \sum_{i=1}^n X_i X_i' X_i(b_1 - b_0) \int_0^1 \frac{1}{h^2} k^{(1)} \left(\frac{Y_i X_i' [b_1 + t(b_1 - b_0)]}{h} \right) dt$$

and that the variance of $h^{-2}k^{(1)}((Y_i - X_i'b)/h)$ is of order $h^{-3} = o(n/\ln n)$ under Assumption K. Applying now the same arguments as in the proof of the exponential inequality yields

$$\frac{1}{n} \sum_{i=1}^{n} X_i X_i' X_i (b_1 - b_0) \frac{1}{h^2} k^{(1)} \left(\frac{Y_i - X_i' [b_1 + t(b_1 - b_0)]}{h} \right)
= \mathbb{E} \left[X X' X (b_1 - b_0) \int_{-\infty}^{\infty} \frac{1}{h} k \left(\frac{y - X [b_1 + t(b_1 - b_0)]}{h} \right) f^{(1)}(y|X) dy \right] + O_p \left(\sqrt{\frac{\ln n}{nh^3}} \right),$$

uniformly in (τ, h, b_0, b_1) for $t \in [0, 1]$. The proofs of the remaining results follow similarly.

Proof of Proposition 3 Let

$$\mathcal{E}_n^3(\epsilon) := \left\{ \sup_{(\tau,h)} \left\| \widehat{\beta}_h(\tau) - \beta_h(\tau) \right\| \ge \epsilon^{1/4} \right\},\,$$

which is such that $\Pr\left(\mathcal{E}_n^3(\epsilon)\right) \leq C \exp(-C n \epsilon)$ by Lemma 3. The bounds for $\Pr\left(\mathcal{E}_n^1(r)\right)$ and $\Pr\left(\mathcal{E}_n^2(r)\right)$ follow from Lemma 4. In particular, $\lim_{n\to\infty} \Pr\left(\mathcal{E}_n^2(r)\right) = 0$, whereas Lemma 1 ensures under Assumption X that $b\mapsto \widehat{R}_h(b;\tau)$ is strictly convex for b in a vicinity of $\beta_h(\tau)$, for all τ in $[\tau,\bar{\tau}]$ with probability at least $1-\Pr\left(\mathcal{E}_n^1(r)\right)-\Pr\left(\mathcal{E}_n^2(r)\right)$. But, by Lemma 3 and Theorem 1, all minimizers of $\widehat{R}_h(b;\tau)$ lie in such a vicinity with a probability tending to 1. This means that we can make $1-\Pr\left(\mathcal{E}_n^1(r)\right)-\Pr\left(\mathcal{E}_n^2(r)\right)$ arbitrarily close to 1 by increasing r, and hence $\widehat{\beta}_h(\tau)$ is unique with a probability going to 1 as n increases. It also follows that, in case $\check{\mathcal{E}}_n^1(r)$, $\check{\mathcal{E}}_n^2(r)$ and $\check{\mathcal{E}}_n^3(\epsilon)$ are all true and n is large enough, $\widehat{\beta}_h(\tau)$ satisfies the first-order condition $\widehat{R}_h^{(1)}\left(\widehat{\beta}_h(\tau);\tau\right)=0$. Recall from the proof of Theorem 1 that $\widehat{R}_h^{(2)}(\cdot;\tau)$ has an inverse in the vicinity of $\beta_h(\tau)$ for n large enough on $\mathcal{E}^2(r)$. Applying the implicit function theorem then yields $\widehat{\beta}_h(\tau)$ continuous over the admissible (τ,h) . Accordingly,

$$-\widehat{R}_{h}^{(1)}(\beta_{h}(\tau);\tau) = \widehat{R}_{h}^{(1)}(\widehat{\beta}_{h}(\tau);\tau) - \widehat{R}_{h}^{(1)}(\beta_{h}(\tau);\tau)$$
$$= \left[\widehat{\beta}_{h}(\tau) - \beta_{h}(\tau)\right] \int_{0}^{1} \widehat{R}_{h}^{(2)}(\beta_{h}(\tau) + t[\widehat{\beta}_{h}(\tau) - \beta_{h}(\tau)];\tau) dt.$$

Now, if ϵ in $\mathcal{E}_n^3(\epsilon)$ is small enough, the eigenvalues of the above matrix are in [1/C, C] for a large C provided that n is large enough, uniformly in τ and h. This means that

$$\widehat{\beta}_h(\tau) - \beta_h(\tau) = -\left[\int_0^1 \widehat{R}_h^{(2)} \left(\beta_h(\tau) + u[\widehat{\beta}_h(\tau) - \beta_h(\tau)]; \tau\right) du\right]^{-1} \widehat{R}_h^{(1)} \left(\beta_h(\tau); \tau\right). \tag{28}$$

