Supplement to "Bias-corrected
Common Correlated Effects Pooled
estimation in dynamic panels”

by Ignace De Vos and Gerdie Everaert

Section A of this supplement (i) provides the Jacobian matrix for the CCEPbc estimator,
(ii) provides an additional discussion on the asymptotic bias of the CCEP estimator for the
autoregressive parameter p, (iii) develops two restricted CCEPbc estimators for the single
factor setting and (vi) reports Monte Carlo evidence comparing the performance of the
restricted and unrestricted CCEPbc estimators. Section B introduces important notation
and preliminary results for the proofs presented in Sections C and D. Section C presents
proofs for N — oo and fixed T', and Section D presents proofs for (N,T) — oco. Section E
contains additional Monte Carlo simulation results for the unrestricted CCEPbc estimator.

A Additional results and discussions

A.1 Jacobian
Consider that CCEPbc estimator in eq.(21) is equivalent to

~ 1
81 = axgmin - [ip(80)]° (A1)

doEX

with ¢(dg) given by

1 X, o 1
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and v(pg) = v(po, H)q;. As such, the CCEPbc estimator employs the orthogonality con-
dition V(dy) = 0, with V(dy) the gradient evaluated at dy,

V(d0) = Ja(d0)'¢(d0),

and J,(d¢) is the k, x k, Jacobian matrix in the sample evaluated at o,

Ja(do) = jl,l(v(po) ®o')+ (33(50)% ® ’Ul)l -3, (A-2)
with
. 05%(d T - ~
o = a((so : =2T_Cz:(50—5), (A-3)
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A.2 Discussion on the asymptotic bias of the CCEP estimator p

In order to gain a better understanding of the driving forces behind the asymptotic bias of
the CCEP estimator for the autoregressive parameter p in eq.(1) of the main text, we first
derive the following corollary result to Theorem 1 (with notation introduced in (C-37)).

Corollary 1. Under the conditions of Theorem 1 and conditional on C, the asymptotic

bias of p is

i (5 ) — - Alp) + D(p, H)]
Noe TP T |B(p) — E(p,H) + TC

} = —?b(Pa ﬁ? 0)7 (A'5>

o« Alp) = 15 (1 252) D(p,H) = X151 ' S0 B

e B(p) =15 (1 — Ll _ 2p 1-pT )’ E(p,H) = 1_1p2 [c — 14 2pD(p, ﬁ)},

where 5875_15 denotes the element on row s and column s —t of H = Qj(/Q/’Q/)TQ//, with
B =1y — ¢pt/T and Q = BQ the matriz of CSA in deviation of its column means, and

o BB+ ANUA +20'Q A
C = plim —,

N—o0 052

(A-6)

with Qs = (X5)MxX®,/NT, Q; = (FL,)MxF*, /NT and Q; = (X)) MxFL, /NT.
Variables with a + superscript are defined as X+ = (1 — pL)~'X.

The expression in eq.(A-5) shows that the inconsistency of the CCEP estimator p is
determined by the interplay of (i) the numerator, which is the covariance between the
defactored lagged dependent variable y_; = Mxy_; and the error term e, and (ii) the
denominator, which is the signal that remains in the lagged dependent variable after or-
thogonalizing the data on the CSA Q through the M matrix. We elaborate below.

First consider the covariance terms in the numerator. The correlation between y_; and
e originates from projecting out the nuisance parameters using the orthogonalization ma-
trix M. The term A(p) is induced by the within transformation (time-demeaning implied
by including ¢ in Q) and also appears in bias expressions for the FE estimator in dynamic
models without common factors (see Nickell, 1981), whereas the additional orthogonaliza-
tion on the CSA induces the CCEP-specific term D(p, ﬁ) The latter is stochastic as in
fixed T settings the matrix H depends, through the CSA, on the particular realization of
the factors. This is the reason for why we need to condition on the o-algebra C to derive
Theorem 1. We expect D to be negative and smaller in magnitude! than A, which is posi-
tive. Hence, the asymptotic bias is expected to be negative, with the orthogonalization on

I This is because D is a reweighing of the sum Efz_ll ZST:tH ﬁ&s_t = —(¢c—1)/2 < 0 in function of

p. With positive weights (p > 0) it is therefore likely that D < 0. Similarly, A + D is a reweighing of

f:_ll ZZ:tH hs,s—t = (T'—¢)/2 > 0 such that we can expect this sum to be positive when p > 0.



the CSA counteracting the A term in the numerator of (A-5) and therefore reducing the
bias in absolute terms.

The second determinant of the bias is the denominator, which denotes the variation
that remains in the lagged dependent variable after multiplying the model through with
M. The C-term represents the remaining variation due to the presence of exogenous
regressors and factors, expressed relative to o2, whereas B and E relate to the variation
due to €. The positive B term is again a shared term with the FE estimator due to the
within transformation, whereas the —F term (which is negative) indicates that additional
variation is lost compared to the FE estimator by orthogonalizing on the CSA. Including
CSA will similarly reduce C'. Hence, when the set of CSA cut out a relatively large amount
of variation, the denominator of eq.(A-5) may decrease faster than the induced reduction
in the numerator and hence result in a larger bias. For a given number of factors and
regressors, increasing the number of CSA used by the CCEP estimator is therefore likely to
increase its asymptotic bias. This is confirmed by the Monte Carlo simulations in Section 5
of the main paper. Finally, since we can show that MIF', —? 07, for m = 1 (see Lemma
4) the second and last term in the numerator of C' drop out in single factor settings. As
such, an increase in the importance of the factors will, ceteris paribus, increase the signal
in the model and reduce the asymptotic bias of the CCEP estimator, but only when more
than one factor is present.

A.3 Restricted bias corrections for models with a single factor

The procedure outlined in Section 4 of the main paper is a generally applicable method
in the sense that it does not require the number of factors to be known. In the single
factor setting, eq.(A-5) of Corollary 1 can be used to develop more efficient restricted bias
corrections, denoted CCEPbcr. Below we outline two alternative CCEPbcr estimators,
depending on whether the dynamic model includes additional covariates or not.

Firstly, in a model with a single common factor (m = 1) and no covariates (8 = 0), the
bias expression (A-5) simplifies considerably as C' = 0 for N — oco. This is convenient as
it is the presence of the C-term that makes bias correction from eq.(A-5) infeasible due to
its dependence on the unobservable sums X, and F',. Furthermore, the bias expression
for p no longer depends on o2, such that p is the only unknown parameter in eq.(A-5). In
this setting, the CCEPbcr estimator Sbm can be obtained as
~ o1 —~ 2
Buer1 = axgmin o [} — po + (oo, H.0) (A7)

lpo|<1

Secondly, adding exogenous regressors implies that C' # 0 but if the single factor as-
sumption is maintained we get the relatively simple form

C = plim AL T

2
N—oo O

: (A-8)

which through €2y also depends on the unknown parameter p and on the infinite sum of
explanatory variables Xt; = 37 p!X_;_;. In a finite sample, the latter can be approxi-

= T . p o
mated by the truncated sum X, = {X*;_l, e ,X+,N7_1] where X+, ; = J !X, 4, and
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J is a T' x T matrix with ones on the main diagonal and —p on the first sub-diagonal.

~ — —
The variance-covariance matrix is then estimated as Qg(p) = X*; MxX*,/NT. Further
substituting 62(+) as defined in (20) for o2, the estimator for C is

A o5y B(0)B

C (5) S YF (A‘9>

52(0)

which is, conditional on the unknown parameters p and 3, a function of the observed data
only. Hence, in this setting the CCEPbcr estimator 6y is

~ 1~ R — 2
Spro = arg min 5”5—50+I/@/J(p0,H,C(50))’ : (A-10)

do€X;|pol<1

~/

where U = [1,—( }/ and ¢ = (S;XA]SX)_IS;f]ql. This bias correction should perform
well when the single factor assumption is true and the approximation of X*; is not too
inaccurate. Note that the truncation implies that Sbcm is inconsistent for finite 7, but in
practice the bias may be negligible (depending on the size of p). In case more than one
factor is present, eq.(A —9) can be a poor approximation of C' and lead to additional bias,
especially when the factors have a large overall influence on the model (relative to o2).

A.4 Finite sample properties of CCEPbc versus CCEPbcr

In this section we compare the performance of the unrestricted bias correction CCEPbc
to that of the restricted version CCEPbcr gbCTQ derived in Section A.3 for a model with
covariates and a single factor. As in the Monte Carlo simulation experiment presented in
the main text, we also report results for variants that add the additional CSA g, to the
orthogonalization matrix.

Table A-1 compares the performance of the CCEPbc estimator to that of CCEPbcer
in settings with one and two common factors. The distinction between these scenarios
is of interest since CCEPbcr is derived under the assumption that only one factor is
present whereas CCEPbc is applicable irrespectively of the number of factors (provided
that the rank condition is satisfied). In general, we find that CCEPber is a fairly accurate
bias-correction method, even in the case of two factors. Comparing the unrestricted and
restricted version shows some trade-off between bias and variance, though. CCEPbc dom-
inates in terms of bias correction but has a downside that the estimator 3 used in eq.(18)
introduces uncertainty in small samples. CCEPbcr has a smaller variance as it imposes a
specific form for the denominator in (A-10) but is less effective as a bias correction method
because of the truncation error made in the estimation of C' and the resulting finite 7'
inconsistency. Because this bias is offset by the lower variance (in rmse terms) in small
samples (also see Table A-2 for N = 25), CCEPbcr may still be an interesting alternative
to CCEPbc. As N grows large, however, this relative efficiency only compensates for bias
when the single factor assumption is true (see upper panel of Table A-1) or when the factors
are not too strong in case m > 1 (see lower left panel of Table A-1). Moreover, as a result
of the inconsistency for finite 7', CCEPbcr displays a size distortion especially when N is
large. For the unrestricted version, inference is reliable in all settings (although this may
require adding g,), but at the cost of a higher variance.
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B Notation, definitions and preliminary results

B.1 Notation

We first introduce some notation that will be used later on. In what follows we define
K=1+4+k, k, =1+ k, and we set p = 1 for convenience but note that generalizations
follow straightforwardly. With p = 1 model (1)-(3) can be written in VAR(1) form

I ol B Nt PR o e R
I A4 14 I Y VR

with 8% = [8', 01, and the associated more compact form
AOdit = Cq, + @Ldzt + szt + Wi,

— i _ a
where cq; = [a;, ¢ ;]'; dig = [y, 23], Wir = [ga, Vi)' are K x 1 vectors and

Y /
(Iﬁ(}() B [Oklxl <Iﬂk )] ’ (K(?K) B [Ofxl OI)\Xk] 7 (K(zin) N Bj '
Since A is invertible,
di = Ajlca; +A;'OLd; + Ay Cif, + Ay My,
which can be rewritten further as

(IK — G*L)dlt = CZJ + Crft + u;‘t,
@(L)dzt = Cz’i + ijt + u;kt,

where the terms with an asterisk are defined as ©* = A;'® and with ©(L) = Iy — ©*L.
Then, as O(L) is invertible by Assumption 5 we obtain the reduced form

diy = ©~'(L)c, + O (L)Cif, + ©(L)uj,
=éq; + (Ci @ Ig) f, + iy, (B-2)

with @, = @ (L)uj, € = O (L)cy,, £ = vec(f;@® (L)) is K2mx1and C; = vec(C;)
is K'm x 1. Its cross-section average is

d, = &+ (Coly)f+iu, (B-3)
Where i, = O (L)u;, uf = £YN ul, ég = ©(L)cj, C = vece(C*) and C* =
+ 2L, C;. Stack the observations over time into the 7' x K matrix D; = [dy, ..., dyr]
and let D = [d;, ..., dg] be its cross-section average. Next, define
1 N
QZ [[/T7 "'7D’i7—p*:|7 Q = NZQZ — [I’TaD?"‘?D—p*]a (B-4)
(T'xc) (T'xc) i=1



with ¢ = 1 4+ K(1 4+ p*) the number of columns of Q; and Q. Also, defining

wxrsibmpyy = T EO 1 Fopl (B-5)
with Fo = [fl, . ,f‘T]’, F,= [f’g, o ,f'T_l]’, f‘_p* = [f‘l_p*, . ,f'T_p*]’ and so on, and
. 1 (U, ®@&) ] . 1 N .
P; = Ipr 2 Tdi , P=—> P, B-6
(14K 2m(14p*) x 1+ K (14p*)) [OKQm(l—&—p*)Xl L ®(C®Ik) N ; (B-6)

Given that Cf = Ay'(C + [n;,v:]") by Ass.3 we have also

P,=P+P,, (B-7)
with
P= 1 (Lll-i—p* ®'0,K><1) 13 _ 1 (Lll—i-p* ®~OIK><1)
OKQm(l—f—p*)Xl Il+p* ® (C ® IK) ’ ! OKQm(l—i-p*)Xl Il+p* ® (Cz ® IK) ’

and where C = vec(A;'C) and C; = vec(Ag ' [y, vil).

With the definitions above, the T' x ¢ matrix of observations is

Q;, =FP; + U, (B-8)
such that the observed matrix of cross-section averages can similarly be decomposed into
Q=FP+U, (B-9)
where
) 0 gy ... Wy . ) LN 0 @ ... 0.
N AR R b A

Next, we express all the regression variables in the model in terms of Q; by defining the
k X k;, ¢ x 1 and ¢ X k,, selector matrices

0 02><1 02><k,;
s, = ™|, s, =| 1 |, S, —| O Se | (B
(kxkz) Okgxkz (ex1) 0(0_2)><1 (eXkw) 1 01><kz
Oc—3+k)x1 Oc(34k)xky
such that
w; = Q;S, =FP;S, + ¢, (B-13)

where notably €; is a T' x k,, matrix given by
€;, = Usz = [QZ_—DVZ'SX]? (B—14>

with V; = [\'/ivl',...,\‘/,;T]' and v;; = A(L) 'v;;. Also, with g, = &; + V.B* we have
Q;f_l = E;F_l +VZ_1ﬂ*, a T x 1 vector.



