Self-assembly of emissive metallocycles with tetraphenylethylene, BODIPY and terpyridine in one system

Table of contents

1. Experimental section 1
2. Preparation of ligand and supramolecular architecture. 2
3. Isotope distributions for \mathbf{D}. 6
4. Molecular modeling 6
5. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, 2D COSY NMR spectra. 7
6. Absorption spectra of ligands and supramolecular architecture 17
7. Fluorescence spectrum of \mathbf{L} 20
8. DLS data of the aggregates of \mathbf{D} in $\mathrm{CH}_{3} \mathrm{CN} /$ methanol and $\mathrm{CH}_{3} \mathrm{CN} /$ water mixtures 21
9. TEM images of \mathbf{D} in acetonitrile/water mixtures 22

1. Experimental section

General procedures. All reagents were purchased from Sigma-Aldrich, Alfa Aesar, Matrix Scientific, and were used without further purification. Column chromatography was conducted by using SiO_{2} (VWR, 40-60 $\mu \mathrm{m}, 60 \AA$) or Aluminum oxide, neutral (ACROS Organics 50-200 $\mu \mathrm{m}$, $60 \AA$). NMR spectra were recorded on Varian 400 MHz and 500 MHz spectrometers in CDCl_{3}, $\mathrm{CD}_{3} \mathrm{CN}$, and DMSO- d_{6} with TMS as reference. ESI-TOF-MS and TWIM-MS data were recorded on a Waters Synapt G2 mass spectrometer. UV-Vis and fluorescence spectra were recorded on HORIBA FLOROMAX-4C-L. The quantum yield experiments are conducted with an integrating sphere.

2. Preparation of ligand and supramolecular architecture.

Compound 1: One drop of trifluoroacetic acid (TFA) was added into a solution of 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-benzaldehyde ($251 \mathrm{mg}, 1.15 \mathrm{mmol}$) and 3-ethyl-2,4-dimethyl-1H-pyrrole ($0.30 \mathrm{~g}, 2.5 \mathrm{mmol}$) in 100 mL of dichloromethane. The mixture was stirred overnight at room temperature under nitrogen. After confirming the disappearance of 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-benzaldehyde by TLC, p-chloranil ($285 \mathrm{mg}, 1.16 \mathrm{mmol}$) in dichloromethane was added to the reaction mixture. The mixture was further stirred for 1.5 h , and the reaction was quenched with water. The organic layer was separated, and the water layer was further extracted with chloroform. The combined organic layer was evaporated and partially purified by column chromatography on alumina with hexane/ethyl acetate $(7 / 3, \mathrm{v} / \mathrm{v})$ as the eluent to give the target product as a reddish powder. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88(\mathrm{t}, J=14.4 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ph}-H^{\mathrm{e}}$), $7.33\left(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}-H^{\mathrm{d}}\right), 6.15\left(\mathrm{~s}, 2 \mathrm{H}\right.$, dipyrromethane- H^{b}), 2.49 ($\mathrm{s}, 6 \mathrm{H}$, alkyl$\left.H^{\mathrm{a}}\right), 1.39\left(\mathrm{~s}, 6 \mathrm{H}\right.$, alkyl $\left.-H^{\mathrm{c}}\right), 1.24\left(\mathrm{~s}, 12 \mathrm{H}\right.$, alkyl $\left.-H^{\mathrm{c}}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.44,139.23$, $135.35,130.95,120.81,119.60,84.50,82.94,75.28,29.80,24.61,14.73,14.34$. ESI-TOF $(\mathrm{m} / \mathrm{z})$: Calcd. for $\left[\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{BN}_{2} \mathrm{O}_{2}\right]^{+}: 403.25$, Found for $[\mathrm{M}+\mathrm{H}]^{+}: 403.19$.

