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A Functional Delta Method applied to Quantile Effects

We illustrate Corollary 1 by letting Γ be the τ -quantile operator on θ0(y) ≡ FY 〈t|c〉(y), i.e., Γ is

a generalized inverse θ−1
0 : (0, 1) → Y given by θ−1

0 (τ) = inf{y : θ0(y) ≥ τ}. For the quantile

treatment effects for the treated, θ−1
0 (τ) is the τ -quantile function of Y (t) for the treated s,

denoted by Qτ = Qτ (Y (t)|T = c) = F−1
Y (t)|T (τ |c). Hadamard-differentiability requires FY 〈t|c〉(y)

to be continuously differentiable at the τ -quantile, with the derivative being strictly positive and

bounded over a compact neighborhood. Additional assumptions might be needed for different

policy functionals. For instance, Bhattacharya (2007) gives regularity conditions for Hadamard-

differentiability of Lorenz and Gini functionals.

Corollary A.1 (Quantile treatment effect for the treated) Assume the conditions in Corol-

lary 1. Then uniformly in τ ∈ [a, b] ⊂ (0, 1),
√
n
(
Q̂τ −Qτ

)
= n−1/2

∑n
i=1 ψ

Q
t|c(Zi; τ)+op(1), where

the influence function is

ψQt|c(Zi; τ) ≡ −Dti

pcfY (t)|T (Qτ |c)
Pc(Xi)

Pt(Xi)

(
1{Yi ≤ Qτ} − FY |TX(Qτ |t,Xi)

)
+

−Dci

pcfY (t)|T (Qτ |c)

(
FY |TX(Qτ |t,Xi)− τ

)
.

The quantile process
√
n
(
Q̂· −Q·

)
= n−1/2

∑n
i=1 ψ

Q
t|c(Zi; ·) + op(1) =⇒ −Gt

(
Q·
)/
θ′0(Q·) ≡ GQ

t (·),

where GQ
t is a Gaussian process indexed by τ in the metric space l∞([a, b]) with mean zero and

covariance kernel Cov
(
GQ
t (τ1),GQ

t (τ2)
)

= E
[
ψQt|c(Z; τ1)ψQt|c(Z; τ2)

]
, for any τ1 < τ2 ∈ [a, b].

To carry out point-wise inference, the asymptotic variance can be estimated by n−1
∑n

i=1 ψ̂
Q
t|c(Zi; τ)2.

Alternatively, Section 3.2 describes a simulation approach to conduct uniform inference.

B Proof of Main Theorems

Notation Let (Z1, Z1, ..., Zn) be an i.i.d. sequence of random variables taking values in a prob-

ability space (Z,B) with distribution P . For some measurable function φ : Z → R, define

Eφ =
∫
φdP and Gnφ =

√
n(n−1

∑
i φ(Zi)− Eφ) for the empirical process at φ. Denote the true

parameters and functions with the superscript ∗, i.e., e∗(X) ≡ E[Y |T = t,X] and p∗t (x) = P(T =

t|X = x). Let the true parameters γc ≡ γ∗ and γt|c = γ∗t by suppressing the subscript of c for

simplicity. Let ‖ · ‖∞ denote the sup-norm in all arguments for functions. Let Ōp(an) and ōp(an)
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be Op(an) and op(an) uniformly in y ∈ Y . Denote

F̂ IPW
Y 〈t|c〉(·) =

1

n

n∑
i=1

ϕ̂1(Zi; y, t, c), where ϕ1(Z; y, t, c) ≡ Dt

Pt(X)
1{Y ≤ y}Pc(X)

pc
;

F̂EIF
Y 〈t|c〉(·) =

1

n

n∑
i=1

ϕ̂2(Zi; y, t, c), where

ϕ2(Z; y, t, c) ≡ ϕ1(Z; y, t, c) + FY |TX(y|t,X)
( Dc

Pc(X)
− Dt

Pt(X)

)Pc(X)

pc
.

Assumption B.1 (i) (a) The class of functions
{
θ 7→ m(·; θ) : θ ∈ Θ

}
is Glivenko-Cantelli;

(b) E
[

supθ∈Θ |m(Y (t); θ)|
]
<∞; (c)

{
θ 7→ e∗t (·; θ) : θ ∈ Θ

}
is Glivenko-Cantelli.