B.2 Rotating the projection matrix

To proceed with the terms involving the projector H, we extend the approach of Karabiyik
et al. (2017) to dynamic settings. To that end, let T be a K x K orthogonal matrix such that
(C*)'T = [C,n, C_,y], with C,, the full rank m x m partitioning of (C*)’, and C_,, is the
m x (K —m) matrix containing the remaining K —m columns. Let U* = [a},..., @] such
that U*, and U* are the corresponding partitioning that follows from U*T = [U* U, .
Next, we introduce the k(1 + p*) x k(1 + p*) rotation matrix R. First, let

s
B:[ C,, G, !C

-m| B, B_,] B-15
O(K—m)Xm IK—m 1 [ ] ( )

In what follows it is convenient to set p* = 1 in order to save on notation. However, we note
that the results generalize directly. The matrices R, T and R, defined next, are in general?
of dimension K (1+p*) x K(1+p*), K(1+p*) xK(l+p Jand 1+ K(14p*) x 1+ K(1+p*)
respectively. In the p* = 1 case we then have

R* :l Iy ] T lR*’onK]’ P [ TB onK]’

(2K xK) —(@") (2K x2K) Ix (2K X2K) Oxxr Ix

and, accounting for the row of constants in Q,

1 01><2K
R = =~ |.
lOQle RT ‘|

Next, since by Lemma 1 the distribution of the CCEP estimator, or all its components, is
invariant to the presence of the fixed effects, we can, without loss of generality, simplify
notation by setting cq; = Ok 1 for all ¢ such that ¢4 = Ok ;. Making use of (B-9) we then
get the following restructuring of Q

QR = FPR + UR = [t1, F, 0y (5 m), F_1(C ® Ix)] + [0741, Up, U, U],

where U,, = U*C.!, U_,, =U* —U*C.'C_,, and U_; = [i1, ..., iiy_1). The matrix

m m
N rearranges the Columns conveniently as follows

QRN = 11, F,F_(C®Ik), O7x (—m)] + [07x1, Un, U_,,U0_,).

?To illustrate: for any p* we have, with L(;4,+) denoting a (1+p*) x (1+p*) matrix of zeros with ones
on the first lower sub-diagonal

R . = L. ®@TB O,
= IK(1+p*) — (L(1+p*) ® (@ )/), — |: 14 Kp*x K

R T :
(K (14p*)x K (1+p*)) (KQ+p)xK(1+p*) | Orxkpe Ix
and
R — 1 lezg(yp*)} .
OK(1+p*)><1 RT



Note that F_l(C ® Ig) is a full column rank matrix (rk(F_;(C ® Ix)) = K) such that
rk([F,F_1(C®Ik),0rx(xk-m))) = K+m<c—1=2K72 When m < K, the final K —m
columns of QRN are degenerate as H[I_Jm, U_,,U_, H = N~1/2) by Lemma 2. Hence,

post-multiplying by Dy = diag(l’,(1+K+m)7 \/NL/(Kfm )
QO QRNDN - [LT’ F F (C ® IK)) OTX(Kfm)] + [0T><17 ﬁmv U—la \/Nﬁ—m] = FO + 607

with FO = [F*, 0y (k)] and F* = [17, F,F 1 (C ® Ix)] is a T x (1 + K 4+ m) full rank
matrix. Additionally, U° = [U° U° ], U% = [07y,U,,, U_y] and U°, = /NU_,
Therefore, we obtain for the rotated Q matrix with Ff = [F* U° |

Qo =F'+ U =[F*,U%, | +[U%, Oy (x—m) = Ff + Op(N V), (B-16)

since HUO H = O,(N~?) and HUOmH = 0,(1) by Lemma 2. Hence, in contrast to Q, the

columns of QO are non—degenerate even in case m < K, which, given that H = Q(Q'Q)'Q =
Qo(Q, Qo) 'Qp will now allow us to evaluate the limit of H.
Finally, it is convenient to define the selector matrices

Sm _ [ Il+K+m ] 7 S—m _ l0(1+K+m)x(K—m)] 7 (B—17)
0(K—m)><(1+K+m) IK—m

such that we obtain the following key identities that will be used throughout the appendix

F* = FPRNS,,, (B-18)
U° = URNS,,, (B-19)
=V NURNS_,,. (B-20)

B.3 Preliminary results

Assume that Ass.4 holds and p* > p. Define next Ry as follows

01><K
Ry = R* ,
Ok (p*—p)xK
3In general, for any p* we have
QR = FPR + UR = [I,T7 F, 0T><(K—m)7 F_q, OTX(K—m)a c.. ,F_(p*_l), 0T><(K—m), F_p* (C ® IK)}

+ [OT><1; ﬁma Ij—rm Ijm,—h Ij—m,—lv cee 7677177(1)*71)’ ﬁ*m;*(iﬂ**l)’ U—P*L
and

QRN = 17, F,....,F_ (- 1),F_{(C®Ik), 00y ((k—m)(p-—1))]
+[OT><17U my .- Um —(p* 71)7U7p 7U7’m7"'7U7m (p*fl)]v

with rk([F,... ,F_(p*_l),]?‘_p*((.j ®Ik),0rx(Kk—m)(p—1)]) = K +mp* <c—1=K(1+p*).

9



such that we can write
QR,T =F[C,,,C_,,] + [U;,, U, ].

This gives, multiplied by B,, defined in (B-15),

QRTB,, =F +U,,, (B-21)
such that we also have the following important relation

U,, = UR(TB,,. (B-22)
Solving (B-21) for F and multiplying by M gives
MF = M(QR,TB,, - U,,),

which in turn, given that by definition MQ = Or., leads to the following key result

MF = -MU,,,. (B-23)

10



C Analysis for N — oo and T’ fixed

C.1 Statement of lemmas

Lemma 1. Suppose that Ass.5 holds and a vector of constants vy is included in Q. Then,
the CCEP estimator in eq.(14), or its components w,Mw; and w;My,; are invariant to o
and c,; for all sample sizes. If additionally Ass.2 holds then it is equivalent to evaluate

(14) with E(F) =0 for all N and T
Lemma 2. Let Ass.1 and 5 hold. Then, as N — oo and T fized,
O] = opv=7). U] = op8),
[0 = 0,v ), [[O5] = 082, 02, = 0,(0)

Lemma 3. Let ¢ be the number of columns in Q. For any N — oo and ¢ < 00,
IH| < M,
irrespective of m, with M a finite constant.
Lemma 4. Let Ass.1-5 hold and suppose that m =1 and p = 0, then,
MF*, —P 07y as N — 0.

Lemma 5. Let Ass.1-5 hold and suppose that p* > p, then, as N — oo

1 X w,MF
AF =% =0, (N
NZ-:]_ T ’71 p( )7
with w = —11in case m =1, p =0 and w = —1/2 otherwise.

Lemma 6. Let Ass.1-3 and 5 hold, then,

for all N and T.
Lemma 7. Let Ass.1-3 and 5 hold. Then, as N — oo,

Y =3+ 0,(NY?),
with
> = (vee(Iy,) ®1,) (Ikw ® [EE + (8, ®S)Zp(F ® ];"")} T 'vec (M)) :

and where B, = E(€, ® €)) and Tp = E(P, @ P)).

11
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Lemma 8. Let Ass.1-5 hold and suppose that p* > p. Then, for 6% evaluated at 8y # &
with ||d — dp|| < 00, as N — oo,

5% (80) = 02 — o2cv(p, H) (8 — o) + ca(§ — 80)'2(8 — 8¢) + O, (N~1/2), (C-8)
with ¢, =2/(T —¢) and co =T /(T — ¢). When evaluated at §y = 6,

1
52

H0) = jp gy M 0N, (C-9)

and also

for 62(+) defined in eq.(20).

C.2 Proof of lemmas
C.2.1 Proof of Lemma 1

Let Dy = Iy — ¢t/ /T and consider that Dy = Df, and DoDy = Dy. Then, with (B-12)-
(B-13) we can write the components of the CCEP estimator in (14) as

wMy; = S,QMQ;S, = S, Q/DoQ;S, - S, QD,Q(QDQ)'QD,Q;S,, (C-11)
w/Mw; = S,QMQ;S, = S, QiDoQ:S. — $,QDyQ(QDyQ)'QDQS,.  (C-12)
Next, making use of (B-8) and (B-5)
DQ; = Do(FP; + U;) = [Dotr, DoFo, ..., DoF_,.]P; + DU,
= [07x1. Do[Fo...., F_ ]y ® (€ @ Ix)]] + DoU; (C-13)
because Dot = Ory1, and therefore also for the CSA

DoQ = Dy(FP + U) = [07.1, Dy[Fy, ..., F ][Iy @ (C@T)]| + DU (C-14)

By consequence of (C-13) and (C-14), the right hand side of (C-11)-(C-12) is devoid of
the fixed effects such that both w.My; and w;Mw; are invariant to their presence for all

v

sample sizes. Additionally, since from Ass.2 and 5 follows E(DoF) = 0, by (C-13) and
(C-14) we can without loss of generality evaluate (C-11)-(C-12) assuming E(F) = 0.

C.2.2 Proof of Lemma 2

From the definition we have U* = [u},...,u}] such that its ¢-th row can be written as
uf = N3N ul = NP YN Aty where Ag! always exists and has fixed and finite
entries. From Ass.1 follows FE(u;;) = 0 and therefore E(u}) = 0. Consider now the variance

1 1Y 1 X
Var(u;) = F ( > uj) —> u},| =F < > u; uj’) :
t N Pt t N = gt N2 Pt t it

12



N

(1 , A | N Y 1
= A (WZE(uituit)> (Ay) = A, <]\72;Qu> (A7) _O(N)’

i=1

2 /
because by Ass.1 the u; are independent over ¢ and the entries of 2, = 005 06“ are
kx1 v
bounded for all i. Consequently, ||| = O,(N~'/?) and ‘fj* = 0,(N~12). Consider next
U defined in (B-10) and let €, = [0,1,,4; ,,...,0,_.]" be its g-th row. Since its entries

are defined as i, = ® !(L)u}, with ® '(L) a fixed and stable lag polynomial by Ass.5
such that i, is stationary, it follows from the above that ||| = O,(N~"/?) and E(€,) = 0.

This in turn implies that £ HﬁqH2 = YV E(it,_ii,.;) < O(N~'), which establishes that
HﬁqH = O,(N~'/?) and HUH = O,(N~1/2). Combining this result with eqs.(B-19), (B-20)
and (B-22) gives

||| < O] IR 1T 1Bl = Op(N12),

100 < [O] IRIINY IS, = Op(N—172),

[0, < V|| IRINHIN] IS-n]l = Oy(1),

which ends the proof.

C.2.3 Proof of Lemma 3

Recall that Q = FP + U is a T x c real stochastic matrix with 7 > ¢ and U = O,(N~/?)
by Lemma 2. Let r be the rank of Q and note that ry = Tk?(FP) < r depending on m and
k. Despite that 7y < r, Feng and Zhang (2007) show that r 3 ¢ as N — oo irrespective of
1o (also see Karabiyik et al., 2017). Accordingly, rk(H) “3 ¢ with N — oo such that, by
the property rk(H) = tr(H) of idempotent matrices, also ¢tr(H) “% c. Consider next the
matrix norm of H. Given the above

IH|| = \/tr (HH') = \/tr (H) = Ve, (C-15)

and therefore H is bounded for any NV irrespective of rg since ¢ does not depend on N.

C.2.4 Proof of Lemma 4

Suppose that p = 0, m = 1 and write the one period lag of (1) as

(L=pL)y; 41 = i + X 1 B+ i1 +ei1,
= (i +¢;8%) + (v + BTy + (€ip1 + Vi, 187),
= oy + Y f1 e,

where x}, 8 =1z}, ;8" =c, ;8" + ;. [\f" + V], ;8" was substituted in. Solve for f;

fi 1 = 71* ((1 - pL)Yi,t—l —a; — 6?,#1) )

1

13



with v} = 7; + BT, and multiply both sides with (1 — pL)~!

_ ]- - L -1 * *
(1—pL) 'y = (7/1) ((1 —pL)y;p1 —af — 5i,t71) ,
1

=2 ((igor = (L= pL) o] = (1= pL) e, ),

where f” | = (1 — pL)~f; ;. Next, averaging over i gives

1/ y 1«
= A (Yt—l —a*/(L=p)—(1—pL) 18t—1) )
where barred variables are averages and it follows from Lemma 2 that (1 — pL)~'&;_ | =
O,(N~%2). Given the above we can write F*, = (1 — pL)™'F_; = [fI,... ,f} ]’ using
e == pL)7 V- &7 4] as

—Q 1 e o 1
1—p] Fa-p 7 F +O”<W>’ (G-16)

with Q" = [¢r, y_1] and obvious definition for P*. Provided a constant and y_; are included
in Q, we have

FJ—rl = Q* l

MF?, = 0,(N7), (C-17)

because in this case MQ* = 0 by definition and M is bounded in norm by Lemma 3. Note
that (C-17) does not go through in the multiple factor case or with p > 0 since, lagging (9)
and multiplying both sides with p(L)™! = (1 — pL)~! yields

wr=corte |y A [ - [2]) oo,

which shows that an infinite number of lags of z,_; are required to approximate f;".

C.2.5 Proof of Lemma 5

Let AF = ﬁ SN w/MF~,. Since the rank condition holds by Ass.4 we have substituting
in (B-23) and using v, = v +n, from Ass.3

1 _ 1 _ 1 X . 1 X .
A = ———% wMU,y; = —=W'MU,y — — > wiMU,n, = —— > w;MU,n,,
NT ; w; Vi= W TN ; w; M= N7 ; w; n;

since w C Q such that Mw = Opy,. We next make use of M = Iy — H to write the
matrix norm of AF as

HAFH < HNlTiij;Umm +HNlT§:w;HUmni . (C-18)
1=1 i=1

14



Turning to the first term gives

g
W;Umlrh
NT =1

1
0] =0, ()
since H[_J'mH — O0,(N~'/?) by Lemma 2 and since substituting in w; = FP;S,, +¢; by (B-13)
leads to

1 al / I DIV
NTZ( '® S, P

1 N
4+ || — E "'® €
HN =1 (nZ 61) 7

10, (&) _0,(1),  (C-19)

because €; and m),; are independent and loadings are i.i.d. with bounded fourth moments
by Ass.3. For the second term, we find with (C-19),

1 N
HNT (mi @ wi)| <

_ HNT > (n] @ SLPIF)

> W, 'HU,,n,

0, =0, (;N) S ()

since ||H]|| is bounded by Lemma 3. Combining results in (C-18) gives

< ]' al / /

< e
-0,

which proves that in general HAFH = 0,(N¥) with w = —1/2.

