ONLINE APPENDIX

A Comparison with Horowitz (1998)

It is possible to study Horowitz’s (1998) smoothed QR estimator using the same tools we em-
ploy to document the asymptotic behavior of our convolution-type kernel QR estimator. Let
7 € (0,1) and Assumptions X, Q and K hold. Let now %gj)(b; T) = E[i)A%glj)(b; 7)] for j =0,1,2 and
by (7) := argming Ry (b; 7). The latter corresponds to the unique solution of the first-order condi-
tion 9%21)([);1(7'); 7) = 0 for h small enough. It turns out that S?igf)(b; ) =150 X, X! k(ei(b)/h),
where #(t) = 2k(t) + tk(V)(¢). Integrating by parts shows that [tk (t)dt = —(5+1) [ t7k(t) dt
so that () is a kernel function with the same order than k(-). Accordingly, Horowitz’s (1998)
smoothed objective function also satisfies Lemma 1.

Along the same lines as in the proof of Theorem 1,
bu(r) — B(r) = — [ (B ) +0(1)] R (Bulr)i7)
_ Pn(T Bn(T
— [D7(7) + o(1)] E [X d ’;l( ) k(—e( f;f »)] .

Because k(-) is symmetric and of order s + 1, Theorem 1 implies that

E lx e(ﬁf;l(ﬂ) " (_e(ﬁ;;ff)) )] _hE [x [ K 8n(r) + e X) k(2 dz]

5+l
_pert [T HEE +j 2)dz E[Xf0)(X'8(r) | X)| + o(h+)

and that by(7) = Bu(7) + (s + DRI B(7) + o(h*TY) = B(7) + sh* L B(7) + o(h**1). This means
that by (1) — B(1) = —s(Bu(r) — B(7)) + o(h*T1), so that Horowitz’s (1998) smoothing approach
amplifies the bias by a factor —s asymptotically.

We next consider the asymptotic covariance matrix of Horowitz’s smoothed QR estimator.
Consider by, (1) = B(7) + O(h?) and let Ay(7) := S)A‘i,(ll)(bh(T);T) - E;ll)(bh(T)b;T). We first observe
that V[\/nAg(7)] = O(h), whereas using the fact y = X'by(7) — hu yields under Assumption Q2
that

n Cov (B (on (7): 7). An(r) {XX / [T— (— iz ”)]e(b’;f”)k(—e(b’;f”)) f(le)dy}

= h/ — 7] uk(u) duE [X X' f (X by (7)|X)dy] + O(h?)

= h/o (K (u) — K(—u)] uk(u) duE [XX'f(X'B(7)|X) dy] + O(h?)

for any symmetric kernel k(-). Because [;°[K (u) — K (—u)] uk(u) du > 0 for sccond-order and bona

fide higher-order kernels, there exists a symmetric positive M, such that

v (VA (8)ir) | = v [V B (B(r)i )| + h[M: + 0(1)].



It then follows from Lemma 1 that ZRELQ) (b (7);7) = D(7) + o(1), and hence
V(R (on(r)i7) " R (bn(r);7) | = VB (Ba(r)s ) TR (Bu(7)i 7) | +h DTN M DTHT) o).

Horowitz’s estimator has a Bahadur-Kiefer representation as in Theorem 2, ergo the above equality
shows that the asymptotic covariance matrix of Horowitz’s estimator is larger than ours at the

second order.

B Technical proofs

Proof of Lemma 1  Under Assumption Q2, a Taylor expansion with integral remainder yields

)Z (hz)* [ s—1 [ (s s
flo+hz|z Zf 7 +(s—1)!/0(1_w) ! f()(v+whz|a:)—f()(v|:c)]dw.

(¢) Assumption K1 ensures that
Elkp(v =Y) |z] — f(v]x) = /kh(v —y) f(y|z)dy — f(v]x)
= [ s+ he1a) - 0] )] @z
1
- /0 (1—w)*? / L k(=) [ FO 0+ whz |2) = [ (0] 2)| dzdw  (23)

through a change of variables y = v + hz. Now, the check function is such that

[oacw =0 [ ataver [T - cwla

—00 0

for any arbitrary cdf G, and hence

R(b;q-):/{ 1-7) / /HM dvdt+7/ /m, |a:)dvdt}dFX( )

where Fx(x) is the cdf of X. Similarly,

Ra(b:7) =/{(1—T) /_ZO /_t:,bxa[kh(v—ym] dvdt+r/000/t:zle[kh(v—Y)|x] dvdt} APy (x).

