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A Proofs of Section 6

A.1 Proofs of Section 6.2.1

Throughout this section, we denote by Q(β) = −1
2 ||Y −Xβ||

2+penS(β |θ) the log-posterior

under the separable SSL penalty.

A.1.1 Proof of Theorem 5

Proof. Denote by Θ = β̂ − β0. Because 0 ≥ Q(β0)−Q(β̂), we can write

0 ≥ ||XΘ||2 − 2ε′XΘ + 2 log

[
π(β0 | θ)
π(β̂ | θ)

]
. (A.1)

Using the fact p?θ(β̂j) > c+ when β̂j 6= 0, we can write

log

[
π(β0 | θ)
π(β̂ | θ)

]
≥ −λ1|β0 − β̂0|+

p∑
j=1

log

[
p?θ(β̂j)

p?θ(0)

]
+

p∑
j=1

log

[
p?θ(0)

p?θ(β0j)

]
≥ −λ1|β0 − β̂0|+ q̂ b+ (q̂ − q) log[1/p?θ(0)],

where 0 > b = log c+ > log 0.5 is a constant very close to 0. Because ||X ′ε||∞ ≤ η∆ under

η-NC condition, we can use the Hölder inequality |α′β| ≤ |α|∞|β| to find that

0 ≥ ||XΘ||2 − 2(η∆ + λ1)|Θ|+ 2 q̂ b+ 2(q̂ − q) log[1/p?θ(0)]. (A.2)

From Lemma 1 we know that Θ lives inside the cone C(η;β0). Thus, we can use Definition

1 to find that ||XΘ||2 ≥ c(η;β0)2||Θ||2 ||X||2. Denote by c = c(η;β0). Using the fact

|Θ| ≤ ||Θ|| ||Θ||1/20 , we have

0 ≥ c2||Θ||2||X||2 − 2(η∆ + λ1)||Θ|| ||Θ||1/20 + 2 q̂ b+ 2(q̂ − q) log[1/p?θ(0)],
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which is equivalent to writing[
c||Θ|| ||X|| − (η∆ + λ1)

c||X||
||Θ||1/20

]2

− (η∆ + λ1)2

c2||X||2
||Θ||0 + 2 q̂ + 2(q̂ − q) log[1/p?θ(0)] ≤ 0.

This yields

(q̂ − q) log[1/p?θ(0)] + q̂ b ≤ (η∆ + λ1)2

2c2||X||2
||Θ||0.

By noting ||Θ||0 ≤ q̂ + q and ||X||2 = n, we can write

q̂ ≤ q
(

1 +
2A− b

B + b−A

)
,

where A = (η∆+λ1)2

2c2||X||2 and B = log[1/p?θ(0)]. Assume, for simplicity, that (1 − θ)/θ = C1p
a,

λ0 = C2p
d and λ1 < 4

√
n log p < 4p we have B = log

(
1 + 1−θ

θ
λ0
λ1

)
> log(C1C2/4) +

(a + d − 1) log p. With C1C2/4 > 0 we obtain λ1 < 4
√
n log p < 4

√
nB/(a+ d− 1) and

A
B <

(
η
c + (η+1)2

√
2

c
√
a+d−1

)2
≡ D. We can then write q̂ ≤ q

(
1 +M D

1−D

)
.

A.1.2 Proof of Theorem 6

Proof. With Θ = β̂ − β0 and by noting log
[
π(β0 | θ)
π(β | θ)

]
> −λ1|Θ|+ q log p?θ(0) we can write

0 ≥ ||XΘ||2 − 2(η∆ + λ1)|Θ|+ 2 q log[p?θ(0)], (A.3)

where ∆ is the selection threshold. From Theorem 6.1 we have ||Θ||0 ≤ (K + 1) q under

the η-NC condition. Denote by φ = φ[C(η;β0)]. From the definition of the compatibility

number φ, and using 4uv ≤ u2 + 4v2, we find that

2(η∆ + λ1)|Θ| ≤ 3(η∆ + λ1)
||XΘ||

√
(K + 1) q

||X||φ
− (η∆ + λ1)|Θ|

≤ ||XΘ||2

2
+

5(K + 1)q(η∆ + λ1)2

||X||2φ2
− (η∆ + λ1)|Θ|.