(ii) (IPW) For some δ > 0: (a)
{
θ 7→ m(·; θ) : |θ − γ∗t | < δ

}
is a Donsker class; (b) there exist

constants C > 0 and r ∈ (0, 1) such that E
[

sup|θ−θ̃|<δ |m(Y (t); θ)−m(Y (t); θ̃)|2
]
≤ Cδ2r for

all θ̃ ∈ Θ; (c) E
[

sup|θ−γ∗t | |m(Y (t); θ)|2
]
<∞;

(ii) (EIF) For some δ > 0, and for all x ∈ X and all θ such that |θ − γ∗t | < δ: (a) e∗t (x, θ) is

continuously differentiable with derivative given by ∂θe
∗
t (x; θ) ≡ (∂/∂θ)e∗t (x; θ) with

E[sup|θ−γ∗t |<δ |∂θe
∗
t (X; θ)|] < ∞; and (b) there exist ε > 0 and a measurable function b(x),

with E[|b(x)|] < ∞, such that |∂θet(x; θ) − ∂θe
∗
t (x; θ)| ≤ b(x)‖et − e∗t‖ε∞ for all function

et(θ) ∈ E such that ‖et − e∗t‖∞ < δ, where E is a subspace of smooth functions on X ,

endowed with the supremum norm.

Assumption B.2 (a) p∗t (·) and e∗t (·, γ∗t ) are s times differentiable with s/dx > 5η/2 + 1/2, where

η = 1 or 1/2 depending on whether power series or splines are used as basis functions, respectively;

(b) X is continuously distributed with density bounded and bounded away from zero on its compact

support X ; and (c) for some δ > 0, var[m(Y (t); θ)|X = x] is uniformly bounded for all x ∈ X
and all θ such that |θ − γ∗t | < δ.

The following assumptions guarantee the existence of the efficiency bounds.

Assumption B.3 For all t ∈ T : (a) E
[
m(Y 〈t|c〉; θ)2

]
<∞ and E

[
m(Y 〈t|c〉; θ)

]
is differentiable

in θ ∈ Θ at γt|c; (b) Define the gradient matrix

Γ∗|c ≡


Γ0|c 0 ... 0

0 Γ1|c ... 0
...

...
. . .

...

0 0 ... ΓJ |c

 ,where Γt|c ≡
∂

∂θ>
E
[
m(Y 〈t|c〉; θ)

]∣∣∣∣
θ=γt|c

3



and 0 is a dm × dθ matrix of zeros. The rank of Γ∗|c is (J + 1)dθ.

Assumption B.4 For all t ∈ T : (a) E
[
m(Y 〈t|X1c〉; θ)2

]
< ∞ and E

[
m(Y 〈t|X1c〉; θ)

]
is differ-

entiable in θ ∈ Θ at λt|c; and (b) Define the gradient matrix

Γ∗|X1c ≡


Γ0|X1c 0 ... 0

0 Γ1|X1c ... 0
...

...
. . .

...

0 0 ... ΓJ |X1c

 ,where Γt|X1c ≡
∂

∂θ>
E
[
m(Y 〈t|X1c〉; θ)

]∣∣∣∣
θ=λt|c

and 0 is a dm × dθ matrix of zeros. The rank of Γ∗|X1c is (J + 1)dθ.

Assumption B.5 The nonparametric estimators for p∗ and e∗ are described in Section 5.4 in

Cattaneo (2010) with K = nv, 4s/dx−6η > 1/v > 4η+ 2, η = 1 or η = 1/2 depending on whether

power series or splines are used as basis functions.

Assumption B.6 For any t, c ∈ T and y, y1, y2 ∈ Y,

(a) Pt(X) ∈ CαM(X ) and FY |TX(y|t,X) ∈ CαM(X ) for α > dx/2. supx∈X
∣∣FY |TX(y1|t, x) −

FY |TX(y2|t, x)
∣∣ < C|y1 − y2|1/2 for some positive constant C.1

(b) supx∈X ‖∂qxP̂t(x)− ∂qxPt(x)‖ = op(1) and supx∈X
∥∥∂qxF̂Y |TX(y|t, x)− ∂qxFY |TX(y|t, x)

∥∥ = op(1)

for all q < dx/2.

(c) (EIF)
∫ (

F̂Y |TX(y|t, x)− FY |TX(y|t, x)
)(
P̂c(x)− Pc(x)

)
fX(x)dx = ōp(n

−1/2).