Lemma 1(iv) then implies that, for a generic constant C coming from Bernstein-type inequalities,

$$P_{2} := \left\| \sqrt{n} (\widehat{\beta}_{h}(\tau) - \beta_{h}(\tau)) + \left[R_{h}^{(2)} (\beta_{h}(\tau); \tau) \right]^{-1} \sqrt{n} \, \widehat{R}_{h}^{(1)} (\beta_{h}(\tau); \tau) \right\|$$

$$\leq C \left\| \int_{0}^{1} \left[\widehat{R}_{h}^{(2)} (\beta_{h}(\tau) + u \left[\widehat{\beta}_{h}(\tau) - \beta_{h}(\tau) \right]; \tau) - R_{h}^{(2)} (\beta_{h}(\tau) + u \left[\widehat{\beta}_{h}(\tau) - \beta_{h}(\tau) \right]; \tau) \right] du \right\| \left\| \sqrt{n} \, \widehat{R}_{h}^{(1)} (\beta_{h}(\tau); \tau) \right\|$$

$$+ C \left\| \int_{0}^{1} \left[R_{h}^{(2)} (\beta_{h}(\tau) + u \left[\widehat{\beta}_{h}(\tau) - \beta_{h}(\tau) \right]; \tau) - R_{h}^{(2)} (\beta_{h}(\tau); \tau) \right] du \right\| \left\| \sqrt{n} \, \widehat{R}_{h}^{(1)} (\beta_{h}(\tau); \tau) \right\|$$

$$\leq C \left\{ \sqrt{\frac{\ln n}{nh}} \, r^{2} + \left\| \widehat{\beta}_{h}(\tau) - \beta_{h}(\tau) \right\| \left\| \sqrt{n} \, \widehat{R}_{h}^{(1)} (\beta_{h}(\tau); \tau) \right\| \right\}$$

$$\leq C \left\{ \sqrt{\frac{\ln n}{nh}} \, r^{2} + n^{-1/2} \left\| \sqrt{n} \, \widehat{R}_{h}^{(1)} (\beta_{h}(\tau); \tau) \right\|^{2} \right\}$$

$$\leq C \left\{ \sqrt{\frac{\ln n}{nh}} + \frac{1}{\sqrt{n}} \right\} r^{2}$$

on $\check{\mathcal{E}}_n^1(r)$ and $\check{\mathcal{E}}_n^2(r)$, implying that $\check{\mathcal{E}}_n(r)$ holds as long as C_0 of the Proposition is large enough.

Proof of Lemma 5 Let $h = h_n$ to simplify notation. We first note that $\mathbb{E}(\sqrt{n}\,\widehat{S}_h(\tau)) = 0$. In addition, for any $\alpha, \tau \in [\tau, \bar{\tau}]$, it follows that

$$\mathbb{V}\left(\sqrt{n}\,\widehat{S}_h(\tau), \sqrt{n}\,\widehat{S}_h(\varsigma)\right) = \mathbb{E}\left\{XX'\left[K\left(-\frac{e\left(\beta_h(\tau)\right)}{h}\right) - \tau\right]\left[K\left(-\frac{e\left(\beta_h(\varsigma)\right)}{h}\right) - \varsigma\right]\right\}$$

converges to $\mathbb{E}\{XX'(\mathbb{I}[X'\beta(\tau) \geq Y] - \tau)(\mathbb{I}[X'\beta(\varsigma) \geq Y] - \varsigma)\}$ as $n \to \infty$. A simple computation using iterated expectations then yields the limiting covariance structure in (22).

By the Cramér-Wold device, in order to obtain weak convergence for the d-dimensional process $\{\sqrt{n}\,\hat{S}_h: \tau\in[\underline{\tau},\overline{\tau}]\}$, it suffices to consider the convergence in distribution of the linear form $\{\sqrt{n}\,\lambda'\hat{S}_h: \tau\in[\underline{\tau},\overline{\tau}]\}$, where λ is an arbitrary (fixed) vector in \mathbb{R}^d . Assume without loss of generality that $\|X\|\leq 1$ and $\|\lambda\|\leq 1$, and let $Z=(Y,X)\in\mathbb{R}\times\mathbb{R}^d$ and, similarly, $Z_i=(Y_i,X_i)$. Define now $g_{n,\tau}:\mathbb{R}\times\mathrm{supp}X\to\mathbb{R}$ for z=(y,x) as