It remains to show that w = —1 when m = 1 and p = 0. Write A¥ explicitly as

1 X wMU 1 lyz 1MUng]

= —— , -21

Suppose that m =1, p = 0. We can then write My; _; more explicitly by inverting eq.(6)
and employing (C-16) of Lemma 4

My; 1 =M (FJ—F1% + X+ 1B+ 61 1) =M (X;,F—LB + 52—1 - ;iéi> ) (0‘22)
and since p = 0 (no dynamics in z;;) we can also write (3) in matrix notation as

Z; = [X;,Gi] = 1, + FT; + 'V,

where V; = [v;1,...,vyp]. Defining S, = [I,, O, «x,]” as the matrix selecting X; from Z;
and substituting in (B-23) gives

MX; = MZ,;S, = M(FT; + V,)S, = M(V, — U,.T,)S,. (C-23)
Similarly, from (C-16) in Lemma 4

MX,_, = Mp(L)"Z; 1S, = M(FL,T; + V/_))S, = M(V;_, — 5 '&"iT,)S,. (C-24)

15



Consider the first row of (C-21), substituting in (C-22) gives

Zyl MU,,n, = <,8 X T+ s Zié*j’) MU,,n;, (C-25)
7

NT NT

where since U,, and €75 are O,(N~1/2) and loadings and errors are independent

1 X _

<1 Hl i () @ei’,)

[ es)

and we find for first term of (C-25), after substituting in (C-24),

I 0] = 0,37

+>)<

H ! z% EH/MU,m, M [T = 0,8,

Z B'S, (Vi =7 'Tje ) MU,m, = O,(N ),
because

H /8 S/ Vj/ lMUmnz

H n; ® B'S, VI,

) [0 =0, (5
<zl i( w3t lesmanton - ().

where we note that the last bound can be sharpened to O,(N~3/2) when ~, and T; are
independent. Regardless, combining results in (C-25) gives

H /S/ +*/MUng

1 X, _ _
NT Zyi,—lMUmni = Op(N 1)' (C-26)
i=1

For rows 2 to k,, of (C-21) we find, after substituting in (C-23) and using similar arguments
as before

1

1 X _ _
NT ) Z XMUm; = o > S, (Vi = TU,) MU, = Oy (N7, (C-27)
i=1

Combining (C-26)-(C-27) in (C-21) leads to AF = O,(N*) with w = —1, as required.

C.2.6 Proof of Lemma 6

Recall from eq.(B-13) that w; = FP;S, + € with S,, the selector matrix defined in (B-
11) and F, P; and ¢; are defined in eq.(B-5), (B-6) and (B-14) respectively. Let 9; . be
the s-th column of w; and note that by Ass.1-3 and 5 the PZ, €; and F are independent
and stationary with finite variance such that 9; ; = O,(1) for every i and s and ||9; || =
O,(VT). Consider the matrix ¥ = ¥, w/Mw,;/NT and note that element s on its

16



diagonal is = YN, M, ||> = O,(1), since |[M0;,| < [|[9i.]| = O,(v/T) for all i and s.
Using the same argument we have for the off-diagonal element on row s and column s’ # s

1 N
SNT;]

such that 3 = O,(1) and the lemma is proved.

1 Y 1 X
N9 MY, < S IM,L M| = O,(1),
r v, < i 22 M| (M0 = 0,01

& M9, o

C.2.7 Proof of Lemma 7

Consider the following decomposition of 3 obtained by substituting in eq.(B-13)

o 1 _ .
E—NTZWMWZ NTZS FMFPS + z:el\/leZ

ZS’ P/F'Me; + —Ze MFP;S,.
By Ass.1 and 3, the €; and P; are independent of each other and over i such that

1 al ! ! D/
< |y 2 (€@s,P)

=1

HZS’ P/F'Me;

e ina = 0,0,

which also uses Lemma 3. Substituting in this result and noting that the summation
operates only on €; and P; we can write

vee(E) =T [Sc + (S, @ 8,,) Sp(F' ® F')| vec (M) + O, (N2,
where 3, = % Z?]\;l (€,®¢€) and Ep = 3N (P @ P)). For the latter, since by Ass.1
and 3 the €; and P; are independent over ¢ with bounded moments up to the fourth order

.= E(€@€) + 0,(N ) =B+ 0,(N ),
Sip = B(P] @ P) + O,(N"V/2) = 5 + O,(N112),
with £y = E(P! @ P!) and X, = E(€, ® €). Therefore, matricising vec(3) yields
b =(vec(Iy,) ® Ix,) (Ikw ® {Ee + (S, ®S.) Ep(f" ® ]?")} T~ wec (M ) N’l/Q)’

which is the result stated in the lemma.

C.2.8 Proof of Lemma 8

Consider the estimator 2(-) defined in equation (20) evaluated at 8 # 8, with § = [p, B')
the true parameter vector. Suppose that p* > p and Ass.1-5 hold. We can then make use
of egs.(6) and (B-23) to obtain

1 N
> IM (w8 — 80) + Fy; + &),

52 (80) = Z |M (y Wiéo)H2 = W_C) 2

17



1 N _ 2
:N(T—c)l:ZlHM (Wi(é_éo) _Um7i+€i) )
S M (5 — ) + )+ O,
N(T _ C) Pt ) 0 7 P )
—L(d —380)'2(8 — 80) + 2 %(5 — 8p)'wiMe;
T —c 0 0 N(T —¢) = 07
+ 1 %sfl\/ls' + O, (N~ (C-28)
N(T—c) = b ’
since we have H% >N W;Mﬁmvi‘ = H% SN, wWMU,.n,|| = O,(N~Y?) as proved in

Lemma 5 such that for any [|d — || < oo,

1 X _

=1

1501 =0, (1)

and because

1 X, 1Y, e 1
N 2 oMUy, | < | 3@ )| O] M) =0, (v): (C-29)
] =1
/ ! 1 N / / r 2 1
HZvU MU, | < |+ iey)| [0 1Ml =0, (). (©30)
=1

due to H% SN (i@l = 0,(1) and H% SN (vi®e)| = O,(N7Y/2) by Ass.1 and 3,
H[_JmH = O,(N~2) by Lemma 2 and |[M|| = O(1) by Lemma 3. Next, we take the first
two remaining terms in (C-28) individually as N — oo,

T

Gl 80)'2(8 — 8g) = c2(8 — 80)' (6 — 8¢) + O,(N~Y/2), (C-31)
2 1 I It 2 / —1/2
((5 — 50) WiMEi = —clag'v(p, H) (6 - 50) + Op(N ), (0—32>
T'—cNiH

where ¢ = % and c; = % The first result follows from Lemma 7 and the second from
Theorem 1. Also letting hi,s denote the element on row ¢ and column s of H, ¢ =T — ¢
and with &, = + ZZ 1 €it€iss

1 N N 1 N T T
N Z ME:Z‘ = 5_1N Zzg’it - E_lﬁ Z Z Z ht,sgi,tgi,sv
— ‘ ‘
T

—~_125tt—5_1zhtt5tt+0( 1/2),

t=1

18



] e

t=1
+ O, (N2,

T
= ¢ to? (T = ht7t> + O,(N"V?) = g2e7 e + O,(NY/?),

t=1

=02+ O)(N7'?), (C-33)

since S hyy = tr(H) = ¢ and by Ass.l &, = O,(N7Y?) for t # s and &, = o2 +
O,(N~%/2). Combining results gives

52 (80) = 02 — o2civ(p, H)'(8 — o) + c2(8 — 80)' (6 — 8¢) + O,(N~1/3). (C-34)
This proves (C-8).

Finally, evaluating eq.(20) at 8o = § we have, employing again (B-23) in %(4),

1

52(d) = NT -0 Z:Z1 IM(w;(6 — 8) + Fy, +&)||* = ZZI HM g — Unvy)

2

)

N 1 N _ 1 B B
0% NT -0 % N(T—c);
which makes, by (C-29) and (C-30),

1 N,
= N/ Me; N1
N(T—C) ;sz € +Op( )7

and proves (C-9) of the lemma. Finally, eq.(C-10) in the lemma follows directly from (C-34)
evaluated at dg = & and letting N — oo.

C.3 Statement of theorems

Below we state the theorems that are not presented in the main text or in section A.2.

Theorem 3. Let ¢(-) = d—1m(-), () = limy_,e0 @(-) and suppose that p* > p and Ass.1-5
hold. Assuming that ¢(8y) = 0 implies §g = &, and that x C R* s compact with § € ¥,

0. —"7 0 as N — 00,

with 8, defined in eq.(21).

C.4 Proof of theorems and corollaries
C.4.1 Proof of Theorem 1
The CCEP estimator for § defined in (14) is

(1 EwMw\ 1 X w My,
0= (NZ T ) N7

=1

19



Substituting in eq.(6) gives
3-6=3"(A*+AF) =S A+ O,(N V), (C-35)
where A® = NTZ V., w/Me; and because ¥ = += 2N, wiMw,; = O,(1) by Lemma 6

and AF = L5V w/MF~, = O,(N~'/?) by Lemma 5. Substituting in (B-13), we can
decompose A€ as

1 N
A€ S! P/F'Me; + ‘Me;,
NTZ € T;el €

where by the independence of €; and P; by Ass.1 and 3, and Lemma 3

1 XN .

<3|y Eesm)
- T Ni:l ' v

] i1 = 0,07

Next, note that We can write, with h; ; denoting the element on row ¢ and column s of H,
and with €., = + Y1V €&,

1N T | N T T 1N T T T
~ Z €;M€i = Z ~ Z €it€it — Z Z ht,s* Z €it€is = Z €1t — Z Z ht,sét,sy
N i=1 a N i=1 t=1 s=1 N i=1 t=1 t=1s=1

where making use of (B-14) and Ass.1 and 5, for all ¢ and s
{Et,s - qulpt_l_sﬂ(tflzs)} = Op(N_l/2)7

with q; = [1,0j_,,])" and 1, is the indicator function returning 1 if the condition a is true,
and zero otherwise. This gives, since by Lemma 3 all h; ; are bounded and €;; = O,(N —1/2),

T T T
€Me; = Z € — > > Ty [ét,s — o2qip T T L1z } olq Z Z hesp' ™ L1,

t=1s=1 t=1s=1

= _Usqlzzhtsp t 1>s) +O ( 1/2)7

t=1s=1

==
114

and in turn leads to the conclusion

plim A® = —T 'o2q; Z Z hesp' ™ T Lgo1ss) = =T 'olv(p, H),

N—o0 t=1 s=1

with v(p, H) = v(p,H)q; and v(p,H) = S7 ' p' ' 321, .1 hs s Next up is the denomi-
nator. From Lemma 7,

= (vee(ly,) @ It,) (T, ® [Be + (8], ©S,,) Bp(F' @ F)| T vec (M) + Op(N1/?),
=3+ 0,(N7?,
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with £p = E(P, ® P!) and =, = E(€, ® €}), which are all O(1) terms by Ass.1, 3 and 5.
Hence, combining results gives

2
plim(3 — &) = — 2= 2w (p, H), (C-36)
N—00 T

which is the result stated in eq.(15). Equations (16)-(17) in Theorem 1 are a reformulation
of (C-36) obtained by application of the Frisch-Waugh-Lovell theorem and defining { =

plimy . (X'X)"'X'y_; = (S.XS,)7'S.2q; and of = plimy_, S’/‘&);*l, with y_1 =

ML[y) 1o Y1)y My = M = X(X'X) 71X/, X = M[X],..., X} and M = Iy ® M.

C.4.2 Proof for Corollary 1

It will be useful for the derivation of the explicit bias expression in eq.(A-5) to stack eq.(6)
over individuals as

= In®ir)a+py 1+ XB+FA+e¢, (C-37)

y
with F = (In®@F), y = [yl,...,yy), X = [X|,.... Xy, a = [oa,...,an], A =
Yy, YN and e = [€], ..., ely). With Ass.5 expression (C-37) can be inverted to get

y = (In®ur)at + X8 +FTA + ¢, (C-38)

with F™ = (Iy ® F) and variables with a + superscript defined as X = (1 — pL)"'X.
Using eq.(C-37) and the Frisch-Waugh-Lovell theorem, write the CCEP estimator as

p = (YI—1MXY—1)_1YI—1MXY> (0‘39)
B = (XMX) ' X'M(y - py-1), (C-40)
with Mx = M,M, M = Iy ® M and M, = Iy — MX (X'MX) ™' X'M. Eq.(C-35) implies
. ~ . YLIMXE
1 —p) = plim =2 C-41
plim (P —p) = plim Sy (G4)
plim (8 — B) = plim (X'MX) " X'My_1 (p — ), (C-42)
N—oo N—o0
such that, defining ¢ = plim,_, (X'MX) " X'My_; we obtain for (C-42)
plim (8 — B) = —¢ plim(p — p), (C-43)

N—oo N—o0
which is the expression in eq.(17).
Next, consider that lagging eq.(C-38) one period gives the following expression for y_;
yo1 = (Iy@ur)a" + X5 8+ (In@FH)A +et,.
This leads to
My ; = MX* B8+ (Iy @ MF!)A + Me™,. (C-44)
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We will use this result to evaluate (C-41) conditional on C = o{F,Q}. From the strict
exogeneity of X (Ass.1) and the independence of A and e (Ass.3) follows

1 1
plim —y’ Mxe = plim " \Me = plim ——(e*,)' M,

N—o0 NT N—oo NTy N—o0 NT
1 &

=1

Defining Q = BQ, with Q a fixed matrix conditional on C, and B = Iy — Lty /T, the
numerator of (C-41) is

1 N 1 N — — — —
lim —— T_1)'Me; = plim — T (e — &) — 'Q'Q (e; — &
plim =7 3 (e Mer = plim 53 (e ) (e~ £) - QQQ'Q (e — &)
LS (e e plim L 36,/ Q@Q)Te

= —plim — E; i — plim —— I o
Noreo NT & S0tV 817 DU NT 5071
o2 o2 T-1 T

= —ZAP) —=D 0D hes,
T T t=1 s=t+1
O'2 O'2 et

= —ZA(p) - ZD(p. H), (C-46)

with A(p) = 1 (1= £520), D(p, H) = S15' o S, s and H = Q(QQ)'Q.
Turning to the denominator of equation (C-41), using (C-44) we get
yoMxy-1 = HM$ (MXJ—FLB + (In @ MF1))A + MEtl)’ 2a
o+ v w Al et |

+28/(XF,) Mxe®, + 28/ (XF,)Mx(Iy ® F¥))A
+ 2A,<IN & (Fil)/)MXEil-

Defining first

2 2
Ct = |MxXE |+ |Mx(Iy @ FE)A| +28/(XF,)Mxet,
+28' (X)) Mx(Iy ® FF)A + 20 (Iy @ (F+,) )Mxet,,

and taking the limit (conditional on C) gives

) r . ) 1 T i 1 n 2
pim € = pim g VX plim g My @ B2 )A
1
N—oo NT

because by Ass.1 and 3

, 1
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1
]81_1}1’1 ﬁQﬂ/(XilyMXEtl = 0.