Compound 4: To a Schlenk flask containing compound $\mathbf{1}$ ($491 \mathrm{mg}, 1.22 \mathrm{mmol}$), compound $\mathbf{3}$ (400 $\mathrm{mg}, 0.508 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(28 \mathrm{mg}, 0.04 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(552 \mathrm{mg}, 4 \mathrm{mmol})$ were added. After removing air and back-filling with nitrogen, 21 mL of toluene, 21 mL of water and 7 mL of t-butanol were added. After stirring at $80^{\circ} \mathrm{C}$ for 48 h , the mixture was cooled to $25^{\circ} \mathrm{C}$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and then the combined organic phase was washed with brine and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvents were then removed under reduced pressure. The crude product was confirmed by ESI-MS and used in the following step without purification. To a flask containing solution of intermediate products in $20 \mathrm{mLCH}_{2} \mathrm{Cl}_{2}, 7.6 \mathrm{~mL} \mathrm{Et}_{3} \mathrm{~N}$ and $8.5 \mathrm{~mL} \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ were added. After stirring at room temperature for overnight, the reaction was quenched by slowly adding water. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and then the solvents were then removed under reduced pressure. The residue was purified by silica gel chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent to afford compound $\mathbf{4}$ as orange solid ($75 \mathrm{mg}, 15 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 7.23\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{Ph}-H^{\mathrm{d}}\right), 7.15\left(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ph}-H^{\mathrm{g}}\right), 7.12\left(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ph}-H^{\mathrm{f}}\right), 6.97(\mathrm{~d}, 4 \mathrm{H}$, $\left.\mathrm{Ph}-H^{\mathrm{e}}\right), 6.00\left(\mathrm{~s}, 4 \mathrm{H}\right.$, dipyrromethane- $\left.H^{\mathrm{b}}\right), 2.55\left(\mathrm{~s}, 12 \mathrm{H}\right.$, alkyl- $\left.H^{\mathrm{a}}\right), 1.39\left(\mathrm{~s}, 12 \mathrm{H}\right.$, alkyl- $\left.H^{\mathrm{c}}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 155.31,143.83,142.67,141.12,141.03,140.57,140.17,133.48,132.75$, $131.59,131.09,130.74,128.26,127.79,121.21,14.39$.

L: To a Schlenk flask containing compound $\mathbf{4}(110 \mathrm{mg}, 0.112 \mathrm{mmol})$, compound $\mathbf{5}(99 \mathrm{mg}, 0.28$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(5 \mathrm{mg}, 6.7 \mu \mathrm{~mol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(93 \mathrm{mg}, 0.67 \mathrm{mmol})$ were added. After the air was removed and the flask was flushed with nitrogen, 15 mL of toluene, 15 mL of water and 5 mL of t-butanol were added. After stirring at $85^{\circ} \mathrm{C}$ for overnight, the mixture was cooled to $25^{\circ} \mathrm{C}$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic phase was washed with brine and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvents were then removed under reduced pressure. The residue was purified by $\mathrm{Al}_{2} \mathrm{O}_{3}$ chromatography with chloroform to afford compound \mathbf{L} as orange solid (62 $\mathrm{mg}, 39 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.83\left(\mathrm{~s}, 2 \mathrm{H}\right.$, tpy- $H^{3^{\prime}, 5^{\prime}}$), $8.74\left(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 2 \mathrm{H}\right.$, tpy- $H^{3,}$ $3^{\prime \prime}$), 8.73 (d, J = 2.1 Hz, 2H, tpy- $H^{6,6 "), ~} 8.04\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ph}-H^{\mathrm{h}}\right.$), $7.91\left(\mathrm{dd}, \mathrm{J}=7.9,1.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{tpy}-H^{4,}\right.$ $\left.4^{\prime \prime}, \mathrm{Ph}-H^{\mathrm{k}}\right), 7.64\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ph}-H^{\mathrm{i}}\right), 7.61\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ph}-H^{j}\right), 7.49\left(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}-H^{\mathrm{g}}\right), 7.40-7.36$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{tpy}-H^{5,5 "}\right), 7.31\left(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}-H^{\mathrm{f}}\right), 7.30\left(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}-H^{\mathrm{d}}\right), 7.16(\mathrm{~d}, \mathrm{~J}=$ $\left.8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}-H^{\mathrm{e}}\right), 5.90\left(\mathrm{~s}, 2 \mathrm{H}\right.$, dipyrromethane- H^{b}), 2.51 ($\mathrm{s}, 6 \mathrm{H}$, alkyl- H^{a}), 1.49 ($\mathrm{s}, 6 \mathrm{H}$, alkylH^{c}). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.26,156.12,155.44,150.40,149.29,144.88,142.88$, 142.27, 141.51, 139.89, 139.69, 139.30, 138.29, 137.01, 136.71, 133.47, 132.11, 131.41, 129.55, 127.98 , 127.71, 126.99, 126.69, 126.56, 126.18, 124.03, 123.85, 121.47, 119.08, 14.78, 14.67. ESI-TOF $(\mathrm{m} / \mathrm{z})$: Calcd. For $\left[\mathrm{C}_{94} \mathrm{H}_{73} \mathrm{~B}_{2} \mathrm{~F}_{4} \mathrm{~N}_{10}\right]^{+}: 1439.61$, Found for $[\mathrm{M}+\mathrm{H}]^{+}: 1439.66$.