$$g_{n,\tau}(z) := x_{\lambda} \left\{ K \left(\frac{x' \beta_h(\tau) - y}{h} \right) - \tau \right\}, \tag{29}$$

where $x_{\lambda} = \lambda' x$ and $X_{\lambda} = \lambda' X$, and consider the class of functions $\mathcal{G}_n = \{g_{n,\tau} : \tau \in [\underline{\tau}, \overline{\tau}]\}$. Letting \mathbb{P} and \mathbb{P}_n respectively denote the distribution of Z and the empirical distribution of the sample (Z_1, \ldots, Z_n) yields

$$\sqrt{n} \lambda' \widehat{S}_h(\tau) = \sqrt{n} (\mathbb{P}_n g_{n,\tau} - \mathbb{P} g_{n,\tau}).$$

In other words, the process $\{\sqrt{n}\lambda'\widehat{S}_h: \tau \in [\underline{\tau}, \overline{\tau}]\}$ is an empirical process indexed by a (changing) class of functions \mathcal{G}_n . By Theorem 19.28 in van der Vaart (1998), it suffices to establish that

$$\sup_{|\tau-\varsigma|<\delta(n)} \mathbb{E} \big| g_{n,\tau}(Z) - g_{n,\varsigma}(Z) \big|^2 \to 0 \tag{30}$$

and that, for any $\delta(n) \downarrow 0$,

$$\int_0^{\delta(n)} \sqrt{\ln N_{[]}(\epsilon, \mathcal{G}_n, L^2(\mathbb{P}))} \, \mathrm{d}\epsilon \to 0$$
 (31)

with $N_{[]}(\epsilon, \mathcal{G}_n, L^2(\mathbb{P}))$ denoting the minimum number of ϵ -brackets in $L^2(\mathbb{P})$ required to cover \mathcal{G}_n . The remaining requirements of Theorem 19.28 indeed hold trivially in view that the index set $[\underline{\tau}, \overline{\tau}]$ is a compact—and so, totally bounded—metric space, and that the changing classes \mathcal{G}_n admit envelope functions $G_n \equiv 1$ for all n that satisfy the Lindeberg condition $\mathbb{E}_{\mathbb{P}}(G_n^2 \mathbb{I}[G_n > \sqrt{n}\epsilon]) \to 0$.

Let $\partial_{\tau} := \frac{\partial}{\partial \tau}$. By Lemma 1 and Theorem 1, applying twice the implicit function theorem yields

$$\partial_{\tau}\beta_{h}(\tau) = -D_{h}(\tau)^{-1} \, \partial_{\tau}R_{h}^{(1)} \left(\beta_{h}(\tau); \tau\right) = D_{h}(\tau)^{-1} \mathbb{E}(X) = \left[D(\tau) + o(1)\right]^{-1} \mathbb{E}(X) = \partial_{\tau}\beta(\tau) + o(1)$$

uniformly for $(\tau, h) \in [\underline{\tau}, \overline{\tau}] \times [\underline{h}, \overline{h}]$. This implies, by Assumption Q1, that $\sup \|\partial_{\tau}\beta_{h}(\tau)\| \leq C$ for n large enough, with supremum taken over $(\tau, h) \in [\underline{\tau}, \overline{\tau}] \times [\underline{h}_{n}, \overline{h}_{n}]$, and so $\|\beta_{h}(\tau) - \beta_{h}(\varsigma)\| \leq C|\tau - \varsigma|$. It also follows from the inverse function theorem and Assumption Q1 that $\tau \mapsto x'\beta_{h}(\tau)$ is strictly increasing in τ , for any $x \in \sup X$ and n large enough. In what follows, we assume that n is large enough, so that the above holds.

Now, let $\underline{\tau} \leq \tau_L \leq \tau_U \leq \overline{\tau}$ and consider two random elements (possibly degenerate) $\widehat{\tau}$ and $\widehat{\varsigma}$ in $[\tau_L, \tau_U]$. The mean value theorem and Assumption Q2 then ensure that

$$\Pr\left(x'\beta_h(\widehat{\tau}\wedge\widehat{\varsigma}) - hu \le Y \le x'\beta_h(\widehat{\tau}\vee\widehat{\varsigma}) - hu \mid X = x\right) \le C \left|\tau_{\mathrm{U}} - \tau_{\mathrm{L}}\right|,\tag{32}$$

uniformly for $u \in \mathbb{R}$ and $x \in \text{supp} X$, given that $\left[x' \beta_h(\widehat{\tau} \wedge \widehat{\varsigma}), x' \beta_h(\widehat{\tau} \vee \widehat{\varsigma}) \right] \subset \left[x' \beta_h(\tau_L), x' \beta_h(\tau_U) \right]$ and $|x' \beta_h(\tau_U) - x' \beta_h(\tau_L)| \leq C |\tau_U - \tau_L|$. Define $\Upsilon_u = \{ X' \beta_h(\widehat{\tau} \wedge \widehat{\varsigma}) - Y \leq hu \leq X' \beta_h(\widehat{\tau} \vee \widehat{\varsigma}) - Y \}$.