(IPW)
∫
FY |TX(y|t, x)Pc(x)

pc

(
P̂c(x)
Pc(x)
− P̂t(x)
Pt(x)

)
fX(x)dx = n−1

∑n
i=1 FY |TX(y|t,Xi)

Pc(Xi)
pc

(
Dci

Pc(Xi)
−

Dti
Pt(Xi)

)
+ ōp(n

−1/2).2

1By van der Vaart and Wellner (1996) (P. 154), CαM (X ) is defined on a bounded set X in Rdx as follows: For
any vector q = (q1, ..., qd) of qd integers, let Dq denote the differential operator Dq = ∂q./∂xq11 ...∂x

qd
d . Denote

q. =
∑d
l=1 ql and α to be the greatest integer strictly smaller than α. Let ‖g‖α = maxq.≤α supx |Dqg(x)| +

maxq.≤α supx 6=x′ |Dqg(x)−Dqg(x′)|
/
‖x− x′‖α−α where maxq.≤α denotes the maximum over (q1, ..., qd) such that

q. ≤ α and the suprema are taken over the interior of X . Then CαM (X ) is the set of all continuous functions
g : X ⊂ Rdx 7→ R with ‖g‖α ≤M .

2This condition is analogous to the condition (b) in Lemma B.1 that the nonparametrically estimated propensity
score captures the correction term in the efficient influence function.
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B.1 Proof of Theorem 1

The proof of the asymptotic theorem for γ̂IPW and γ̂EIF follows the proofs Cattaneo (2010):

Lemma B.1 below combines Theorems 2 to 5 and Lemma B.2 modifies Theorem 8. The result

follows. �

Lemma B.1 (Asymptotic Linear Representation) Assume γ∗ belongs to the interior of ΘJ+1.

Let Assumptions 1, 2, B.1, and B.3 hold. Assume (a) ‖p̂− p∗‖∞ = op(n
−1/4).

(i) Assume (b) M IPW
sn (γ∗, P̂ , p̂) = MEIF

sn (γ∗, P ∗, p∗, e∗(γ∗)) + op(n
−1/2). Then

γ̂IPW − γ∗ = −
(
Γ′∗|cWΓ∗|c

)−1
Γ′∗|cWMEIF

sn (γ∗, P ∗, p∗, e∗(γ∗)) + op(n
−1/2).

(ii) Assume (c) sup|θ−γ∗|<δ ‖ê(θ)−e∗(θ)‖∞ = op(1), for some δ > 0. (d) MEIF
sn (γ∗, P̂ , p̂, ê(γ∗)) =

MEIF
sn (γ∗, P ∗, p∗, e∗(γ∗)) + op(n

−1/2). Then

γ̂EIF − γ∗ = −
(
Γ′∗|cWΓ∗|c

)−1
Γ′∗|cWMEIF

sn (γ∗, P ∗, p∗, e∗(γ∗)) + op(n
−1/2).

Lemma B.2 (Nonparametric Estimation) Let Assumptions B.2 and B.5 hold. Then the con-

ditions (a) to (d) in Lemma B.1 hold.

Proof of Lemma B.1 The consistency γ̂IPW = γ∗ + op(1) and γ̂EIF = γ∗ + op(1) is directly

implied by the proofs of Theorems 2 and 3 in Cattaneo (2010). We only note the main difference

in the following proof for γ̂IPW and γ̂EIF . Denote mi(γt) ≡ m(Yi; γt), Pti ≡ Pt(Xi), and eti(γt) ≡
et(Xi; γt).

For γ̂IPW , in the proof of Theorem 4 in Cattaneo (2010), θ = γ, θ0 = γ∗, and the t-th element

of M IPW
sn is M IPW

[t],n . The main difference is in

∆[t],n(γ, P − P ∗, p− p∗) =
1

n

n∑
i=1

Dtimi(γt)Λi, where

Λi ≡ Λn(Xi) ≡ −
(
Pti − P ∗ti

)
P ∗2ti

P ∗si
p∗c

+
1

P ∗tip
∗
c

(
Psi − P ∗si

)
− P ∗si
P ∗tip

∗
c

(
pc − p∗c

)
.

The last two terms are from estimating the ratio for adjusting for the treated Pc(Xi)/pc. We

modify

R3n = sup
|γt−γ∗t |≤δn

∣∣M IPW
[t],n (γ∗, P̂ , p̂)−M IPW

[t],n (γ∗, P ∗, p∗)−∆[t],n(γ∗, P̂ − P ∗, p̂− p∗)
∣∣

1 + C
√
n|γt − γ∗t |

R4n = sup
|γt−γ∗t |≤δn

∣∣∆[t],n(γ∗, P̂ − P ∗, p̂− p∗)−∆[t],n(γ, P̂ − P ∗, p̂− p∗)
∣∣

1 + C
√
n|γt − γ∗t |

.
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R1n and R2n are the same.