D: To a solution of ligand $\mathbf{L}(8.3 \mathrm{mg}, 5.8 \mu \mathrm{~mol})$ in $\mathrm{CHCl}_{3}(1.5 \mathrm{~mL})$, a solution of $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ $(1.89 \mathrm{mg}, 6.3 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(3 \mathrm{~mL})$ was added. The mixture was stirred at $50^{\circ} \mathrm{C}$ for 3 h . After cooling to room temperature, 210 mg of $\mathrm{NH}_{4} \mathrm{PF}_{6}$ was added and orangish precipitate was observed. The precipitate was washed by water, and the orangish powder ($9.6 \mathrm{mg}, 90 \%$) as final product was obtained. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 9.02\left(\mathrm{~s}, 4 \mathrm{H}\right.$, tpy- $\left.H^{3^{\prime}, 5^{\prime}}\right), 8.69\left(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 4 \mathrm{H}\right.$, tpy- $H^{3,}$ $\left.3^{3 \prime}\right), 8.31\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ph}-H^{\mathrm{h}}\right), 8.18\left(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}-H^{k}\right), 8.07\left(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{tpy}-H^{4,4 "}\right), 7.85$ (d, 4H, Ph- H^{i} and $\left.\mathrm{Ph}-H^{\mathrm{j}}\right), 7.77\left(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz} 4 \mathrm{H}\right.$, tpy- $\left.H^{6,6 "}\right), 7.70\left(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ph}-H^{\mathrm{g}}\right), 7.40$ $\left(\mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{Ph}-H^{\mathrm{f}}\right.$ and $\mathrm{Ph}-H^{\mathrm{d}}$), $7.31\left(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{tpy}-H^{5,5 ")}\right.$, $7.26(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 4 \mathrm{H}$, $\left.\mathrm{Ph}-H^{\mathrm{e}}\right), 6.15\left(\mathrm{~s}, 4 \mathrm{H}\right.$, dipyrromethane- $\left.H^{\mathrm{b}}\right), 2.51\left(\mathrm{~s}, 12 \mathrm{H}\right.$, alkyl- $\left.H^{\mathrm{a}}\right), 1.52\left(\mathrm{~s}, 12 \mathrm{H}\right.$, alkyl- $\left.H^{\mathrm{c}}\right) .{ }^{13} \mathrm{C}$ DEPT-45 NMR ($\left.126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 148.18$, 132.12 , $131.85,128.23,128.06,127.20$, $124.09,122.05,56.50$. ESI-TOF $(\mathrm{m} / \mathrm{z})$: Calcd. For $\left[\mathrm{C}_{188} \mathrm{H}_{144} \mathrm{~B}_{4} \mathrm{~F}_{8} \mathrm{~N}_{20} \mathrm{Zn}_{2}\right]^{4+}: 752.25$, Found for [M$\left.4 \mathrm{PF}_{6}\right]^{4+}: 752.21$. Calcd. For $\left[\mathrm{C}_{188} \mathrm{H}_{144} \mathrm{~B}_{4} \mathrm{~F}_{14} \mathrm{~N}_{20} \mathrm{PZn}_{2}\right]^{3++}: 1051.30$, Found for $\left[\mathrm{M}-3 \mathrm{PF}_{6}\right]^{3+}: 1051.33$.