It follows from (23) that

| [ Byt - s Javas
= / — /((qhzi; / /Hm/b FO v +whz|z) - f(s)(v|a:)} dvdtdz dw
e

glven that / ‘zSHk z)| dz < 0 by Assumption K1 and that f(—2) ( | -) is Lipschitz. Analogously,
o Elkp(v — x) dvdt| < C h*t!, establishing the result.
0 t+a: b

(5=2) (/b + whz | z) — FE2 (b ax)} dz dw‘



(i¢) By the definitions of R(b; ) and Ry, (b; 1), it follows from the Lebesgue dominated convergence

theorem that
RO (b 1) = E[X (F(X’b 1X) — T)} - /x [/j:f(y | 2) dy — T] dFy(z),
and that

RV (b;7) = E{X [K <¥) - T] } = /x { /_iE[kh(u ~Y)|z]dv— T} dFy(z). (24)

In view that [ 2°k(z)dz = 0 and [|2°"'k(2)| dz < oo, integrating (23) yields

x'b
Ly := / Elkn(v —=Y)|z] — f(v]z)dv

—00

1 ) z'b
= / (1-— fu))s_l/ ((Sh_zi;, k’(z)/ [f(s) (v +whz|z) — f&) (v J’)} dvdzdw
0 ' -

(o)

1
= ./o (1-— w)s_l/ ((;ﬂ)l k(z) [f(s_l)(a:'b +whz|z) — fSV(2'b| x)} dz dw‘

= /01 w(l — w)s_l/ (é"sz_):!l k(z) /01 (@b + twhz | 2)dt dz dw‘ < C Rt (25)
uniformly given that f(*) is bounded. The result then readily follows from Assumption X.

(#4i)  Differentiating R (b;7) with respect to b results in

RO (b:7) = E[XX'f(X'b| X)] = / ' (/b z) dF ()

and, likewise,

R (b;7) = E[X X'k (X'b— V)] = / v B[k (2'b— Y) | 2] dFx (x).

Setting v = 2’b in (23) then yields

| R0 7) = RO @57 < € [B[ka(o = V) ] = (o)

<con / #K()| s sup |[fOy+tle) - 1O a)|dz = o(h®),

(z,y)ERIFL L: |t|<hz

under Assumptions X and Q2 by the Lebesgue dominated convergence theorem, as stated.
(iv)  Recall that

R (b;7) = E[X X'k (X'b— V)] = / k(z) / 22’ f(a'b+ hz | x) dFx (z) d.

Under Assumption Q2, it ensues from f(-|-) being Lipschitz that

|72 @+ 5im) — B2 | < 0 [k [ 1o |'5] dPx () @z < € ],

uniformly in (b, h, §, 7), completing the proof. |



Proof of Lemma 3 For n > 0,

sup ||Bn(T > 2 Bu(r) — Ba(m)|| = 29
{(Th H W) = Bl )H } {H T ERT H }
< Ri(b;7) < inf  Ru(br
(9) {{b [|b— ﬁh(T)H>27]} h( ) {b:llb—Br(T)1<2n} h( )}
C ﬁ b: T <7€ )T
o {{bnb At oy (5 T) < Ra(Bu(7) )}
— { inf ﬁh(b; 7') < 0}’
(mh) {b:llo—Bn () Z2n}

given that R, (Br(7);7) = 0. Theorem 1 ensures that
{or = =2} < s o= 8+ s 1) - BN > 20

c {o: b= BN+ O > 20
< {o: - B = n}

for all (7, h) provided that n is large enough. This means that

{Sup Hﬁh Bi(r )H > 277} <y

R (b;7) < 0} :
(7,h)

{ inf
{b:16—=B(7)[I=n}

As t — p,(t) is 1-Lipschitz, it follows from

Ru(b;7) = % Z /pT(t) k(ﬂ) dt = %Z /pT(Yi — X/b+ hz) k(2)dz
; h i=1"

that

‘ﬁh(b;r) - E(b;T)‘ = ‘% i/ [pT(Y;- — XIb+ h) — pr(Yi — X;b)} k(2)dz

< h/|zk(z)]dz < 00,

for all b, 7 and h by Assumption K1. Theorem 1 and the Lipschitz property of b ﬁ(b; 7) then
ensures that Ry, (b; 7) > R(b;7) — C h uniformly in b and 7, so that

{Sup Hﬁh i )H - 277} - (H) {{b:||b—i§£>||zn}mb; m< Ch}'

The next step is a convexity argument. We first perform the change of variables b = 5(7) + pu with
|u/| =1 and p > 7. In view that b+ R(b;7) is convex with ﬁ(ﬁ(T);T) =0,

I3

gﬁ(ﬁ(f) +puT) = 73(5(7) +pu;T) + <1 —~ %) R(B(r);7) > R(B(T) +nus 7).