For γ̂EIF , Equation (A.2) in Cattaneo (2010) becomes

sup
|γt−γ∗t |≤δn

√
n
∣∣∣ 1
n

∑n
i=1

(
êti(γt)− eti(γ∗t )

)(
Dti
P̂ti
− Dci

P̂si

)
P̂si
p̂c

∣∣∣
1 + C

√
n|γt − γ∗t |

≤ R1n +R2n.

Define Υ̂i ≡
(
Dti
P̂ti
− Dci

P̂si

)
P̂si
p̂c

to be approximated by Υi +DtiΛi−Dci
p∗c−p̂c
p∗2c

and Υi ≡
(
Dti
P ∗ti
− Dci

P ∗si

)P ∗si
p∗c

.

For some convex linear combination between γt and γ∗t , γ̃t,

R1n = sup
|γt−γ∗t |≤δn,‖et−e∗t ‖∞≤δn

√
n
∣∣∣ 1
n

∑n
i=1

(
∂
∂γ
ei(γ̃t)− ∂

∂γ
e∗i (γ

∗
t )
)(
γt − γ∗t

)
Υ̂i

∣∣∣
1 + C

√
n|γt − γ∗t |

≤ C sup
|γt−γ∗t |≤δn,‖et−e∗t ‖∞≤δn

1

n

n∑
i=1

∣∣∣ ∂
∂γ
ei(γt)−

∂

∂γ
e∗i (γt)

∣∣∣
+ C sup

|γt−γ∗t |≤δn

∣∣∣ 1
n

n∑
i=1

( ∂
∂γ
ei(γt)−

∂

∂γ
e∗i (γt)

)
Υi

∣∣∣
+
C

n

n∑
i=1

sup
|γt−γ∗t |≤δn

∣∣∣ ∂
∂γ
e∗i (γt)

∣∣∣∣∣Υ̂i −Υi

∣∣
R2n = sup

|γt−γ∗t |≤δn

√
n
∣∣∣ 1
n

∑n
i=1

∂
∂γ
e∗i (γ

∗
t )(γt − γ∗t )Υ̂i

∣∣∣
1 + C

√
n|γt − γ∗t |

.

�

Proof of Lemma B.2 We verify the condition (b) for γ̂IPWt in Lemma B.1 by showing the
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followings are op(1):

R1n =
∣∣∣ 1√
n

n∑
i=1

{Dtimi(γ
∗
t )

P̂ti

P̂si
p̂c
− Dtimi(γ

∗
t )

P ∗ti

P ∗si
p∗s
−Dtimi(γ

∗
t )Λi

}∣∣∣
R2n =

∣∣∣ 1√
n

n∑
i=1

{Dtimi(γ
∗
t )

P ∗ti
ΛiP

∗
ti − e∗i (γ∗t )ΛiP

∗
ti

}∣∣∣
R3n =

∣∣∣ 1√
n

n∑
i=1

{
e∗i (γ

∗
t )ΛiP

∗
ti + e∗i (γ

∗
t )
(Dti

P ∗ti
− Dci

P ∗si

)P ∗si
p∗s

}∣∣∣
≤
∣∣∣ 1√
n

n∑
i=1

{
− e∗i (γ∗t )

P̂ti − P ∗ti
P ∗ti

+ e∗i (γ
∗
t )
Dti − P ∗ti

P ∗ti

}P ∗si
p∗s

∣∣∣ (1)

+
∣∣∣ 1√
n

n∑
i=1

{
e∗i (γ

∗
t )
P̂si − P ∗si
P ∗si

− e∗i (γ∗t )
Dci − P ∗si

P ∗si

}P ∗si
p∗s

∣∣∣ (2)

+
∣∣∣ 1√
n

n∑
i=1

e∗i (γ
∗
t )
P ∗si
p∗s

(
p̂c − p∗s

)∣∣∣ (3)

R1n, R2n, (1), and (2) are op(1). (3) is Op(1)× op(1) = op(1) because E[e∗i (γ
∗
t )P

∗
si/p

∗
s] = 0. For the

condition (d) for γ̂EIFt in Lemma B.1,

R4n =
∣∣∣ 1√
n

n∑
i=1

{
Dti

(
mi(γ

∗
t )− ei(γ∗t )

)
Λi

}∣∣∣
R5n =

∣∣∣ 1√
n

n∑
i=1

{
−
(
êi(γ

∗
t )− e∗i (γ∗t )