Hence

plim Ly’_II\\/JIXy_l = plim L Hstle2 + plim LC’Jr,

N—)ooNT N—)ooNT N—>OONT
1 2 1 -1
_ : + 17 A + \ ! I~
= plim M| plim <o (%) MX (X'MX) ™' X'Me,
1
lim —C*
TR NT
lim —L S (eF yMet | + plim —C (C-48)
= — ~ > im —C™. -
JI\)7—1>§ NT i=1 517_1 17_1 JI\)/—>oo NT

Focusing on the first term of (C-48) and using earlier definitions gives

1Y 1 J
lim ——  YMeT . = olim — + Y + gt
]I\)/'ilglo NT ;(€1,71> 517,1 ]Eilglo NT ;(Ez,fl) (517,1 El,fl)
~QQQQ (1 &) |,
= 101iml§T:Z(5'+ )
(. NT P i,t—1 i,—1
1 X =
- ]I\)fl_lglo NT ;(ez—’t_—l)/He:—la
2 o2 1 - T-1 T
=_-tB (p) — £ [t?“(H) + 2p ptil hs,sft )
T 1- p2 T ; 51275—:1—1
52 -
S Z(Bo- - 1eneE]),(c)

~% (A(p) + D(p, H))
T (B (p) = =0 [c — 1+ 2pD(p, ﬁ)]) + plimy .

—A(p) — D(p,H)

)

B(p) = 12z [c— 1+ 20D (p, H)| + plimy_, . 555C*
which we reformulate to
R A(p) + D(p, H)
plim (p—p) = — | | (C-51)

N—oo [B (p) — E(p,H) + TC’} ’
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where E(p,H) = ﬁ [c — 14 2pD(p, ﬁ)} and

C = plim

No NTa2 (HMXx—lﬂH + HMX (Iy ® FZ, AH +28'(X*))Mx (Iy @ F* )A) :

(8'(XE))Mx X, B + A'(F7))MxFE, A + 28'(XE, ) MxF A

1
= pli
Norow NTo?
) B' QB+ A/Q?A + Qﬂlﬂi( A
= plim 5 —
N—oo (O

with Qg = (XT,)MxXZE,/NT, @ = (FL,)MxFL, /NT, Q¢ = (X)) MxFf,/NT and
Ft, = Iy ®F").

C.4.3 Proof of Theorem 3

Let ¢(d¢) be the vector of moment conditions employed by CCEPbc in (21) evaluated at
8y # &, with & the population parameter vector § = [p, B']'. Multiplying by 3 and solving
in eq.(6) gives

_ 1 X 1 1
2¢<(50) = — Myz —_ W,MWz(S() + *0' (60) ( )
NT ; NT - Z
(6 6)+1EN:’M6+1i’MF7+1A(6)v()
p— -_ 0 R W'L z — WZ 'L 70_6 O po b
NT = NT = T
S 1 1 & / ~2 —1/2
= 3(6 — do) + 7\ Y wiMe; +52(80)v(p) | + Op(N~12), (C-52)
=1

because NT SN, wIMF«y,; = O,(N~'/2) by Lemma 5. Note that we have dropped the
dependence of v(-) on H for simplicity.
Consider the middle term. From Lemma 8 with ||§ — d¢|| < oo given compactness of x,

52 (80) = 02 — 02c1v(p)/ (8 — 8o) + c2(8 — 80)'S(S — 8g) + O, (N~1/2),

with 3 defined in eq.(C-7) of Lemma 7, and where ¢; = Z2= and ¢, = 7—. We also have

1 N
LS WiMe, = —o?ulp) + 0N ),
i=1

by Theorem 1. As such, by combining results we can write as N — oo that

o2ol) + vl 02 = 2erv(p)! (8 = 80) + e2(8 — 80)'S(8 = 80)| + 0,(1),
= —02 [v(p) = v(po)] — oZerv(po)v(p) (8 — 8o) + c20(p0) (8 — 80)'T(E — 80) + (1),
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Substituting this result in (C-52) gives qu((io) — a)((io)H = 0,(1) for ||6 — do|| < oo, with

(o) = (6 — o) — ; ‘752271 [v(p) —v(po)] + ‘75201271”(/70)”(/?)/(5 — &)

— eI (po) (8 — 80)S(8 — )| . (C-53)

In (C-53) we note that ||v(po)|| < oo since |[H|| = /¢ from Lemma 3 such that v(pg, H) <
oo for any finite py (and where |p|< 1 by Ass.5 ensures ||v(p)|| < oo also as T' — 00). Also,
ce = O(1) and since T > ¢, ¢; = O(1). ||X|| = O(1) is shown in Lemma 7 and 02 < oo by
Ass.1. This implies that H(}(ég)H < oo provided ||d — dp|| < co. Also, clearly from (C-53),

¢<60> = Okzw><1> for 60 =90.

Finally, since [v(p) — v(po)] is determined only by py — p and is zero only for pg = p we
take that q~§(50) = 0, x1 implies ¢ = & such that, assuming that the admissible parameter
space Y C R* in (21) is compact with & contained in its interior, we have as in Newey and
McFadden (1994) (Section 2.5) that

Sy — 8,

as N — oo.
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D Analysis for (N,T) — o

D.1 Preliminary results
Consider the decomposition
Mr — M = U’[Q;Qo] ' (U")" + U’[QQo] ' (F°) + F’[Qy Qo] ' (U")'
+ FO ([Q)Qo] ™" — [(F°)F| ) (K7,

and note that, since FO = [F*, 07 (k)] and U° = [UY, U ], we have using similar steps
as in the proof of Lemma S.1 of Karabiyik et al. (2017)

Mp-M=T7""02 [T7H(U2,) 0L, ]7H(UL,,) + T7'U,, [T~ (F) F | (U,,)
+ Tle*[Tfl(F*)/F*]—l(Ijg@)/ + T—lﬁ?ﬂ{jﬂfl(F*)/F*]—l(F*)/
_ o—1 o—1
+T 1Q0 (EQ - EFj) QE)v (D'l)

with Zq = T7'Q}Q and

s 1 (F*)'F* O K4m)x(—m) | _ Sp- 0(14 K £m)x (K —m)
Fo T 0k—myxartmy  (UY,)U° O(K—m)x(1+K+m) DN ’
(D-2)
where Sp. = T-/(F*)F* and £,0 =7-1(T0°, yU°, .
D.2 Statement of lemmas
Lemma 9. Suppose Assumptions 1-3 and 5 hold, then, as (N,T) — oo,
U'U 1
—= _ D_
= =0 (%) (D-3)
UF 1 F'F
= —_— = ]_ D‘4:
T OP (m) ) T OP( ) ) ( )
U'F 1 e'F 1 eF 1
7 — - 7 — - 7 — - D-
T OP< T)) T Op<ﬁ>7 T OP(ﬁ)a ( 5)
e/U 1 1 €U 1 1
P2 - i = D-
T Op<N>+Op<\/NT>’ T Op(N)+Op< NT) (B-6)
Lemma 10. Suppose Assumptions 1-5 hold, then, as (N, T) — oo,
(000" (1) (000" 1\,
m mo__ = m m _ m m _ 1 D-
T OP N ) T OP \/N ’ T OP ( ) ) ( 7)
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T T VNT T VT

O o) Foll) Toolh) e
Coo(eolin) oo al) o
o)) oolk)ols). oo
Poo(h) Foalh) SEoaln) e

Lemma 11. Suppose Assumptions 1-5 hold and let P, =P, — N Zfil P,. Then, as
(N, T) — oo,

N~ ; (T'€U8, @8, P}) = 0, (Ni/g) +0, (Nj/T) : (D-13)
N ; (177U, ® S, P)) =0, <N£/2> +0, (]\7\1/T> : (D-14)
N ; (10, @8,P}) =0, (;) +0, <¢%> : (D-15)
Ny (17,0, ©8,P)) = 0, (i{) 1o, (&) , (D-16)
N~ ; (T7'eF ® 8,P}) = 0, (jlw) : (D-17)
N7 ; (T—ls;]?“ ® 8;15;) =0, (JIVT> : (D-18)
N f} (T'€/Qu® S,P)) = O, (le) 10, (&) , (D-19)

where the results hold similarly if S, P! is substituted for 7,

Lemma 12. Let Assumptions 1-5 hold. Then, as (N,T) — oo,

s =T'FF =3, +0,(T7Y?),

po = T F)E = Sp. + 0,(N"2) 1 0,(T),
spe = THF)F* = Bpp. + O, (N7V2) 4 0,(T71?),
u(lm = T_I(Ugm)/ﬁo—m = Eu(l n + OP(T_1/2>a

M MMM
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iuo W = T‘l(ﬁgm)’\/ﬁﬁ?n =2y w, T Op(T_l/Q),
and also

|5 — =5l = 0,(N712) + 0,72,

1:7 ‘ = OP(T_1/2>7

where

Y. = E(FF/T), Xy=EUU/T), Zp =8 NRPI,PRNS,,
Sppe = BpPRNS,,, T, =B TA;'Q,(A;')TB_,,
2

_ g NR'S. _ |02 Oy
Sw w0 =S., NR'SyRNS,, Qu_[om Qv]'

Lemma 13. Let f)Q = T7'QyQo and suppose Assumptions 1-5 hold. Then, as (N, T) —
00, with Xp+ defined in eq.(D-2),

~ 1 ~—1 _ _
[Sq' — Set] = 0,(N %) + 0,77, (D-20)
and also
~— ~ 0 T-1/2%
ﬁ 5 1 - i _ _[ (1+K+m)></(\1+K+m) Fu ] D-21
[ Q F“] T*WE;;U O(K—m)x(K—m) ( )

o) o))

where Xp, = Tpt(F* + T YU° S -

m

Lemma 14. Suppose Assumptions 1-5 hold and let p* > p. Then, as (N,T) — oo,

X 1 1

and letting AX = VNTAF, provided that T/N — M < oo,
F'VNU /T 1 1
AR = Upvec < JT ) + N (bF bf) + 0, (\/N) + 0, (\/T) ) (D-23)

by = 3, |B}, T'R} @ Zgp. Ip! S|, N'R'| vee (3,

with
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pf =3, |
1 n u(lmum -~

5! S, NR'® EFF*EF}s;nN’R'] vee (Sg),
Vg =—-Vp1+Vra2+ Ves— Vg,

VF,l = 277 _B/TI’LT,R() ® Il+K2m(1+p*):| 5

Vi, =3, B, TR) ® S¢p. Se'S,NR'P'|

Vs =3, |B,TRISgRNS_, X S NR' @ L 12m14p)

Y

. /
VF74 - 277 Eu(lmum

Yo S, NR @336 S, NR'P'| .

—m

and where 2, = E(n, ® S!,P?).

Lemma 15. Suppose Assumptions 1-5 hold. Then, as (N,T) — oo,

. , 1 ) (1) 1 i
A NTZWMEZ—O (5) 0 (7) =0 (7= (D-24)
and letting A5 = vV NTAS,

ASr = 0,(1) + O,(VTN~Y?) 4 O,(VNTV/?). (D-25)

Lemma 16. Suppose Assumptions 1-5 hold and let p* > p. Then, for any &y # & such
that |8 — || < 0o we have as (N,T) — oo

52 (80) = 02 + (8 — 80) (6 — 8g) + Op(NH) + O,(T™Y) + O,(NT)™V/?),  (D-26)
whereas if 6g = 0 then
52(8) = 02 + Op(N™') + O,((NT)71/?), (D-27)

with 6%(+) defined in (20).

Lemma 17. Suppose Assumptions 1-5 hold and let p* > p. Then, as (N,T) — oo with
v =v(p,H)q, and 5*(-) defined in (20)

— i w' Me; + ;83(5)1; = O,(N"Y) + O,(NT)"'/?). (D-28)

Letting Ay = VNTAC and T/N — M < oo,

al EQF Y, 1/21,U
> ® S, P - VTN/?b (D-29)



rorgy) o ()
with bY = Eeu_ngng;U_m, Y., =S YsRNS_,,, S.v , = E(€U;/T)RNS_,,,
BF = I, k2 m(isp) — SgPRNS, S518! N'R'P' and ¥, = [vec (B¥) ® Ikw}
Finally, for A¢(8q) the vector A evaluated at 8y #

A(bn) = (6~ /206 — 8ol + 02 vlm) 01 +0, () + Oy (=)

where v(po) = v(po, H)qy .

Lemma 18. Suppose Assumptions 1-5 hold. Then, as (N, T) — oo,
2P Y =B + 2, (D-30)

where Sgp = (vee(ly,) @ 1i,) (T, ® Spvec(VF)), B = E(S, P, @ S,P)), VF = ;-
3:PRNS, Y¢S, N'R'P'S; and X, = E(ele;/T).

D.3 Proof of lemmas
Proof of Lemma 9
The proof for this Lemma is, under Ass.1-3 and 5, identical to that of Lemmas 1 and 2 in

Pesaran (2006). The proof is therefore omitted.