It follows from the above inequality that

{ inf R(b;7) < C’h} C { inf R(b;7) < C’h} ,
{b:llo—B(7)l1Zn} {o:llo—B(7)I=n}



and hence
(g) {th(T) - 5h(T)H - 27]} - LTJ {{btllb—iﬁrg)H:n} ﬁ(b;ﬂ : O}_Ln}

C < inf inf R b;7)—R(b;7)| < C hy—inf inf R(b;T) ¢ .
{T {brllb—ﬁ(T)H:n}[ (i) =R )} " {elb-B()l|=n} ( )}

We next establish an upper bound for C' En—infTE[Iﬂ inf 41— g(r)||=n) R(b; T) using the fact that the
cigenvalues of R(?)(b; 7) are bounded away from 0 uniformly in b, for ||b— 8(7)|| < 1 and 7 € [z, 7].
Given that R(l)(ﬁ(T),T) = 0. a second-order Taylor expansion of R(b;7) = R(b;7) — R(B(7);7)

gives way to

1
R(b;7) =0+ (b—B(7)) U (1=tRP(B(r) +t[b— B(1)];7) dt] (b—B(r)) > Cn?

0

for all b such that ||b — 8(7)|| = . This means that, for any 72 = 7 — €2 < 1 with conformable €3

and h,, small enough,

{Hﬁh [3h(T)H > 271} C { sup sup ‘R (b;7) — R(b; T)‘ > C’r]z}

) relr] (lb-()=1)

Now, let Z; = (Y;, X})\. 6 = (r,V') and ¢1(Z;,0) = p-(Y; — X/b) — p- (Vi — X[B(7)), so that

Rb:7) = R7) = > {n(Z0) ~ Bloa(Z,0)]}

Under Assumption X, it follows from n < 1 that, for all b such that ||b — B(7)|| =n and 7 € [1, 7],
l91(Zi, 0)] < | Xall []b = ()] < C,

implying that V(gl(Zi, 9)) < 02 < C. Observe also that pairing Assumption X with the Lipschitz

conditions on 7 — B(7) in Assumption Q1 and on 7+ p,(u) entails, for all admissible z,
l91(2,01 — g1(2,02)| < C |01 — 02|, (26)

where [|0]]* = ||b]|* + |7|*. Next, for § > 0, let 0, with j =1,...,J(5) < C 5@V be such that

J(6)
@:{9:(1),7):7'6[7‘7'] b — B(r } L_J (6;,9),

where B(6;,0) is the ||-||-ball with center #; and radius §. Define g1;(-) and gi;(-) respectively as
g15(2) = inf()elg(gj’lg) 91(z,0) and qi5(2) = SUPgeB(9;,5) g1(z,0), so that {gl(-ﬂ) 10 ¢ B(Hj,é)} C
915, G15]- Let G o := {gl(-, 0):6¢ @} C Ujfl) 915, 15]- It follows from (26) that ‘glj(z) - glj(z)‘ <
Cd < C and E[‘glj(Zi) — glj(Zi)ﬂ < 062, By conditions (i) and (4i) in Lemma 2, it follows from
(18) that setting H(0) = —(d+ 1)Inéd + C leads to

Pr <31€18 ﬁ(b;T) — R(b; 7')‘ >C L+ \/F\/;T/\/ﬁ> < exp(—r).

5



This means that, for n large enough with respect to 73,

Pr (Sup sup R(b; 7) — R(b: 7')’ > C’ng) < Cexp(—n C’n%) ,
T {bb-B(r)I=m }
and hence
P (sop [t )| 20) < Comm ).
(1,h)
completing the proof. |

Proof of Lemma 4 We start with the first deviation probability. As Rl(Ll) (Bh(r), 7') =0,

sup H\/r_zfig) [ﬁh(T), 7'] H < sup sup H\/’I_L (ﬁg)(bm) - R,(ll)(b, T)) H .