)(Dti

P ∗ti
− Dci

P ∗si

)P ∗si
p∗s

}∣∣∣
R6n =

∣∣∣ 1√
n

n∑
i=1

Dciei(γ
∗
t )
p̂c − p∗c
p∗2c

∣∣∣.
R4n and R5n are op(1) following the same arguments as the case for β̂EIFt . R6n = op(1) follows the

same reasoning as (3) above. �

B.2 Proof of Theorem 2

We calculate the semiparametric efficiency bound for the parameter λt defined by∫ ∫ ∫
m(y;λt)fY TX(y, t, x1, x2)

Pt(X)

pt
WX1c((x1, x2)) dydx1dx2 = 0.
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The pathwise derivative w.r.t. θ is∫ ∫ ∫
d

dθ
m(y;λt(θ))fY TX(y, t, x1, x2)

Pt(x)

pt
WX1c((x1, x2)) dydx1dx2

+

∫ ∫ ∫
m(y;λt)

d

dθ

(
fY TX(y, t, x1, x2)

Pt(x)

pt

)
WX1c((x1, x2)) dydx1dx2 (4)

+

∫ ∫ ∫
m(y;λt)fY TX(y, t, x1, x2)

Pt(x)

pt

d

dθ
WX1c((x1, x2)) dydx1dx2 = 0. (5)

The result for the decomposition parameter γt|t is directly applied to (4) where the moment

function is replaced by m(y;λt)WX1c((x1, x2)). That is, (4) contributes

Pt(X)

pt

Dt

Pt(X)
m(Y ;λt)WX1c((X1, X2)) =

Dt

Pt(X)
m(Y ;λt)

Pc(X)

P(T = c|X2)

P(T = t|X2)

pt
.

For (5),

E
[
et(X;λt)

Pt(X)

pt

d

dθ
WX1c((X1, X2))

]
= E

[
et(X;λt)

Pt(X)

pt
WX1c((X1, X2))

(
Ṗc(X)

Pc(X)
− ṗt(X)

pt(X)
+

Ṗ(T = t|X2)

P(T = t|X2)
− Ṗ(T = c|X2)

P(T = c|X2)

)]
.

The proof of Theorem 2 in Lee (2018a) implies the first part containing Ṗt(X) and Ṗc(X)

contributes

et(X;λt)
Pt(X)

pt
WX1c((X1, X2))

(
Dc

Pc(X)
− Dt

Pt(X)

)
to the efficient influence function.

For the rest part containing Ṗ(T = t|X2) and Ṗ(T = c|X2), we define the score as

S(y, t, x; θ0) = Sy(y, t, x) + S1(x1, x2, t) + Sp2(t, x2) + Sx2(x2)

where S1(x1, x2, T ) ≡
∑

j∈T Djsxj(x1, x2), sxj(x1, x2) ≡ d
dθ

log fX1|X2T (x1|x2, j; θ)
∣∣
θ0

, Sp2(T, x2) ≡∑
j∈T DjṖ(T = j|X2 = x2)/P(T = j|X2 = x2), Ṗ(T = j|X2) ≡ d

dθ
P(T = j|X2; θ)

∣∣
θ0

, and

Sx2(x2) ≡ d
dθ

log fX2(x2; θ)
∣∣
θ0

. The tangent space is characterized Hy + H1 + Hp2 + Hx2 , where

H1 ≡ {S1(X1, X2, T ) : sxj(X1, X2) ∈ L2
0(FX1|X2T (X1|X2, j)),∀j ∈ T }, Hp2 ≡ {Sp2(T,X2) :

Sp2(T,X2) ∈ L2
0(FT |X2)}, and Hx2 ≡ {Sx2(X2) : Sx2(X2) ∈ L2

0(FX2)}.
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Similar to Equation (12) in Lee (2018a),

E
[
Dt − P(T = t|X2)

P(T = t|X2)
S(Z; θ0)

∣∣∣∣X2

]
= E

[
Dt − P(T = t|X2)

P(T = t|X2)

(∑
j∈T

Djsj(Y,X) +Djsxj(X1, X2) +Dj
Ṗ(T = j|X2)

P(T = j|X2)
+ Sx2(X2)

)∣∣∣∣∣X2

]

= E
[

Dt

P(T = t|X2)

(
st(Y,X) + sxt(X1, X2) +

Ṗ(T = t|X2)

P(T = t|X2)