Proof of Lemma 10

To prove this lemma, recall from egs.(B-18)-(B-20) that F* = FPRNS,,, U = URNS,,,
and U(lm = \/NURNS_m. Hence, we have

|77 (@G = |

S, N'R'T"U'URNS,,| < |RNS,|*|T70'T|| = 0,(N ),

since HT”U'U‘H = 0,(N71) by (D-3) of Lemma 9 and we have by definition that [|R|| =
O,(1) and |N|| and ||S,,|| are O(1). Similarly we obtain
|70, 0, | = NS, NRTUURNS._,,|| < [RNS_,|* N [77'0'T| = 0,(1),
|08, 00, | = VN||S, NR'TU'URNS._,, |,
< RN Syl 18| VN |T71U'T|| = 0,(N72),

which proves (D-7). Moving on to (D-8), we have, noting that HPH = 0,(1),

I = NPT EPRNS, | < [RS8

= Op(1)7
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|7t T | = \s’ N'R'T-'UFPRNS, | < [RNS,|* |P| |[771UF| = 0,(NT)~*/?),
|7 1T, ) F| = ' N'R'T'U'FPRNS
< RN Sl ISl |P] vV HT TU'F|| = 0,(T7),

where we have made use of (D-4) of Lemma 9. The second and third result in (D-9) follow
analogously from (D-5) of Lemma 9 and, given (D-8), the first result in (D-9) follows from
the definition U = [U%  U° 1. Next up, making use of (D-6) gives

|70, | = ||T €, URNS,, | < [[RNS,,|| [T7'€/U| = O,(N ") + O,(NT)~1/?),

nl =
and similarly for HT‘leng%H. Also
|70, | = |7 URNS_,,| < [RNS_,[| VN | T 1T = 0,(N"12) + 0,(T~1/?),

with the argument being identical for HT UomH This establishes (D-10) and (D-11).
Turning next to T '€,Qq of (D-12) we find making use of the definition in (B-16)

[T = [T el(E + O | < [T e + 700 = 0,7 ),
because |7 Le[FC|| = | T~1€][F*, 0o (s )| = HT 1e’FPRNSmH < |rte| HPRNSmH =
O,(T~/?) by (D-5) of Lemma 9 and because HT AL HT ALOENN U4 H = O, (N~/?)+
O,(T~/2) by (D-10) and (D-11). | T~ €/Qol| = O,(T~/?) of (D 12) can be estabhshed in
the same way. Finally, for HT _1Q6ﬂan, making use of (D-7) and (D-8)
|77 QUS| = |77 (O + TO)YTS, | < |77 [F*, Ors(scm))’ mH + HT oo uo ol |,
e o] o, o003 - 0,0
which then proves the final statement in (D-12), and therefore the lemma. ]

Proof of Lemma 11

Note that substituting in P, = P + P, from eq.(B-7) gives by Ass.3 that P, = P, +
O,(N~Y2). Then, since the following matrix norms are identical

1 X _ -
HN Z (1708, @8, P;)

1 X _ _
- |L s oo

=1

we will evaluate the second. Let p; 4 denote the element on row r =1,..., k, and column
d=1,...,1+ K*m(1+p*) of S!,P.. Then the elements on rows k,(r — 1) + 1 to k,r and

/Uo

columns k,,(d—1)+1 to k,d of the second Kronecker product are given by % SN Pird
To evaluate these terms, consider that we can write, making use of (B-19) and (B- 10)

I 1
UO — UO UO
m + N o™ i)

31



where U, _, = N"'YN, ., U;RNS,, and UY ; = U;RNS,,. Hence

<[5 (5 [ (5]

o (Nﬁ) Ho <N3/2>

because T 'e{UY _; = O,((NT)™V?), T7L€/UY% ; = O,(1) and by Ass.3 & XN, Pira =

m, —1

eUO

Hzpzrd

O,(N~ 1/2) with Dird independent of the other variables. Since this applies for all r =
Skyandd=1,...,1+ K?*m(1+ p*) we have

=) v ()

which is the result in (D-13), and (D-14) follows in similar fashion. In turn, to prove (D-15)
we note that

HN-l fj (T-'€0Y, @8, P;)
=1

\/_U(]m 2+7U0

\/N —m,i)
with U%, , = N '3 1#ZU RNS_,, and U°, ; = U;RNS_,, such that for r =
1,...,k, and column d = 1,...,1+ K?m(1 + p*) we have for the corresponding elements

in the Kronecker product

1 al ~ 6-[J(lm —1 eUgmz
S\/NHNZPi,r,d< >||+\/_|| szrd( >
=1

T
0, (;r) 10, (&) ,

since also T~ '€/U%, _; = O,((NT)~"/?) and T~'€[U°, ; = O,(1). This implies (D-15) and
the result in (D-16) can be established in the same way. Next up is (D-17). The elements
on rows ky,(r—1)+1 to k,r and columns (14 K?m(14p*))(d—1)+1 to (1+K?m(1+p*))d
of LYV, (S;f’; ® T‘legﬁ) are given by

eUO

H pzrd

Y

L e _ad (1) D-31
with 8,4 = + % Pira€; and [|a,,q]| = O,(N~'/?) by the independence of p; .4 and €; from

Ass.1 and 3. The result then follows because also a, 4 and F are independent stationary
variables. Since (D-31) holds for every sub-matrix

H T F ® 8;15;)

(k)
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with again an analogous argument for (D-18). The final result is found by noting that

]if >~ (T7'eiQu e S, P)) = ]1] '

=1 =1

<T71€; ([F*> OTX(K*m)] + [[_ng [_J(lm}) ® S;uf);) )

such that since F* = FPRNS,, from (B-18), inserting the preceding results gives

;év: (T'€/Q® S, P}) =0, (;) +0, <\/%> .

=1

Finally, given the independence of n; from €;, ; and F for all 4, j,t by Ass.3 all the stated
results also hold true when S P/ is substituted for n}. This establishes the lemma.

Proof of Lemma 12

Consider that by Assumptions 2 and 5, F is a matrix of covariance stationary variables
with finite fourth moments. As such, the first result 3y = T-'F'F = 3 + O,(T/?),
with 3y = E(T'F'F) follows directly. Similarly, from Ass.1 and 5 follows that 3¢ =
T'NU'U = Z¢ + O,(T~/?), with £ = E(UU,;/T) since error terms are independent
over ¢. The second and third statements of the lemma are obtained by substituting in
(B-18) and by making use of the first statement and P = P + O,(N~'/2) by Ass.3

(F*)IF*
T

FF o
pre = —7- = SpPRNS,, = 3;PRNS,, + O,(N7V2) 4 0,(T71?).

S = =S/ NR'P'S;PRNS,, =S, N'R'P'S;PRNS,, + O,(N"2) + 0,(T/?),

N

Since F¥F*/T is by construction a 1 + K +m x 1 + K + m full rank matrix we also
have 2;1 = 3pt 4+ O,(N7Y2) + O,(T~1/?). For the next result, consider that U =
VNU*TB_,,, with U* = [a},...,u}] and uf = Aj'w;. Therefore, by Ass.1

T
o =T7HU° YU, =B, TA;! <NT1 > utu;> (A;H)'TB_,,,
t=1

=B, T'A;'Qu(A;)TB_, + O,(T'),
=S, +0,(T7),

where X0 = B, T'A;'Q.(A;Y)'TB_,, is a (K —m) x (K —m) positive definite matrix

2 /
Oc kx1

0k><l Qv
O,(T~'/?). Finally, the last result can be obtained by substituting in (B-19)-(B-20) and
34 = g + O,(T71/%) as follows

because Ass.1 implies 2, = E(u;u;,) = [ 1 . Consequently also 21:&,,1 = E;(llm—i-

Swup, = THT,)VNT), = S, NR'ZGRNS,, = S NR'ZGRNS,, + 0,(T'/2).

—m
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Proof of Lemma 13

Consider that by definition
EQ — T—1Q6Q0 — T—I(FO)/FO 4 T_I(Ijo)/FO 4 T—I(FO)I'EJ’O + 7‘!—1(*[]’0)/'[]‘07
with, since F = [F*, Opy (k—m)),

T (F°)F° = [ S 0(1+K+m)x<K—m)]
Ok —m)x(1+K+m)  OK—m)x(K-m) |

and also because by Lemma 10 we have HT’I(I_J(im)’F*
O,((NT)~1/2), it follows that

= 0,(T~Y?) and HT*(I_J?,I)’F*

_ _ -1 *\/7 70 —1/770 \/* -1 *\/7 70
T_l(UO)/FO =+ T—l(FO)/UO — [T (F )Um + T (Um) F T (F )Um‘| — Op ( 1 > .

T-4U%,)F* 0K —m)x (K —m) VT
Next, making use of Lemma 10
- _ 1 (ﬂo )/ﬂo (fjo )/fjo
1 0O\TT0 _— — ~m ’m ——m/) Y -m
THOYO = 7 |G (o)

O+ r+myx(1+K+m) O+ K+m)x(K—m) 1
e — + O N /2 3
l O(K—m)x (14+K+m) Yoo a )

and recalling from (D-2) that

o g 014 K ym)x(K—m)
S L , D-32
Fl [O(Km)x(1+K+m) Eugm ( )

we have, given the results above

u

$ _s T-YF*)UY +T-1(U%)F* T HF*)U",,
S = -
Q F T-YUl,,)F* O(K—m)x (K—m)

(D-33)

PG (O

(U, 08 0 —m)x(r—m)
= Op(N'2) + 0,(T 7).

~

Then, since p* = 1 we have rk(Zq) = 1+ K (1 + p*) = 14 2K, rk(

~

F
and 7k(Xy0 ) = K —m, such that for the block diagonal matrix rk(Xg
rk(iug ) =1+ 2K. Therefore, by Theorem 1 of Karabiyik et al. (2017)

J=1+K+m
+) = rk(Zp-) +

o1 o1 _ _
Yq = Xp; + Op(N 1/2) + Op(T 1/2)-

This proves (D-20) of the lemma.
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Moving on to the second statement, consider that from Lemma 12
Hiuo_m - Eu(lmH - OP(T_1/2)7

where £ =B T'A;'Qu(A;")TB_,, is a (K —m) x (K —m) positive definite matrix.
Consider also from Lemma 12 that Zp. = Zp. + O,(N~Y2) 4+ O,(T~/?), with Zp- a
(14 K +m) x (1+ K +m) full rank matrix. Accordingly, we have denoting

S, Y- 014 K +m)x (K —m)
Fu O(K—m)x(1+K+m) Eugm ’

that
iFj =Yg+ + Op(N_l/Q) + OP(T_1/2)7

and since rk(iﬁ) = rk(Xp+) also

u

+ O, (NV2) 4 O, (T71/?),
with

Y O(14K+m)x (K—m)

-1 ~
Ypr = Ok —m)x (1K 4m) o 7 (D-34)

which implies in turn, making use of (D-20) that

~ —1 _ _ _
Sq = 5,1+ O,(N V) £ 0,(T7).

Consider then the following identity
VT [8q — Spt| = ~3¢' VT [8q — gy | Siet (D-35)
such that by the results above
~_1 ~_1 B ~ -~ _ _ _
VT [Bq = Be;] = —SVT [£q — Sy | Bl + O,(N712) + 0,(T772).

Using (D-33) we find for the middle term, also making use of Lemma 10,

o _s 1 _L [(FE)U,+(U))F (F)UL,
\/T {ZQ - E}?ﬂ - l (fj(lm)/F* O(K—m)X(K—m)
L [@T, (@),

VT [(U2,) U5 Ok —myx(ic—m) |
1 [O(1+ij)x(l+K+m) (F*)/Ugm 1 + Op <1>
)

S

TVT| (UL)F Okemyx(k-m VN

b [0(1+K+W)X(1+K+m) (U502, ] + O, <\/T> ,

_|_ . . -
VT (U?,,)uy, Ok —m)x(k—m) N
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1 [0(1+K+m) (+r+m) (F7+ [—ng)’ﬁ(im] + 0, ( ! ) +0, <ﬁ> )

VT (U0 (F* +0%) Ok (i —m) VN N
Hence
ol e 1 [o (F*+1U2)0° _
ﬁ 5 1 s 1 S N (1+K+m) (1+K+m) m -m| N 1
[ Q Fﬂ Y VT (UL (F*+U2)  Ok—myx(k—m) Fi

+0,()+on (=) +a ().

o1 o1 1 O(l+l_(+m)><(l+K+m_) E (F* + UO )lUgm 1
VT [Sq ~ 3] = VT lzuol (UL E UL Omyx(k—m) e

1 1 \/T
014+ K+m)x (14 K+m) Y (Fr+U%) U, ;‘im

Yo (U2,)(F + U ) S 01 —m) x (1 ~m)
1 1 VT

which, by defining Spy = Yol (F* + fj?n)’fjﬁimz;} , can be written more compactly as

and making use of (D-34)

1
Y

~ o 0 T—1/22
VT [£q — Spt] = [ (1K) (LK m) Fu ]
[ Q F“] T_l/zz 0K —m)x(K—m)
1 1 VT
O, —= O, —= o, — 1.
*f«¢ﬁ>*pﬁﬁ>+p<w)
This is the result in (D-21).

Proof of Lemma 14

Consider AF = T SN w/MF~,. Under Ass.4 and assuming that p* > p we can substitute
n (B-23) to obtain

AF = NlT Z w.MF~, = Z w'MU,,7;,

NT
and also, by eq.(5) of Ass.3,

1

AF =
NT:

1 _
Z wMU,,(y +n,) = —TV_V’MUm'y Z w'MU,.n;,

NT

- !
- NT Z Ww; MUmnw
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because Mw = Oryy, since w C Q. Substituting in (B-13) gives
AT — (AT + AF), (D-36)

with AF = L5V 8§ PIF'MU,,n, and A = 1>V, eMU,,n,.