(mh) ) L o (r)l<n}

However,

A1) 2|1y

B)b.7) = 5 5;/97(31 XIb+ ha)k ] ZX [/ (Y — X!b+ hz < 0) k(z)dz — 7|,

implying that ﬁgl)(b, T) = >0 92(Z;, 0) /n, with
92(Zi,0) = X; [/H(Yl — X/b+hz <0)k(z)dz — T:| )

for Z; = (Y;,X}) and 6 € © := {(V',h,7) : (T,h) € [1,7] X [, hn), ||b = Br(7)| < n}. We bound
each of the entries of ﬁg) (b, 7), so that there is no loss of generality in assuming that X is univariate.
Note that |g2(Z;, 0)] < C, V(gg(Zi,G)) < 0% < C, and |g2(Z;, 02) — g2(Zi,61)| < C for all 67 and
0. Let ||0]|* = ||b]|* + |1|? + |7|* and let B(0, %) denote the ||-||-ball with center § and radius 62.

Assumption X ensures that, for any 6; and 65 in B (9, (52),
l92(Zi, 02) — g2(Z;,61)| < C [/]1 (Y — X[b+ hz € [-C8%,C6%)) |k(2)| dz + 62| . (27)

Consider a covering of © with J(62) < C 6~ 24+Y balls B(6;, 62). Letting goj(2) = infoep(s;.5) 92(2, 0)
and ga;(2) = supgep(g; 5) 92(2,0) implies not only that {ga(+,0): 0 € B(6;,6)} C [g25,G2;], but also
that Goo := {ga(+,0): 0 € O} C U [g2]7ggj] Equation (27) ensures that, uniformly in j and
5% < o2,

2
E|[92(2:) — g23(20)*] < Co* + CEU (Y; = X[b+ hz € [-C 6%,C8%)) |k(2)|dz
Applying the Cauchy-Schwarz inequality under Assumptions K and Q2 then gives way to

Ly := EUH (Yi — X/b—hz € [-C*,C6%) k(z) dzr

< E[/H(Yi — X!b—hz € [-C§%,C %) |k(z)]dz] X /|k(z)|dz

< /E{Pr (Yi—Xib—hze[—062,052]|Xi)}|k(z)|dzx/|k;(z)|dz
< Co



implying that E[‘ggj(Zi) - g2j(Zi)ﬂ < O(6*462) < € 2, uniformly in j and §2 < 0. As a result,
conditions (i) and (i7) in Lemma 2 hold for In H(d) = —2(d + 1)Ind + C, so that (18) gives

Pr (sup Hﬁ (Eél)(b, T) — R,(ll)(b, 7‘)) H >C(Vr+1+ r/\/ﬁ)) < 2exp(—r).

0cO

Accordingly, the first bound holds for n large enough. As for the second bound, there is no loss of
generality to assume that X; is unidimensional. Note that /nh/Inn ﬁﬁf) (b,7) =11 93(Zi,0)//n.
with

oy L o, (XY,
93(Z;,0) := Y Xk( - )

Assumptions K and X ensure that, uniformly for 6 € O,

[ 1 O(v/n)
Z’L7 < < .
l93(2:,0)] < © hlnn ¢ Inn

It also follows from Assumption Q2 that, uniformly for 6 € O,

Vas2.0) < i [ [#(Z5) sl ayar

—x//k(v) (/b + ho | z) dv dFx () < -C— = o2.

Inn

Assumption K posits that, for any 61 and 6y in O, |g3(Z;,01) — g3(Zi, 02)] < Cn |01 — 0]
Consider a covering of © with J(6/nC) < C(6/n”)~@+1) balls B(0,5/n") and let gsj(z) =
infoen(0,.6) 93(2,0) and gs;(z) = SUPpes(6,,5) g3(z,0). It then turns out that {gg(z,ﬁ) ;0 €

~ _ c — . —
B(6;,0)} C [g35,73;) and hence Gz o = {g3 (-,6) : € ©} C U}Igl/n g3, 53] WlthE“Q?,(Zi) - g3(Zz')‘2] <
C 62. Conditions (i) and (1) in Lemma 2 thus hold for In H(6) = —2(d + 1) (Ind — C'lnn) + C, so

that (18) results for any v > 0 in
| nh(50) (2) Nuo o

p R, (b,7) — R, (b >C (1 — )] <2 —u).

T (225 1 nn ( ( ) h ( 7T)) - + \/F + lnn = exp( U’)

Setting u = rInn then yields the exponential inequality:.