3. Isotope distributions for \mathbf{D}.

Figure S1. Measured (bottom) and calculated (top) isotope patterns for different charge states observed from $\mathbf{D}\left(\mathrm{PF}_{6}{ }^{-}\right.$as counterion).
4. Molecular modeling.

Figure S2. The modeling structures of \mathbf{L}. (a) top-view, (b) side-view.
5. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, 2D COSY NMR spectra.

Figure S3. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$) spectrum of compound 4.

Figure S4. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$) spectrum of compound 4.

Figure S5. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$) spectrum of ligand \mathbf{L}.

Figure S6. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$) spectrum of ligand \mathbf{L}.

Figure S7. 2D COSY NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$) spectrum of ligand \mathbf{L}.

Figure S8. 2D COSY NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$) spectrum of ligand \mathbf{L} (aromatic region).

Figure S9. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 300 \mathrm{~K}\right)$ spectrum of \mathbf{D}.

Figure S10. ${ }^{13} \mathrm{C}$ DEPT-45 NMR (125 MHz, DMSO, 300 K) spectrum of \mathbf{D}.

Figure S11. 2D COSY NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 300 \mathrm{~K}$) spectrum of \mathbf{D}.

Figure S12. 2D COSY NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 300 \mathrm{~K}$) spectrum of \mathbf{D} (aromatic region).

6. Absorption spectra of ligands and supramolecular architecture.

Figure S13. Absorption spectra of \mathbf{L} in $\mathrm{CHCl}_{3} /$ methanol mixtures with different methanol fractions ($c=5.0 \mu \mathrm{M}$).

Figure S14. Absorption spectra of \mathbf{D} in $\mathrm{CH}_{3} \mathrm{CN} /$ methanol mixtures with different methanol contents $(c=7.67 \mu \mathrm{M})$.

Figure S15. Absorption spectra of \mathbf{D} in $\mathrm{CH}_{3} \mathrm{CN} /$ water mixtures with different water contents (c $=9.59 \mu \mathrm{M})$.

7. Fluorescence spectrum of L.

Figure S16. Fluorescence spectra of \mathbf{L} in $\mathrm{CHCl}_{3} /$ methanol with various methanol fractions. $\left(\lambda_{\mathrm{ex}}=325 \mathrm{~nm}, c=5.0 \mu \mathrm{M}\right)$.
8. DLS data of the aggregates of D in $\mathrm{CH}_{3} \mathbf{C N} /$ methanol and $\mathrm{CH}_{3} \mathbf{C N} /$ water mixtures.

Figure S17. Size distribution of \mathbf{D} in acetonitrile/methanol. The percentages in the graphs are methanol contents.

Figure S18. Size distribution of \mathbf{D} in acetonitrile/water. The percentages in the graphs are water contents.
9. TEM images of \mathbf{D} in acetonitrile/water mixtures.

Figure S19. TEM images of the aggregates of \mathbf{D} formed in acetonitrile/water mixtures containing (c, d) 20%, (e, f) 40%, (g, h) 60%, and (i, j) 80% water.