We start by evaluatmg A¥Y and make use of M = Iy — Q(Q'Q)'Q’ = I — Qo(Q, Qo) ' Qj

1 X Qo (QQo) Qg‘
N T ( T > T

=1

1NeU
T’?i

MESs AR

with obvious definitions for AY, and A%L,. Taking on first AL, note that

1 Y €U,
Af = lN Z <"7;, ® Tﬂ vec(ly),

=1

and therefore, by eq.(D-13) of Lemma 11,

HA§1H < Jbi (?7; & T‘le;fjm) m|| = Op(N3/2) + Op(N_lT_l/z).
i=1

Next up is, AE,. We find

1 € Q Q Q QyUn,
g <[5 (e )] H o \ :
i=1
1Y e(FO+U0 Q Qo Q,U
<% ; (m © 7 T |
1 1
~0(3a) 0 (m) ’
because ||(T7'QLQo) 7| = O,(1), ||[T7'Q,U H = ~1/2) by (D-12) of Lemma 10 and

N
ENCEERECE)]
i=1

<

1 g: ' o T 10| 4 1 g: ! o T TP
Ni:l ("72‘® €i ) Ni:l ("h‘@ €; ) )
) |+]

L - | o
N;(néew 'e)[F ,OTX<K_m)]) + N;(n;@w 16;[U;,Ugm])

1 1
_o, (N) 10, <_NT> ,
by (D-13), (D-15) and (D-17) of Lemma 11. It follows that

a3 =0, 5i2) + 0 (72) (D-37)
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Next up is AT. Recalling that Mg = Iy — Hg and Hp = F*((F*)F*)"}(F*) we can
decompose it as

1 XN . _ _

Z S' P F Umni — W Z S;UP;F’HFUmni Z S’ P F MF — 1\/I)Umm7
i=1

= Ai - A]1?2 - A]f?),

with obvious definitions for A¥,, A¥, and A¥,. For the first two terms we find

A FD,, 1
lag < |55 o sie)| [0 —o, (1),

N - )/ F* -1 F* /[_Jm 1
) =< | 5 (o s [ () [0 o, (),

since HN ( ' ® S P’) = 0,(1), and Lemmas 9 and 10 show that HT‘l(F*)’fij =
Op((NT)~ 1/2), TFF| = 0y(1) and [[(T7/(F*)F*) 7| = O,(1).
Next is AF;. Making use of (D-1) gives the following decomposition

ALy = Z S, P {A]i?m + Al + Al + Ay + A135} M

with, defining le = [T7'Q}Qu],
AE, = TR0 [THU0, YUC 1T YU, ) UL,
Ay = T'F'U [T (F)F] ' T(U,) Uy,
Ay = TR E)E 700,
AT, = TN T (R R T ()T,
Al =T 'F'Qq (2; - i;;) T7'QyUy,

which yields, by Lemma 10,

Al < [0 702, 0, [0, B = 0,4
AL < 1B | e [0 < o

Aty < [ B iy [T 00 = 0,07,

Afy|| < [T E O | e 7 E /UmH— (NT)™),

Al | < 1FQ0H HEQ —EFxH HT QU mH= LN+ O,(NT)™1/2),

because also HT‘lf"QOH = HT‘lf"([F*,OTX(K_m)] + 109
O,(N~Y2) + O,(T~/?) from (D-20) of Lemma 13. Hence,

| = 0,(1) and |Sq — g

|AL| = 0,(N 1) + O, (NT) 172,
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which implies, in turn HAfH = O0,(N71) + O,((NT)7*/2), and therefore, combining results
for HAfH and HAEH in (D-36)
a7 < lat] + az] = 07 + o ((NT) ),

which is the result stated in eq.(D-22).

Next, let AX; = vV NTAF such that by the results above
AN = Alry + Ao+ ARNrs + ARy + ARlrs + O (N"Y2) 4 0,(VTN™Y),
with

N = w 3 ﬁ (2

NT,2 N = w1 T T \/T 19

AF :iis, 5 F0, (0,0, 00 YVNU,,
NT,3 Ni:1 wx g \/T

F _
ANT,l ==

1 N . FV\IF*
AN, ==Y S,P]
N ( T

Vi
1 Y . F'Qq -1 «-11QVNU,,
AJh:fT,s = N ; SL;P;' T \/T [ZQ - EFH 0#771

Taking on first Af;; we substitute in U,, = UR(TB,, by eq.(B-22) and write
1 & . F'vVNU
AN, =—|—= ‘@S Pl ——
NT,1 [N;(m(@ w Z)] vec( Nia )
LX BN
=—|= t@S P | IBLT'Ry ® Iy gemip | vee | ——— |,

3 (2 S (B TR © u ee (
such that denoting
which we note exists and is bounded by Ass.3, we have [% N (77; ® S;UP;)} =3, +
O,(N~%/2), and therefore

ARr = =3y [BLTR) ® Ty vee (T7/F'VNU) 4+ O, (N71/2).

Next, for A%, we can write using (B-22) and (B-18) that (F*)'U,, = S, NR'PFUR\TB,,
and substitute it into the expression to give

1 N . F/F* (F*)/F* -1
AN, = |— '® S P
NT,2 [N ; ("7@ ® w z>‘| T ( T )

L, ® B, TR;® S, NR'P'
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y F'VNU
vec|\ ———| .
VT
Since by Lemma 12
TF'F* = Bpp. + O0,(T7V?) + O,(NV/?),
T 'F'F* = Xp. + O,(T"V?) + O,(N~/?),
with Zpp. = ZzPRNS,, and g = S, N'R'P'S,PRNS,,, we get

~ F'V/NU 1 1
Alra =y [B TR © Sip. D! NR'P'| vee <\/T> +0, (@) +0, (m) |

Continuing on to the next term, substituting in (B-20) and (B-22) gives

F'VNU

A . NUT
ANrs = NZ%PQ( 77 )RNs_mzug1 s mN’R’(
=1

) R,TB,.n;,,

where by Lemma 12

‘ 2;‘; - 213% = 0,(T™'7),
o2 0,
with 0 =B, T'A;'Qu(A;")TB_,, and Q, = lo € SICZXI]' Also, from the proof of
-m kx1 v
Lemma 12 we have NU'U/T = ¢ + O,(T~1/?), with %¢; = E(UU;/T). As such,

1M . B 1
A]FVT’g = ; S! P! ( T RNS_, X S, NRIyRTB,n, + O, <> ,

—m ﬁ

and, as before

F'vVNU
AR, =%, [B’mT’RE)EI--JRNSmEUOi S” NR' @ Ty j2pm(1sp) | veC <‘/_>

VT

+Op(NTV2) 4+ O, (T7'12).

For the next term, since using earlier results AETA = Op(\/T N~1/2) we define first

F/F* ((F*)/F*>1 (Ijgn)lﬂm
nz’7

N
BY,, =Y s P
NT4 ; w1 T T T
and note that AR, = \/%BETA. Substituting in (B-19) and (B-22) gives (UY)'U,, =
S N'R/ U'UR,TB,, and therefore

0 )/I_Jm
T Tli?

1Y, . FF (FYF\ ' NU
Bl =~ S,P;
NT 4 Ni:1Sw i ( T )
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= %, [L, © Sgp. S5 (B}, TRy @ S, N'R vee (S) + Op(T7) + O,(N72),
— 277 [BlrnT/Ré) X EFF* EE}S;TLN/R/} vee (EU) + Op<Tfl/2) + OP(N71/2),

Hence, we have for T/N — M < oo (implying VTN~ — 0)
ARra= VTN~ VBN, = VTN?bf + O,(N7V/?), (D-38)
with bf = ¥, [B], 'R} @ Zjp. Tl S, N'R/| vee (Zg).

Last up is AXp 5, given by

F,](?Oﬁ {EA]; _ 2—1] Q6\/Nﬁm

1 N .
A§T5 =% Z SZUP; F n;.
5 N = u T

First we decompose it into 4 parts using Qo = F° + U°,

4
AET,5 = Z S, P/ <Z AgTﬁ,l) n;,
=1

with
Ay, < VNT [T7FF|[£g - Sei|| [T F) T = 0,(N V%) + 0,113,
Alpss| < VNT|[T7BF| | £q — Set | [T71(00) UL = 0,(VIN2) + 0,(1),
AR o] < VNT TR0 |8 - Set | |77 @) UmH = O,((NT)™Y2) + 0,(T™Y),
ARy < VT |T7FT||£g — Spe | | 77100 0| = 0,(N7172) + 0, (172,

in which case the leading term is A% 5 ,. Hence, imposing T/N — M < oo,
Ars = Z S,PITFEVT [Sq - et 7710 VNUm, + Op(N 1) + 0,(T72),

.. i ~—1
_ [N;(n;@asgﬂP;)] vee (TTFFNVT [Sq — Spi| T71(0°)VNU,,)
+ OP(N—I/Q) + Op(T_1/2),
= Byvec (TFFVT [Sq — St | T7HUYVNT,, ) + O,(N"12) + 0,(T7172).
Next, consider the term in the vec(-) operator. Substituting in eq.(D-21) of Lemma 13,
which is

SH o 0 m m Tfl/QE
ﬁ{EQl — EFH = — [ (1+Kt1/)2></(\1,+K+ ) Fu ]
u T EFU O(K_m)X(K—m)

o) o) o ()
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and noting that FO = [F*, 07y ()] and U° = [U%,U° ] gives (since T/N — M < oc)

ALy = = Syvee (T FE)T 280,10, VNT,.) + 0,(N12) + 0,(T72)
= ~Zyvec (Spe T BB, )+Op< 12y 4 0T,

where X0 =8, N'R'3yR(TB,, from Lemma 12 and we recall from Lemma 13 that
Yru = S (F* +U%) U, 23 . By definition then

Sip T SRS u, = S S (T72(F)T, )0 e

FF* 0 Um FF* 0t

+ Spp S (T7V4(0)T0%,) S0 Buo

where employing again (B-18)-(B-20) we have (F*)U° =S’ N'R’P'F'v/NURNS_,, and
(U0 yU°, =8 N'R'UVNURNS_,,. This gives

Sep T ERZw w, = Zpp- Sp S, N'R'P/ (T—l/zﬁr\/ﬁtj) RNS_,3 S .

m?

+ Bpp Tl S, NR (T72VNUU) RNS .3 By,
and in turn once substituted in AETﬁ

AET,S ==y [E;O L)

—_mUWm u

S, NR'® EFF*zgis;nN’R’P’] vee (T/2FVNT)

—m

- 277 |:211(lmum

S S, NR'® Spp. zFis'mN’R’} vee (T~ NU'D)

—m

+ O,(N7Y2) + 0,(T~/?).

Finally, since from Lemma 9 the second term in this expression is of order O,(v/TN~'/?)
it is clear that

AR, = -3, [2;3 WS4 8L NR @ EFF*EEESZ@N’R’P’] vee (T-/2FVNU)
— VTNY?F 4 0,(N7V2) + 0,(T7/?),

—_mUm

—m

with bF = %, {z’uo S S, NR'® Spp. zgis;nN'R'} vee (Sy).

In conclusion, combining the results gives, provided T/N — M < oo,
F’ F'vNU NU [T 1 1
F F_pF

by = %, |B,, T'R} @ Sgp. p! S|, N'R'| vee (3yy),

with

bF =%, [2;0

s s, NR@ EFF*zgzs;nN/R’] vee (Syy),

Um
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Wg=—-Vpi1+ Vra+ Ves— Vg,
VF,l = 2,,7 [B;nT/RE) ® Il+K2m(1+p*)} y

Vg =3,
Vgs =3,

Vi4 =2,

B, T'R{ ® Xpp. X! S, N'R'P]

Y

B, T'R{SyRNS_, S ¢ S, N'R'® I ygen(iip)

u U, u’ ?

—m

Yo X3 S, NR ®XppIpt S, N'R'P/

which is the result stated in eq.(D-23) of the lemma.
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Proof of Lemma 15

Let A¢ = ﬁzﬁlngei and note that given w C Q then Mw = Opyy,. Therefore,
substituting in (B-13)

N
Nl Z w) Me; = Nl > (S;)f’;]?" + € — (—:’) Me;,

=1
~ . 1 1
— SN S P FMe, +— €Me;, — —¢ Mg,
T; ' P} 6+NT;Q e — € Me
AT AS— AS (D-39)

with P; = P; — P and obvious definitions for A$, A§ and AS. We start with the first term
and decompose it as

1 N
—TZS' PF'MF€Z+—ZS’ PF' Mg — M)e;,
i=1
= Al + AT

For the first term we find, writing it in full and substituting in (B-18), Spe = T HF*)F*
and Xy =T 'F'F,

/ . F F* F*/F* -1 F*/ Z
xo- epbe g pFE ()

Fe;
T

—ZS’ P} (L gm(isp) — SpPRNS,, Sp. S, NR'P'|

N I
= {vec (BF), ® Ikw] vec [;f > <€%F wf);ﬂ ;

=1

— 1 X (R _
— Ve |—Y (25 ©S, P
UBC[N‘ (T®“’Z>]’

=1

where W, = {vec (ﬁF)/ ® Ikw} and BF = L k2m(i4pe) — EFPRNSmEA];iS;nN’R’P’. From
HBFH = O,(1) by results in Lemma 10 and eq.(D-17) of Lemma 11 follows

A, < (1'eF 2 8,P))

- P\WNT )’
Next, for A§, we use the decomposition in (D-1) and obtain
1A || < [ ATl + [Aaall + [Assll + [ ATzl + [ A5 ]| = Op(NT'T7V2) + Op(N7V2T7Y),

because, denoting iuo_m =T-4U°,,)U0°, we have

ey’ FU°
Il < | 3 3 (S o sup) || E

o1

ARTERPYEE]
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€ 1 al 6;(}971 Y Flﬂ?ﬂ -1 1 71
[ ATl < N ; ( T ® S, P; HEF* =0y N2\/T +0y <N3/2T) ’
1 X [(eF* FUO || a1 1
Il < |5 3 (55 ou®t) | | 772 1521 = 0 (577)
N=\UT )| NT
1 X (eu0 N\ EF a1 1 1
Al < ||= LMoo S P Y| =0, | —= O, ——=
H mr_N;(7,®uw)HT\\F (r) +0(52)
1 X [(€Q FQofja-t ot 1 1
A || < ||— : S P Yo — X = —
| ATgs]| N;( 7 ®Su z) ) Q FJH Oy NVT +0Op JNT )

by the results in Lemmas 10, 11 and 13. Hence, we conclude that
1AS]l = O,((NT)V?), (D-40)

and, defining A%y, = VNTAF also, since BF = BF + 0,(N~/2) + 0,(T~'/?) by Lemma
12, with BF = I, sz n1sp) — SsPRNS, £518" N'R'P’ and ¥, = {vec (B¥) ® Ikw}

)] o () ror( k) o (D)

1 N /eF
A5 = Povee | —— E L
N [V N = (ﬁ

(D-41)
We take on A§ next. Decomposing it as before returns
1 Xefei 1
AZ:N; . ZGHF"‘:@ NT;E (Mg — M)e;,
= A5 — A% — A§3- (D-42)

Clearly, since by Ass.1 the elements of €; and €; are contemporaneously uncorrelated

o0, (&) , (D-43)

whereas for the second term, by (D-8)-(D-9) of Lemma 10,
(F*)F* -1
T

|A% ) =0, (T7).
Letting again A§r 9, = VNTAS, it is clear that

|[Afvraa| = 0, (VNTT).