Suppose now, without loss of generality, that B is convex. Recall that

- YiX! by + t(by — b
R}(f)(bl’ ) R()bm ZXXX bl_bo / —k1)< 1 z[1+h(1 O)]>dt

and that the variance of h=2kW ((Y; — X[b)/h) is of order h=3 = o(n/Inn) under Assumption K.

Applying now the same arguments as in the proof of the exponential inequality yields

- ; XiX!X;(by — bo)ﬁ k -

1 y—X[b1+t(b1—bo)] Inn
=E |XX'X(b) — b —k W (y|X)d —
=) [ 3 ( . X)) +0, (55 ).
uniformly in (7, h, b, b1) for ¢ € [0,1]. The proofs of the remaining results follow similarly. [



Proof of Proposition 3 Let

£3(e) = {sup Hﬁh(r) _ ﬁh(r)H > 61/4} :

(Th)

which is such that Pr(€3(e)) < C exp(—Cne) by Lemma 3. The bounds for Pr(&}(r)) and
Pr (£2(r)) follow from Lemma 4. In particular, lim,_,o Pr (£2(r)) = 0, whereas Lemma 1 ensures
under Assumption X that b — Ry, (b; 7) is strictly convex for b in a vicinity of 8 (7). for all T in
[r,7] with probability at least 1 — Pr (£}(r)) — Pr (€2(r)). But, by Lemma 3 and Theorem 1, all
minimizers of Eh(b; 7) lie in such a vicinity with a probability tending to 1. This means that we can
make 1 — Pr (£1(r)) — Pr (E2(r)) arbitrarily close to 1 by increasing r, and hence B (7) is unique
with a probability going to 1 as n increases. It also follows that, in case & 1( ). E2(r) and E3(€) are
all true and n is large enough, Bh( ) satisfies the first-order condition R (ﬁh( );7)= 0. Recall
from the proof of Theorem 1 that R(Q)( 7) has an inverse in the vicinity of 8y (7) for n large enough
on £2(r). Applying the implicit function theorem then yields ﬁh( ) continuous over the admissible
(1, h). Accordingly,

R (Bu(r):r) = B (Bu(r)im) = By (Bu(r)im)
~ 1 ~ -~
= [Bu(r) = 800 [ B2 (30lr) + t[n(r) = pu()]i7)

0
Now, if € in £3(e) is small enough, the eigenvalues of the above matrix are in [1/C, C] for a large C

provided that n is large enough, uniformly in 7 and h. This means that

~ .1 ~ ~ ~
Bu(r) = Bul(r) = - [ /0 B (Bu(r) + ulBa(r) = Bu(r)]i7) du] B (Bn(r); 7). (28)
Lemma 1(iv) then implies that, for a generic constant C' coming from Bernstein-type inequalities,

Py = ||Va(Ba(r) = Bu(r) + [R(B(r)i 7))~ VA B (Bu(r)im) |

SOH/;W(WT)+U[ﬁhm—ﬁhm]ﬁ)—Rﬁf)(ﬂm+u[5h<> utr))i)] dul [V R (B |
+(J’/O1 [R,(l?)<ﬁh(7)+u[5h(7)—ﬁh(T)] ) Rgf (Bn(7); ]du H‘/—Rh (Bu(7); )H

IN

{2+ [t - v v R G|
o5 e ol

Inn 1 9

on EX(r) and £2(r), implying that &,(r) holds as long as Cy of the Proposition is large enough. W

IN

IN

Proof of Lemma 5 Let h = hy, to simplify notation. We first note that E(y/n §h(r)) =0. In

addition, for any «, T € [r, 7], it follows that

V(v Sy(7), v/ Sh(<)) =E{XX’ [K(—@) —T] lK(—@) —g”



converges to E{XX'(I[X'B(r) > Y] — 7)(I[X'B(s) > Y] — <)} as n — oo. A simple computation
using iterated expectations then yields the limiting covariance structure in (22).