)∣∣∣∣X2

]
− E

[∑
j∈T

(
Djsj(Y,X) +Djsxj(X1, X2) +Dj

Ṗ(T = j|X2)

P(T = j|X2)

)∣∣∣∣X2

]

= E[st(Y,X)|T = t,X2] + E[sxt(X1, X2)|T = t,X2] +
Ṗ(T = t|X2)

P(T = t|X2)

−
∑
j∈T

(
P(T = j|X2)E[sj(Y,X)|T = j,X] + Ṗ(T = j|X2)

)
=

Ṗ(T = t|X2)

P(T = t|X2)

by the low of iterated expectations, E[sj(Y,X)|T = j,X] = 0, and E[sxj(X1, X2)|T = j,X2] = 0,

∀j ∈ T . We first calculate

E[et(X;λt)Pc(X)|X2] = E
[
m(y;λt)

Pc(X)

Pt(X)

∣∣∣∣T = t,X2

]
P(T = t|X2).

Then by the law of iterated expectations,

E
[
et(X;λt)

Pt(X)

pt
WX1s(X)

Ṗ(T = c|X2)

P(T = c|X2)

]
= E

[
E
[
et(X;λt)

Pt(X)

pt
WX1c(X)

∣∣∣∣X2

]
E
[
Dc − P(T = c|X2)

P(T = c|X2)
S(Z; θ0)

∣∣∣∣X2

]]
= E

[
P(T = t|X2)

pt
E
[
m(Y ;λt)WX1c(X)

∣∣∣T = t,X2

]Dc − P(T = c|X2)

P(T = c|X2)
S(Z; θ0)

]
.

We obtain the main component of the efficient influence function3

ψX1c(Z;λt, p, e(λt)) ≡
(
ψs(Z;λt, p, e(λt))

pc
P(T = c|X2)

+ E
[
m(Y ;λt)WX1c((X1, X2))

∣∣T = t,X2

]( Dt

P(T = t|X2)
− Dc

P(T = c|X2)

))P(T = t|X2)

pt
.

3Alternatively we may calculate the efficient bound following Jacho-Chávez (2009) for the inverse conditional
density-weighted functions.
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B.3 Proof of Theorem 3

We decompose the estimator as follows

√
n(F̂EIF

Y 〈t|c〉 − FY 〈t|c〉
)

=
√
n
( 1

n

n∑
i=1

ϕ̂2 − ϕ2

)
= Gn

[
ϕ̂2 − ϕ2

]
+Gn

[
ϕ2

]
+
√
n E
[
ϕ̂2 − ϕ2

]
. (6)

The second term Gn[ϕ2] is Ōp(1) by the Donsker property in Assumption B.6 (a). The first term

Gn[ϕ̂2 − ϕ2] = ōp(1) by a stochastic equicontinuity argument using Lemma A.1 in Lee (2018b).

Assumption B.6 (a) and (b) ensure the conditions of Lemma A.1 in Lee (2018b). That is, the

estimators P̂t(X) and F̂Y |TX(y|t,X) belongs to CαM(X ) and satisfies the Hölder continuity with

probability approaching to one. We calculate the third term in the following.

E
[
ϕ̂2 − ϕ2

]
= E

[(
Dt

P̂t(X)
1{Y ≤ y}+ F̂Y |TX(y|t,X)

( Dc

P̂c(X)
− Dt

P̂t(X)

)) P̂c(X)

p̂c
− ϕ2

]
= E

[(
Pt(X)

P̂t(X)
FY |TX(y|t,X) + F̂Y |TX(y|t,X)

(Pc(X)

P̂c(X)
− Pt(X)

P̂t(X)

)) P̂c(X)

p̂c
− FY |TX(y|t,X)

Pc(X)

pc

]
= E

[(
Pt(X)

P̂t(X)
FY |TX(y|t,X) + FY |TX(y|t,X)

(Pc(X)

P̂c(X)
− Pt(X)

P̂t(X)

)) P̂c(X)

p̂c
− FY |TX(y|t,X)

Pc(X)

pc

]
+ E

[(
F̂Y |TX(y|t,X)− FY |TX(y|t,X)

) (Pc(X)

P̂c(X)
− Pt(X)

P̂t(X)

) P̂c(X)

p̂c

]
= E

[
FY |TX(y|t,X)

(Pc(X)

p̂c
− Pc(X)

pc

) ]
+ ōp(n

−1/2)

= E
[
FY |TX(y|t,X)