1 M €e;
A R i
a5l = | 5 3 %

=1

€ F*

1
HT €, Hrpe,;

0.(3)

(F)'e;
T

and therefore
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To evaluate A$§; we again split it into 5 key components
|AS, | < [ 77100, | [|Sw | [T71(0%,) e = Op(N 1) + O0p(T1) + O, (NT)7172),
= Op(N7%) + O)(N*PT712) + O, (NT) ™),
= O,(NITV2) + O,(N V2T,
= O,(N"' T2 1 0,(N T,
= O0p(T71) + O, ((NT)™'/?),

|ASell < 77600 |2
|ASss ]| < || e F |71 (@ ye:
|ASull < | 7708 || |[Se- | | 77 ®Yes
|ASsl| < [T €| [Sq — Sei| [T Qe
which leads to

| o)

pom

1AZ5]l = Op(N™1) + O,(T ™) + O, (NT)~1?),
and therefore
IAS] = Op(N7Y) + Op(T™1) + O, (NT)™'12). (D-44)
Finally, for A§ we find
A < |Ttee

QT QNQ0) Qe

since |T7'eg|| = O,(T~Y2N~1) due to € and & being uncorrelated O,(N~*/2) variables,
and because the norm of the final term can be decomposed in the following five components

| =0,(N7), (D-45)

HA 1|| < Tflé/fjomH H —1 —0 )'I_JO le HTﬁl(Ugm)/E _

%) < [0yl e i

||A 3” < T-leF* ’[T (F* ’F H HT _3/2T_1/2),
HA 4” < |7 Lo H H F* 'F* H HT 3/2T*1/2),

A < |[T7€Qo| [£q — S| |7 Qos! = p<N 3/2>+0p<N—1T-1/2)7

where we used the fact that the terms involving € and € have the same order as those
involving U, in Lemma 10. It will be convenient to also define A% 5 = VNTAS

3 (2522) () (2] ) ()

such that if /N — M < oo, making use of (B-14),
ASrs =VTN V2 B Bly_, +O0)(T7%) + 0,(N712), (D-46)

m

with Sy =S, S5 RNS_,,, Sy, = E(siUi JT)RNS_,,, £,0 =S_, NR'E;RNS_,
and Xy = E(UU/T).
Combining (D-40)-(D-45) in (D-39) leads to the conclusion that

|A[| = Op(N™) + O, (T™") + O (NT)~1/2),
which is the result stated in the lemma. Letting A%, = vV NT'A®, the result above implies

1ANTll = Op(1) + Op(VIN~V2) + O, (VNT ).
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Proof of Lemma 16

Consider 62(-) defined in eq.(20) evaluated at 8y # &, with § = [p, 8’|’ the true parameter
vector. Suppose that p* > p and Ass.1-5 hold. We can then make use of (B-23) to get

1 & 1
2 R SN N
62 (00) = = o IM w0 = s S IM w8 = 80) + B+ )l
T 2

= T_CNT HM (Wi(6 = 80) — Upy; + &)
For its components we find, denoting first 3., = { LyN (v ® ")/Z)}, with HEAL,H = 0,(1) by
Ass.3,

T X, ~ 1 10..0,, < 1110..Qo Q,U,, 1

HNT;'Y;U;@MUm% < ‘ + HZVH ‘ T T - Op (N) ’

where we made use of Lemma 10 by noting that U,, is by the definition above (B-16) a
subset of UY . Also, since for any [|§ — dq|| < oo, by (D-22) of Lemma 14

1 X wMU,,~, 1 1
=0 <N> O <\/NT> ’

N& T

i:l

1 w'MU,,v,
H —50)'1#7 <116 — ||

and similarly by (D-24) of Lemma 15

725 80)

Also

WMEIZ 1 X w,Me;

NZT

=1

o s (e ) ima

m 1 Y el -
- )H ||Im||+||NZ<v;® 79[))““2(221

=1

< (16— 8ol

/_

1 XU,
N; T
1 X/,
NZ('Yi@

-
Z eMU,,v, QO;J’"

NT

Letting ; 4 denote the element on row d = 1, ..., m of 7, the elements on columns ¢(d—1)+
1tocdof 2 YN, (v @ T~'€/Qy) and columns m(d—1)+1 tomd of + SN (7; ® T‘lsgﬁm)
are given by

1 X R e/ U° a/ F* a/ U g, u°

NZ'V 727161 _[ de aolx(Km)] +l dTm’ dT—m]’
i=1

1 X eu, alu,

NZ%,CJ T -7

Il
—_

)

respectively, with a; = + >N | 4; 4&; and where we note that ||ay|| = O,(VTN~Y/2) by the
independence of 7; 4 and &; from Ass.1 and 3. As such, with (B-18)-(B-20) and (B-22)

aF| _
=<

or (1)
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W) < B0 ey 15 = 0, ()
20 < VR g‘dUH IR I -0 = 0, ().
n | < |9 gy i Bl = 0, ().
since || % :Op((NT)*l/Q)bylndependenCeOfadandF and because < T ay HUH
0,(N"1) since [0 = O, (VIN-172). S (e T eQ) HZ p(N7H%) and

ul]b AR (’72 ® T_legﬁm)H = O,(N71). Thus, inserting also HT‘IQ{)[_JmH = 0,(N~Y?) by
emma 10 gives

1 ivj ‘MU =0 (1) (D-47)
NT 2 €; mYi|| = Up N/ -
and therefore,
T T
52 (8o) = ﬁ(é—%) 3(6 - 50>+7726M€z

+O”(11v)+0 <1>+0 <¢z1v_T>

The final term in this expression we can decompose as

J 1 X ele; 1 X,
7TZ:§:1€ZM€1—NZ T —WEQH&

i=1

Consider the last term and recall from Lemma 10 that || T~ €/Qy|| = O,(T~'/?). Note that
we can write with qp; denoting the ¢ — th row of Qg and &, = % Zf\il €it€is, With notably
s = Op(N~Y2) for s #£ t and &, = 02 + O,(N~V/2),

1 3 i Qo ( /oQo>_1 Qo 1 ZN A Sy
N&Z T T T — NT?Z Q

=1

1 N
— > eHe; =
T
T

T
= 5 230> ucindy g Qe

i=1t=1s=1

!

1
—
gt,sqoytZQ q0,s,

1

Q0 Q ! ZT:(é — %)), 5q q
NT2 2 tt c)dot24q do,t

T T
NT2 Zzgt sq()tEQ q0,s5



1
ﬁ<7§Tc+0 (N~YV2p=1y,

To—e + @) ( 1/2T_1)7
and also for the first term

1 ele; 1 1
N~ ZZ%_UJFiZZ §+f

i=1 11t1 11t1 t

=02+ Op((NT)™1?),

M=

(Ete — 02),

I
—

which gives, combined into the expression above,

T 1 X, T [, ¢, 1 ) 1
e [wr M| = g 72 79 1 O i ) =T O g ) (D9
i=1

Finally, since HEA]H = O,(1) and making use of TL_C — 1 we conclude that

52 (80) = 02 + (6 = 80)' (8 — 80) + Op(NT") + O (T™") + O, (NT)™1/?),
which is the first result stated in the lemma.
It remains to consider dy = &. Clearly, in this case

1 X 2
52 5 z'_ m
o;(6) = CNT - UnnY;)

)

=1
ii/ _2Lz /MO ! z T MU
NT Ei €; NT g; m7z NT Yi mYi| »

=1

and therefore, substituting in earlier results such as (D-47) and (D-48)
52(8) = 0 + Op(N71) + O,((NT)™1%).

This proves the lemma.

Proof of Lemma 17

Consider A® = A® + 152(8)v evaluated at 8y = &, where v denotes v(po, H) evaluated at
po = p- Making use of the notation introduced in Lemma 15, specifically (D-39), we can
decompose it as follows

1
A= A° + Tﬁ?(a)v
1
= A+ A5 - A8+TA§(6)1;
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1
= A{+ A5, ZeHsZ 52(8)v,
IAiJrAZl—A?,—AS,

where in the final equality we substituted in A§, = <= >V, €le; of (D-42) and defined

1 i - 1. 52(8)
— E; — V.
0 N —
For this term we can write

Af = NlT Z:Zl [egHsi — af'v} - = {82(5) — 02} v.
Recall that T~ 'e/He; = T‘le;QOZA];T_IQ{)ei and that from Lemma 10 ||T'€,Qq| and
|T~€}Qol| are O,(T~1/2). Also denote with h; . the element on row ¢ and column s of H
and €, = % SN | €icis such that [ELS — qulpt*ks]l(t,lzs)] = Op(N*1/2) for all ¢ and s,
where 1, denotes the indicator function that returns one if the condition a is true, and zero
otherwise. This gives

! S ! 2 1 N 1 Al t—1—s
W Zl |:€iH€z‘ - 0'5'U:| = T ; Zl hts Zl |:€zt€zs —o.q1p ]]-(t—lzs):| ,
. 1 T T -
-7 DD i [érzs - qumt_l_s]l(t—lzs)] = O,(N7V21771).
t=1 s=1

Second, note that the function v = v(p, H)q; = tr(HLJ!(p))q; calculates the sum of the
lower triangular elements of H weighted by the columns of J=!(p), with J(p) a T'x T matrix
with ones on the main diagonal, —p on the first lower sub-diagonal, and zeros on all other
entries, and L the T' x T lag operator with ones on the first lower sub-diagonal and zeros
on all other entries. We then have that ||v|| = O,(1) since p < 1 under Ass.5 such that
each column of the weighting matrix J~!(p) contains an exponentially decaying sequence
and its row and column norms are bounded by a finite constant which is independent of T

Therefore, also substituting in ||52(8) — o2|| = O,(N~) + O,((NT)~/2) by (D-27) of
Lemma 16 gives

1 N
3] < | 573 [eHe - oo OLN-PT),
NT & | } p

such that from the respective results in eqs.(D-40), (D-43) and (D-45) of the proof for
Lemma 15 follows

IA]] < [JAS[ + [[AS ]+ AS] + [|AG] = Op(N71) + O, (NT) ™).
Also, letting A§, = vV NTAC and imposing that T'//N — M < oo yields

A?\/T = A?\/T,l + A?VT,21 - A?VT,B + Op(T_1/2)>
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with Afr, and A% 3 defined in (D-41) and (D-46), respectively, and where A%, =

/
Gll

f >N T Substituting in the respective definitions gives the result stated in the lemma.

Next, consider the moment vector evaluated at any 8y # & such that ||§ — d¢|| < oo,
AC(80) = A"+ T7'52(80)w(po) = AT + A5y — A5 — Aj(60),

with A§(8) = =N, €He,; — £62(80)v(po) and v(py) = v(po, H)qi, and, as before by
egs.(D-40), (D-43) and (D-45)

A%(d0) = —A§(80) + Op(N 1) + Op(NT)~H/2).

We get using the same steps as above and substituting in earlier results

Ri(d) = 7 3 [eHe: — ov] = 7 [52(60) ~ o] w(m) — 0t () — vl
= _1{ [ 2d0) — 0 } v(po) — ;‘75 [v(po) — U] + O (N~V2T71).
In turn, substituting in (D-26) of Lemma 16 returns
R5(80) = —(6 — 0S8 — So)o(m) — 07 [w(po) — v] + O,(NV2T7)

and therefore
_ 1 - 1 . .
A%(80) = (8 = 80) (8 = o) (po) + 02 [U(po) = V] + Op(N ) + Op((NT) 2,
which ends the proof.

Proof of Lemma 18

Consider, since Mw = 0,

. 1 X 1 X
X = N 2 WMwi = 2 (Wi W M =),
1 X /

(FP:S, + e —€) M (FP;S, + ¢ —€),

- ﬁizl

where noting that €; = U,S,, it is easily seen from Lemmas 10 and 11

r EsLPEMe = 0, (). | e = 0, (1), | e
w4 €l = ) € Vlej| = , €, Meg|| =
NT = P NT PAN NT —

N

on(})

Also, from (D-40)

I P

|=or ().
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and making use of Lemma 10 and Ass.1 and 5,

1 X 1 ; Qo) Qe 1 X e 1
b i LEO(90) G s ()

e+ Op(T™ ) + Op(( )",

with ¥, = F(€le;/T). Next up is
1 & aimans 1 & sty o8
— Y S, P F'MFP,;S, = — > S, P;F'MgFP;S, — — Z S! P'F'(Mp — M)FP;S,,
NT & NT &
where for the second term, defining flﬁ = [% SN (S;}f’; ® Siuf’;)},

F'(Mp — M)F

b

1 X, .
HNT 3 S P/F (Mg — M)FP;S,,
i=1

< =]

for which HfJf,H = O,(1) by Ass.3 and the norm in the end can be decomposed into 5
parts by (D-1). Using the shorthand Xq = [T7'Q},Qo], Tp- = [T (F*)'F*] and iu‘lm =
[T-1(U° YU°, | we get for each respective component

v

FU° |t U )F 1
K. < oS5 =0 (7):
F'UO || a1y || (UO)F 1
Kl < =7 | [ - HT =0, (7).
F'F*| a1y || (U)F 1
1Kl < ||~ = | ‘ =0y =)
F'U0 | ety || (F*)F 1
il < |22 1 | S = 00 ().
FQoll a1 a1 Q6F 1 1
K| < S - —0,|—=|+0,—=
IKsll < | =7 | [Za — =z ||| 7w ) +o 7 )
which makes use of (B-18)-(B-20) and Lemmas 9, 10 and 13. (Mp — M)FH =
O,(N7Y2) + O,(T~?) and
1is’ﬁ'F’MFPS ZS’PF’M FP;S, + 0, Lo (-
NT & 7w T VvN) T TP\VT )

Here we have, recalling 33 = T~ 'F'F and using (B-18) and Lemma 12,

1 X .
WZS P/ F'MgFP,S,
=1
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N
Z S P/S.PRNS, 5.8, NRP'S.PS,,

Z\H Z\H
S 2‘)—‘

N
= v 2 SP
N
Z P'VFP,S, + O,(N~V2) 4 0,(T~'?),
ec(Iy,

/\

) @1,) (Ikw ® Eﬁvec(VF)) T Op(Nfl/Q) i Op(Tfl/Q),

where VF = B — X, PRNS,, S!S, NR'P'S; and B3 = E(S, P, ® S, P).
In conclusion, we have as (N,T) — oo that

i\] Hp EFP + 267

with Xpp = (vec(ly, ) ® Ii,) (Ikw ® Ef,vec(VF)).
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D.4 Proof of theorems
D.4.1 Proof of Theorem 2
Consider that the CCEPbc estimator in eq.(21) is equivalent to
~ 1 9
0y = argmin  [|(do)||”, (D-49)
doEX 2
with ¢(dy) given by
(60) = - S wWMy: — £+ £52(60)(00)
P 00 —NTi:1W¢ Yi 0 TUE 0 o),

and we will use v(pg) = v(po, H)q;. With eq.(6) the latter can be reformulated as

- 1 X, 1
p(8g) =3 (6 — &) + NT > wiM(Fy, +¢&;) + fff?((so)’v(Po),
=1

p) (6 — o) + AF + KC(PO),

where AF = L >N w/MF«, and A%(py) = = 2N, wiMe; + £52(80)v(po). Under the
assumption that y is compact such that ||d — dy|| < oo it follows from Lemmas 14 and 17

1

0(dy) = (6 — &) + 7{(5 —380)'S(8 — 8)v(py) + 7{0? [v(po) — V] + O, () + O, ( !