By the Cramér-Wold device, in order to obtain weak convergence for the d-dimensional process
{ \/ES\;L ST € T, 7"]}, it suffices to consider the convergence in distribution of the linear form
{VnX Sp:71elrn 7]}, where A is an arbitrary (fixed) vector in R?. Assume without loss of
generality that | X|| < 1 and ||\ <1, and let Z = (Y, X) € R x R? and, similarly, Z; = (Y, X;).
Define now ¢, r : R x suppX — R for z = (y, ) as

onr2) =y {16 (FE=Y) - (29)

where z)y = Nz and X, = N'X, and consider the class of functions G, = {gn.- : 7 € [1,7T]|}. Letting
P and P, respectively denote the distribution of Z and the empirical distribution of the sample
(Z1,...,2Zy) yields

VXN Sh(7) = V1 (Pognr — Ponz)-

In other words, the process {\/ﬁ)\’ §h 2T E [T, 7"]} is an empirical process indexed by a (changing)
class of functions G,. By Theorem 19.28 in van der Vaart (1998), it suffices to establish that

sup  E|gnr(Z) — gno(2)] = 0 (30)
|T—¢|<d(n)

and that, for any d(n) | 0,

4(n)
/ \/ln Njy(€, Gn, L2(P)) de — 0 (31)
0

with Njj(€, Gn, L*(PP)) denoting the minimum number of e-brackets in L*(P) required to cover G,.
The remaining requirements of Theorem 19.28 indeed hold trivially in view that the index set [r, 7]
is a compact—and so, totally bounded—metric space, and that the changing classes G, admit
envelope functions G,, = 1 for all n that satisfy the Lindeberg condition Ex (G2 I[G,, > v/ne]) — 0.

Let 0; := % By Lemma 1 and Theorem 1, applying twice the implicit function theorem yields

0:Bn(T) = —D(7) 1 8- RV (Bu(7);7) = Du(r) 'E(X) = [D(7) + o(1)] L E(X) = 8,8(r) + o(1)

uniformly for (7, h) € [z, 7] x [h, h]. This implies, by Assumption Q1, that sup ||0,8x(7)| < C for n
large enough, with supremum taken over (7, h) € [z,7] X [h,,, hs], and so || B (7) = Br(<)|| < C|7 —s.
It also follows from the inverse function theorem and Assumption Q1 that 7 +— 2’8, (7) is strictly
increasing in 7, for any x € suppX and n large enough. In what follows, we assume that n is large
enough, so that the above holds.

Now, let 7 < 71, < 7y < 7 and consider two random elements (possibly degenerate) 7 and < in

[, 7u]. The mean value theorem and Assumption Q2 then ensure that
Pr(2/(FAQ) —hu <Y < @/By(FVE) — hu| X =) < Clry =7, (32)

uniformly for u € R and @ € suppX, given that [2/84(T AQ), /'Br(T V)] C [¢/Br(1L), 2'Br(Tv)]
and [2'By(1v) — 2'Bp(.)| < C'|ry — 7| Define Ty = {X'Br(TACQ) =Y < hu < X'By(T V<) — Y}



It follows from |gn7?(Z) — gne(Z | < [I(Yy) |k(uw)|du + |7 — <] that

Elgn5(2) ~ n(2)]” < BJF ~ 7+ 2E[ 7~ [ 100,) I(w)l du] + B[ [ 100 (k)] du]

<|ro—mf +2|TU—TL|/Pr ) 1k (u )|du+C’/Pr k(w)|du  (33)

<Clry—ml, (34)

given that the Cauchy-Schwarz inequality implies that [I(Y,) |k(u)|du [|k(u)|du is an upper
bound for (f]l |k(u)|1/2 ]k’(u)|1/2 du) . [k(u)|du < oo by Assumption K1, and Pr(Y,) =

E[Pr(Ty|X)] < C|ry — 71| by iterated expectations and (32). Taking 7 and < to be deterministic
shows that (30) holds, for all 6(n) | 0.

We now obtain a set of brackets whose bracketing number is of order 1/€. For e > 0 small enough,
we cover the interval [1, 7| with J(e) < [(T—1)/e+ 1] < 2/e open intervals B; = (1; — €, 7; +¢€), and
let g (z) = sup,¢ B, In,r(2) and gi(2) = infrep, gnr(2). It is straightforward to appreciate that the
collection formed by the brackets [¢}, 7], with i = 1,...,J(e), covers G, and that these suprema
and infima are attained in the closure of B;.% In particular, g, (2) = gn 7 (Z) and g(Z) = gn(2).

where 7; and ¢; are random elements in [7; — €, 7; + €]. Resorting to (34) once more then gives
Elg,(2) = g,(Z)* < Ce,

and, as a result, Njj(€, Gp, L?(P)) < C/e. This ensures that (31) holds for all §(n) | 0. [

5 Fori=1and i = J(e), the intervals are actually [r,71 + ¢] and [Ts(e) — €, T), respectively. For simplicity of
exposition, we keep the notation as above.
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