Pc(X)

pc

](
1− 1

n

n∑
i=1

Dci/pc

)
+ ōp(n

−1/2)

where the fourth equality is implied by Assumption B.6 (c)(i). Together with the second term

Gn[ϕ2],
√
n(F̂EIF

Y 〈t|c〉 − FY 〈t|c〉
)

= Gn[ψt|c
(
Z; y)] + ōp(1).
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We decompose
√
n(F̂ IPW

Y 〈t|c〉 − FY 〈t|c〉
)

similarly as in (6). The third term

E
[
ϕ̂1 − ϕ1

]
= E

[
Dt

P̂t(X)
1{Y ≤ y} P̂c(X)

p̂c
− ϕ1

]
= E

[
Pt(X)

P̂t(X)
FY |TX(y|t,X)

P̂c(X)

p̂c
− FY |TX(y|t,X)

Pc(X)

pc

]
= E

[
FY |TX(y|t,X)

(
− Pc(X)

pc

( p̂c
pc
− 1
)
− Pc(X)

pc

( P̂t(X)

Pt(X)
− 1
)

+
P̂c(X)− Pc(X)

pc

) ]
+ ōp(n

−1/2)

= γ − γ 1

n

n∑
i=1

Dci

pc
+ E

[
FY |TX(y|t,X)

Pc(X)

pc

( P̂c(X)

Pc(X)
− P̂t(X)

Pt(X)

)]
+ ōp(n

−1/2)

The third term in the last equation is by Assumption B.6 (c)(ii). Together with the third term

Gn[ϕ1],
√
n(F̂ IPW

Y 〈t|c〉 − FY 〈t|c〉
)

= Gn[ψt|c
(
Z; y)] + ōp(1).

Define the class of measurable functions H = {
(
Y × T × X

)
→ ψ(Y, T,X; y) : y ∈ Y}. By

Lemma A2 in Donald and Hsu (2014) and the Assumptions in the Appendix, H is P -Donsker.

The weak convergence is implied by Donsker’s Theorem in Section 2.8.2 in van der Vaart and

Wellner (1996). �

B.4 Proof of Corollary 1

By the functional delta method (e.g., Theorem 3.9.4 in van der Vaart and Wellner (1996)) and the

linearity of the Hadamard derivative, the weak convergence to a Gaussian process is implied. �

B.5 Proof of Corollary 2

The results follow Theorem 3 and the proof of Lemma 4.2 in Donald and Hsu (2014). In com-

parison with the influence function in Donald and Hsu (2014), ψt|c
(
Z; y) in (11) contains the

additional terms FY 〈t|c〉(y)
(

Dc
Pc(X)

− Dt
Pt(X)

)
Pc(X)
pc

. Accounting for the estimation error of these ad-

ditional terms is similar to the proof for showing that the process in (11) in the proof of Lemma

4.2 in Donald and Hsu (2014) weakly converges to a zero process conditional on the sample path

{Z1, Z2, ..., Zn} with probability approaching one. This shows the validity of the multiplier boot-

strap method in our setup. �
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B.6 Proof of Corollary A.1

Let
√
n
(
θ̂(·) − θ0(·)

)
= n−1/2

∑n
i=1 ψtin(·) + op(1) ⇒ Gt(·) from Theorem 3. Assume θt is contin-

uously differentiable with strictly positive derivative (∂/∂y)θ0(y)
∣∣
y=Qτ

≡ θ′0(Qτ ). The Hadamard

derivative is shown in Example 3.9.24 in van der Vaart and Wellner (1996). Then the influence

function for estimating the quantile process is ψQt|c(Zi; τ) ≡ −ψtin(Qτ )/θ
′
0(Qτ ). The result follows.

�

C The Workforce Investment Act Programs

In this section we discuss in more detail the institutional background of the Workforce Investment

Act (WIA) programs and some additional details on our estimation approach.

The Workforce Investment Act (WIA) was passed in 1998 to replace the Job Training Part-

nership Act (JTPA). Its main goal was to “...consolidate, coordinate, and improve employment,

training, literacy, and vocational rehabilitation programs in the United States...” by reforming the

previous workforce programs that had become “fragmented” and “uncoordinated.” The Act es-

tablished the largest network of public-financed career service programs in the United States. The

WIA Adult program, WIA Dislocated Workers, and WIA Youth programs are the three flagship

programs under this Act.

An individual is eligible for WIA Adult if he or she is age 18 and older who are unemployed at

time of application or who are under-employed or whose family meets adult low income guidelines.