N

where from here onward we omit the functional dependence of v(-) when it is evaluated at
the population parameter p. Also inserting Lemma 18 gives

1

p(do) = by (0 — &) + ;(5 - 50)'2(5 — &o)v(po) + Taf [v(po) — V] + 0,(1).

Note that ||v]| = O,(1) since |p| < 1 by Ass.5, and if x in eq.(D-49) is compact and
accordingly restricted then |pg| < 1 and therefore ||v(po)|| = Op(1). Since also HEH =0(1)
it follows that as (N,T) — oo

P(89) = X (8 — ) + 0,(1),
for which the solution in (D-49) is clearly unique at dy; = § and therefore
8pe —7 8, (D-50)
as (N, T) — oo.

Define next the following vector evaluated at dg = 4,

Yyr = VNTp(8) = AET + Afrs

o4

VNT

)



with AR; = VNTAF, ASp = A=%N, wiMe, + T7'/*/N62(§)v.  Assuming that
T/N — M < oo and combining in this expression Lemmas 14 and 17 gives

1 &, F'vVNU 1 X [eF ~
=——=> €&+ ¥ —— |+ Qvec |—=>_ (=S, P,
Yt JNT = FUGC( VT ) vec[mm VT &

+\/N(b0 —bF—b )+Op<m> +op<ﬁ>,
where Wp, bf and b¥ are fixed finite matrices defined below eq.(D-23) and similarly for
¥, and bY, which are stated below (D-29).

v

Then, recalling that the typical element of \/% PO (f}; ® S;ﬁ;) is given by \/Nj%F, with
a s = % >N Dirs€i and p; s denoting row r and column s of Sivf’g, and that p; s, €; and

F are independent over all i and ¢, we have given the moment restrictions in Ass.1-3 by a
CLT for independent stationary variables as (N,T) — oo

1 I 6‘;]?‘ Y d en d
&, = vec ﬁz ﬁ®SwPi — n”" = N(0,%;,),
i=1

with ¥, = +F [vec (egf‘ ® S;}f’;) vec <€;1v7‘ ® S;f’;)l]. Also

& = vee (th;) 5l SN0, 2y,

where 3 = %E vec (]?"UZ) vec (F’Ui)/} and finally

1 N
£ = VNT 26262‘ R N(0,Z),
i=1

~

with .. = 7 F [e]e;el€l].
Let & ; be the element on the [—th row of &, and similarly for vectors £, and &;. Then
we have for any [ and s

COU(&,Z,&,S) =0, 000(51,17 fg,s) =0, 000(52,1753,5) =0,

where the first two statements hold by F (152) — 0 and the independence of P; from f‘, €;

i~

and g; for all 7 and ¢ by Ass.3, and the last result holds since E(F) = 0 from Lemma 1 and
the independence of F from €, and &; by Ass.2. The three normals n°7, n/* and n® are
therefore independent, and as (N,T) — oo such that T/N — M < oo follows

Py — N (VINby, @), (D-51)
where

by = bf — bl —bY, (D-52)
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=3, + UpXp, V) + U5, U (D-53)

Next, recall from Section A.1 that the Jacobian for the CCEPbc estimator in (D-49) eval-
uated at dq is given by

3060 = 7| () @ &)+ (6260 9) | - 2,

with

T—1 T
=2 5(6,-9), w= (Z(t—l)p62 ) ht) Q.

- C t=1 s—1+1

Consider then that as (N, T) — oo, & —? 3 by Lemma 18, 52(8) —* ¢2 by Lemma 16 and
||| = O,(1). Also, from Lemmas 14, 15 and 18 follows 6 — § = EArl(A€ + AF) =P 04, x1-
Hence, evaluated at dg = &

A = plim J,(§) = -3 (D-54)

(N, T)—o00

As such, with (D-50) and (D-51) we have using standard arguments as in Newey and
McFadden (1994), as (N,T') — oo such that T/N — M < oo,

VNT(8y. — 8) -5 —(A'A) Ay,
which implies, given (D-51),
VNT (81— 8) =5 N (—VTN"V2(A'A) " A'by, (A'A) ' A'RA(AA) ),
and in turn, since A = — such that (A’A) 1A’ = a7
VNT (8 — 8) -5 N (Visb, 37 @37 (D-55)
where b = 2_1b0 and we denote k = T'/N. Letting next £ — 0 gives
VNT (83— 8) <5 N (04,0, 57 @37,

which is the result reported in the theorem.
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E Additional simulation tables

Table E-1: Monte Carlo results for p and g : baseline design with p = 0.4

Results for p

bias rmse sizey
Estimator (N,T) 10 20 30 50 10 20 30 50 10 20 30 50
CCEP 25 -0.198 -0.091 -0.058 -0.035 0.222 0.102 0.067 0.042 0.61 0.55 043 0.32
100 -0.201 -0.093 -0.061 -0.036 0.216 0.098 0.064 0.038 092 097 094 0.84
500 -0.199 -0.095 -0.061 -0.036 0.213 0.097 0.062 0.037 0.99 1.00 1.00 1.00
5000 -0.200 -0.094 -0.062 -0.036 0.215 0.096 0.062 0.036 1.00 1.00 1.00 1.00
CCEPbc 25 -0.001 -0.001 0.001 0.000 0.093 0.045 0.033 0.024 0.04 0.06 0.07 0.06
100 0.000 -0.001 0.000 0.000 0.043 0.022 0.016 0.012 0.04 0.05 0.06 0.05
500 0.001  0.000 0.000 0.000 0.020 0.010 0.007 0.005 0.04 0.04 0.04 0.04
5000 0.000  0.000 0.000 0.000 0.006 0.003 0.002 0.002 0.03 0.05 0.05 0.05
CCEPjk 25 0.070  0.015 0.008 0.003 0.267 0.069 0.042 0.028 0.41 0.20 0.13 0.09
100 0.075 0.015 0.007 0.003 0.233 0.049 0.025 0.014 0.63 0.36 0.19 0.09
500 0.077  0.017 0.008 0.003 0.228 0.043 0.019 0.008 0.75 0.64 044 0.18
5000 0.079 0.016 0.009 0.003 0.220 0.040 0.017 0.006 0.82 0.80 0.75 0.58
FLSbc 25 -0.085 -0.018 -0.007 -0.003 0.130 0.052 0.037 0.026 0.10 0.03 0.02 0.02
100 -0.105 -0.026 -0.012 -0.005 0.114 0.034 0.020 0.012 0.60 0.20 0.10 0.06
500 -0.110 -0.026 -0.012 -0.005 0.112 0.029 0.014 0.007 096 0.72 0.39 0.14
5000 -0.109 -0.026 -0.012 -0.005 0.110 0.028 0.012 0.005 1.00 1.00 0.99 0.77
Results for g
CCEP 25 -0.033 -0.010 -0.005 -0.002 0.086 0.048 0.036 0.028 0.07 0.06 0.06 0.06
100 -0.033 -0.008 -0.004 -0.001 0.055 0.025 0.018 0.014 0.15 0.06 0.06 0.06
500 -0.033 -0.008 -0.003 -0.001 0.042 0.014 0.009 0.006 0.40 0.13 0.08 0.06
5000 -0.032 -0.008 -0.004 -0.001 0.040 0.009 0.004 0.002 0.77 0.60 0.27 0.11
CCEPbc 25 0.000 -0.002 -0.002 0.000 0.080 0.047 0.037 0.028 0.04 0.06 0.06 0.05
100 -0.001  0.000 -0.001 0.000 0.038 0.023 0.018 0.014 0.04 0.05 0.05 0.06
500 0.000  0.000  0.000 0.000 0.017 0.010 0.008 0.006 0.04 0.05 0.06 0.05
5000 0.000  0.000 0.000 0.000 0.005 0.003 0.003 0.002 0.03 0.06 0.05 0.05
CCEPjk 25 0.087 0.016 0.006 0.002 0.185 0.060 0.041 0.030 0.35 0.11 0.09 0.07
100 0.083 0.018 0.008 0.003 0.134 0.035 0.021 0.015 0.54 0.20 0.09 0.07
500 0.081 0.017 0.008 0.003 0.123 0.025 0.013 0.007 0.74 042 0.20 0.09
5000 0.081 0.018 0.008 0.003 0.119 0.022 0.009 0.003 0.88 0.85 0.76 0.31
FLSbc 25 -0.002  0.009 0.004 0.004 0.085 0.057 0.043 0.032 0.04 0.04 0.03 0.01
100 -0.016 -0.001  0.000 0.001 0.044 0.024 0.018 0.014 0.08 0.04 0.04 0.04
500 -0.022 -0.003 -0.001  0.000 0.029 0.011 0.008 0.006 0.32 0.06 0.06 0.05
5000 -0.021 -0.003 -0.001 0.000 0.025 0.005 0.003 0.002 0.85 0.21 0.08 0.06
Note: See Table 1, but with p = 0.4 and = 0.6
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Table E-3: Monte Carlo results for p : dynamics in z; with strong factors (N = 25)
bias rmse size, bias rmse sizey bias rmse size, bias rmse size
one factor
T=10 T=20 T =30 T =50
CCEP__po(+g) —0.530 0.563 0.90 —0.236 0.251 0.95 —0.140 0.149 0.94 —0.076 0.081 0.90
CCEP_p;(+g) —0.666 0.702 0.81 —0.261 0.279 0.93 —0.148 0.159 0.93 —0.078 0.084 0.89
CCEP_pr(+g) - - - —0.321 0.343 0.89 —0.196 0.210 0.88 —0.090 0.096 0.88
CCEPbc_po(+g) —0.014 0.193 0.04 —0.006 0.073 0.06 —0.002 0.040 0.05 —0.002 0.023 0.06
CCEPbc_pi(+g) —0.033 0.265 0.03 —0.002 0.084 0.05 —0.001 0.044 0.04 0.000 0.023 0.05
CCEPbc_ pr(+g) - - - —0.006 0.106 0.03 —0.004 0.061 0.05 —0.001 0.026 0.04
CCEPjk_ pi(+g) - - - 0.123 0.244 0.13 0.084 0.139 0.21 0.034 0.058 0.17
FLSbc —0.254 0.270 047 —0.057 0.081 0.06 —0.026 0.048 0.04 —0.011 0.029 0.04
two factors
T=10 T=20 T =30 T =50

CCEP__po(+g) —0.560 0.590 0.93 —0.252 0.268 0.97 —0.156 0.164 0.97 —0.085 0.090 0.95
CCEP_p;(+g) —0.720 0.750 0.86 —0.294 0.310 0.96 —0.169 0.177 0.96 —0.086 0.091 0.93
CCEP_pr(+g) - - - —0.364 0.383 0.94 —0.225 0.239 0.94 —0.101 0.106 0.94
CCEPbc_po(+g) —0.021 0.204 0.05 —0.015 0.075 0.07 —0.010 0.043 0.06 —0.007 0.024 0.06
CCEPbc_pi(+g) —0.023 0.275 0.03 —0.005 0.090 0.07 —0.002 0.045 0.05 —0.001 0.024 0.05
CCEPbc_ pr(+g) - - - —0.009 0.109 0.05 0.000 0.065 0.05 0.000 0.027 0.04
CCEPjk_pi(+g) - - - 0.120 0.240 0.14 0.090 0.149 0.24 0.044 0.064 0.22
FLSbc —0.524 0.526 0.89 —0.138 0.162 0.19 —0.047 0.072 0.06 —0.012 0.033 0.03

Note: see Table 4 but with N = 25.
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F Additional figures

Figure F-1: Monte Carlo results for p : Boxplots for CCEP and CCEPbc estimators over
N for one normal factor (m =1, RI =1) with 7' = 10
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Notes:

(i) Reported are simulation results for estimating p in the baseline case for T'= 10 and N = 25,50, 100, ..., 50.000
(see notes Table 1). The CCEP estimators with a (+g) suffix (lower panel) make use of the g, variable to project
out the factors.

(ii) Dotted red lines indicate the population parameter value (p = 0.8). The boxplot whiskers’ extend to the most
extreme data point which is no more than 1.5 times the interquartile range from the box.
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Figure F-2: Monte Carlo results for p : Boxplots for CCEP and CCEPbc estimators over
N for one strong factor (m =1, Rl = 3) with T" = 10.
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Notes:

(i) Reported are simulation results for estimating p = 0.8 with m = 1 and RI = 3 for N = 25,50, 100, ..., 50.000.
The CCEP estimators with a (4g) suffix (lower panel) make use of the g, variable to project out the factors.

(ii) Dotted red lines indicate the population parameter value (p = 0.8). The boxplot 'whiskers’ extend to the most
extreme data point which is no more than 1.5 times the interquartile range from the box.
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Figure F-3: Monte Carlo results for p : Boxplots for CCEP and CCEPbc estimators over
N for two normal factors (m =2, Rl = 1) with 7" = 10.
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Notes:

(i) Reported are simulation results for estimating p = 0.8 with m = 2 and RI =1 for N = 25,50, 100, ..., 50.000.
The CCEP estimators with a (4g) suffix (lower panel) make use of the g, variable to project out the factors.

(ii) Dotted red lines indicate the population parameter value (p = 0.8). The boxplot 'whiskers’ extend to the most
extreme data point which is no more than 1.5 times the interquartile range from the box.
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Figure F-4: Monte Carlo results for p: Boxplots for CCEP and CCEPbc estimators over
N for two strong factors (m = 2, RI = 3) with 7" = 10.
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Notes:

(i) Reported are simulation results for estimating p = 0.8 with m = 2 and RI = 3 for N = 25,50, 100, ..., 50.000.
The CCEP estimators with a (4g) suffix (lower panel) make use of the g, variable to project out the factors.

(ii) Dotted red lines indicate the population parameter value (p = 0.8). The boxplot 'whiskers’ extend to the most
extreme data point which is no more than 1.5 times the interquartile range from the box.
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