It follows from $|g_{n,\widehat{\tau}}(Z) - g_{n,\widehat{\varsigma}}(Z)| \leq \int \mathbb{I}(\Upsilon_u) |k(u)| du + |\widehat{\tau} - \widehat{\varsigma}|$ that

$$\mathbb{E}\left|g_{n,\widehat{\tau}}(Z) - g_{n,\widehat{\varsigma}}(Z)\right|^{2} \leq \mathbb{E}\left|\widehat{\tau} - \widehat{\varsigma}\right|^{2} + 2\mathbb{E}\left[\left|\widehat{\tau} - \widehat{\varsigma}\right| \int \mathbb{I}(\Upsilon_{u}) \left|k(u)\right| du\right] + \mathbb{E}\left[\int \mathbb{I}(\Upsilon_{u}) \left|k(u)\right| du\right]^{2} \\
\leq \left|\tau_{U} - \tau_{L}\right|^{2} + 2\left|\tau_{U} - \tau_{L}\right| \int \Pr(\Upsilon_{u}) \left|k(u)\right| du + C \int \Pr(\Upsilon_{u}) \left|k(u)\right| du \\
\leq C\left|\tau_{U} - \tau_{L}\right|, \tag{34}$$

given that the Cauchy-Schwarz inequality implies that $\int \mathbb{I}(\Upsilon_u) |k(u)| du \int |k(u)| du$ is an upper bound for $\left(\int \mathbb{I}(\Upsilon_u) |k(u)|^{1/2} |k(u)|^{1/2} du\right)^2$, $\int |k(u)| du < \infty$ by Assumption K1, and $\Pr(\Upsilon_u) = \mathbb{E}\left[\Pr(\Upsilon_u | X)\right] \leq C |\tau_U - \tau_L|$ by iterated expectations and (32). Taking $\widehat{\tau}$ and $\widehat{\varsigma}$ to be deterministic shows that (30) holds, for all $\delta(n) \downarrow 0$.

We now obtain a set of brackets whose bracketing number is of order $1/\epsilon$. For $\epsilon > 0$ small enough, we cover the interval $[\underline{\tau}, \overline{\tau}]$ with $J(\epsilon) \leq \lceil (\overline{\tau} - \underline{\tau})/\epsilon + 1 \rceil \leq 2/\epsilon$ open intervals $B_i = (\tau_i - \epsilon, \tau_i + \epsilon)$, and let $\overline{g}_n^i(z) = \sup_{\tau \in B_i} g_{n,\tau}(z)$ and $\underline{g}_n^i(z) = \inf_{\tau \in B_i} g_{n,\tau}(z)$. It is straightforward to appreciate that the collection formed by the brackets $[\underline{g}_n^i, \overline{g}_n^i]$, with $i = 1, \ldots, J(\epsilon)$, covers \mathcal{G}_n and that these suprema and infima are attained in the closure of B_i . In particular, $\overline{g}_n^i(Z) = g_{n,\widehat{\tau}_i}(Z)$ and $\underline{g}_n^i(Z) = g_{n,\widehat{\varsigma}_i}(Z)$, where $\widehat{\tau}_i$ and $\widehat{\varsigma}_i$ are random elements in $[\tau_i - \epsilon, \tau_i + \epsilon]$. Resorting to (34) once more then gives

$$\mathbb{E}|\bar{g}_n^i(Z) - \underline{g}_n^i(Z)|^2 \le C\epsilon,$$

and, as a result, $N_{[]}(\epsilon, \mathcal{G}_n, L^2(P)) \leq C/\epsilon$. This ensures that (31) holds for all $\delta(n) \downarrow 0$.

For i = 1 and $i = J(\epsilon)$, the intervals are actually $[\underline{\tau}, \tau_1 + \epsilon]$ and $[\tau_{J(\epsilon)} - \epsilon, \overline{\tau}]$, respectively. For simplicity of exposition, we keep the notation as above.