Dislocated workers are officially defined by meeting one of the following criteria: (i) has been laid

off or terminated, or received notice of termination or lay off and is unlikely to return to previous

industry of occupation, (ii) has been terminated or laid off, or has received a notice of termination

or lay off, as a result of permanent closure of, or substantial layoff at a plant or facility, (iii) was

self-employed and now unemployed because of a natural disaster, (iv) was self-employed (including

farmer, rancher, or fisherman), but is unemployed as a result of general economic conditions in

the community in which he or she resides or because of a natural disaster, or (v) is a displaced

homemaker.

WIA services are offered through 3,000 one-stop career centers across the country. There are

three levels of services. Core services include labor market information, job search, and placement

assistance. Intensive services include counseling, comprehensive assessments, and individual career

planning. Training services connect participants to job opportunities in their local communities

and provide training in both basic and vocational skills toward specific occupations. Participants

use an “individual training account” to select an appropriate training program from a qualified
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training provider. Although participation in WIA is voluntary, access is restricted; program staffs

must admit participants and authorize any services that are provided.

In 2013, the Workforce Innovation and Opportunity Act (WIOA) law was passed, replacing

the previous WIA of 1998 as the primary federal workforce development legislation to bring about

increased coordination among federal workforce development and related programs. While WIOA

made changes to the workforce system, it did not significantly change the basic set of services that

the local areas offered, nor who was eligible to receive them. In addition, many of the important

changes explicitly introduced by WIOA reflected changes the local areas were already making

under WIA.

C.1 Additional Details on the Estimation Approach

We define the earnings outcome to be the difference in average earnings between four quarters after

leaving the program and the three quarters prior to entering. First, we estimate nonparametrically

the probability of treatment for each individual i, given their characteristics, i.e., the propensity

scores Pt(Xi) ≡ P(T = t|X = Xi) for t ∈ {1, 2, 3, 4} and i = 1, .., n. We use a multinomial

logistic series estimator, where the order of the polynomial is selected using the Akaike Information

Criterion (AIC). Given the estimated propensity scores P̂t(Xi), we compute the common support

region for estimation following Flores et al. (2012): for each group-t, we find the minimum and

maximum estimated propensity scores: pmint ≡ min{i:Ti=t} P̂t(Xi) and pmaxt ≡ max{i:Ti=t} P̂t(Xi).

Then we define the support region for t to be the subpopulation whose P̂t(Xi) bounded between

pmint and pmaxt : St ≡ {i : P̂t(Xi) ∈ [pmint , pmaxt ]}. The common support region is the intersection of

the support regions for all t ∈ T : CS ≡ ∩t∈T St. Observations that fall outside of the common

support region are dropped.

Next, we estimate the means E[Y 〈t〉] and E[Y 〈t|c〉] using the EIF estimator:

β̂t : Ê[Y (t)] =
1

n

n∑
i=1

(
Dti

P̂t(Xi)
Yi −

( Dti

P̂t(Xi)
− 1
)
êt(Xi)

)
γ̂t|c : Ê[Y (t)|T = c] =

1

n

n∑
i=1

(
Dti

P̂t(Xi)
Yi −

( Dti

P̂t(Xi)
− Dci

P̂c(Xi)

)
êt(Xi)

)
P̂c(Xi)

p̂c
,

where et(Xi) ≡ E[Y |T = t,X = Xi] is also estimated using polynomial-regression series estimators

with AIC to select the order of the polynomial. Finally, pt ≡ P(T = t) is obtained from the sample

analogue p̂t = n−1
∑n

i=1 Dti.
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We estimate the τ -quantiles Qτ (Y 〈t〉) and Qτ (Y 〈t|c〉) with:

β̂t : Q̂τ (Y (t)) = arg min
q∈Θ

∣∣∣∣∣ 1n
n∑
i=1

(
Dti

P̂t(Xi)
(1{Yi ≤ q} − τ)−

( Dti

P̂t(Xi)
− 1
)
êt(Xi; q)

)∣∣∣∣∣
γ̂t|c : Q̂τ (Y (t)|T = c) = arg min

q∈Θ

∣∣∣∣∣ 1n
n∑
i=1

(
Dti

P̂t(Xi)
(1{Yi ≤ q} − τ)−

( Dti

P̂t(Xi)
− Dci

P̂c(Xi)

)
êt(Xi; q)

)
P̂c(Xi)

p̂c

∣∣∣∣∣ ,
where êt(Xi; q) = Ê[1{Y ≤ q}|T = t,X = Xi]− τ .
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