Thus it follows from (A.3) that

1

2
||XΘ||2 + (η∆ + λ1)|Θ| ≤ 5(K + 1)q(η∆ + λ1)2

||X||2φ2
+ 2 q log[1/p?θ(0)]. (A.4)

With (1 − θ)/θ = C1p
a, λ0 = C2p

d and
√
n/p < λ1 < 4

√
n log p we have (η∆ + λ1) <

C3η
√
n log p and log[1/p?θ(0)] < C4log p. With ||X||2 = n, the first two statements of the

theorem follow directly from (A.4). Let c = c(η,β0) be the minimal restricted eigenvalue.

Then the last statement is obtained from ||XΘ|| > c||X||||Θ||.
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A.2 Proofs of Section 6.2.2

The construction of the proof follows Castillo et al. (2015), where suitable modifications are

required when using the notion of generalized dimensionality. Before proceeding, we need

to introduce some more notation. Let

Λn,β,β0
= e−

1
2
||X(β−β0)||2+(y−Xβ0)′X(β−β0)

and

Π(β | θ) =

p∏
i=1

[θψ1(βi) + (1− θ)ψ0(βi)].

Throughout this section we will denote by λ̄ = 2
√
n log p the universal threshold. The rates

in this section will be expressed in terms of slightly different compatibility and minimal

eigenvalue numbers. Following Castillo et al. (2015), for S ⊂ {1, . . . , p}, we define: the

compatibility number φ̃(S) of a model S by

φ̃(S) = inf

{
||Xβ|| |S|1/2

||X|| |βS |
: |βSc | ≤ 5|βS |,βS 6= 0

}
, (A.5)

the compatibility in vectors of generalized dimension s by

φ̄(s) = inf

{
||Xβ|| s1/2

||X|| |β|
: 0 < |γ(β)| ≤ s

}
(A.6)

and the minimal eigenvalue restricted to vectors β of generalized dimensionality at most s

by

c̄(s) = inf

{
||Xβ||
||X|| ||β||

: 0 < |γ(β)| ≤ s
}

(A.7)

For S ⊂ {1, . . . , p}, let βS ∈ Rp be a subset of β with coordinates in S. Denote by

ΠS(β | θ) the marginal prior confined to coordinates in S. Denote by δ the intersection

point between SSL densities, by π ≡ P(|β1| ≤ δ) and by π(s | θ) =
(
p
s

)
πs(1 − π)p−s =

P[|γ(β)| = s | θ] the prior distribution on the effective dimensionality. By assumption, we

have ||X||2 = max1≤i≤p ||Xi||2 = n.

We will need the following analogue of Lemma 2 of Castillo et al. (2015) for the separable

SSL prior.

Lemma A.1. Assume β0 ∈ Rp has a support S0 ⊂ {1, . . . , p}, where |S0| = q. Assume

λ0 = (1 − θ)/θ = Cpa, where a ≥ 2 and C > 0, and
√
n/p < λ1 ≤ 4

√
n log p. Assume

p > n. Then ∫
Λn,β,β0

Π(β | θ)dβ ≥ π(q | θ)
p2 q

e−1−D−λ1|β|1 ,

where D > 0.
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Proof. Denote by g(β) = e−||Xβ||
2+(y−Xβ0)′Xβ. Using the fact ||Xβ||2 ≤ 2||XβS0

||2 +

2||XβSc0 ||
2, we can write

Λn,β,β0
> g(βSc0)g(βS0

− β0S0
).

By the Jensen’s inequality we have∫
g(β)Π(β | θ)dβ ≥

∫
e−||Xβ||

2
Π(β | θ)dβ.

Conditionally on θ, the SSL prior is separable, implying Π(β | θ) = ΠS0(β | θ)ΠSc0
(β | θ).

Changing variables b→ (β − β0) and noting ΠS0(β | θ) > θq
(
λ1
2

)q
e−λ1|βS0

|, we can write∫
Λn,β,β0

Π(β | θ)dβ >
∫

e
−||XβSc0 ||

2

ΠSc0
(β | θ)dβSc0 (A.8)

× θqe−λ1|β0|
∫

e−||XbS0
||2
(
λ1

2

)q
e−λ1|bS0

|d bS0 . (A.9)

To simplify the integral in (A.9) we use arguments of Castillo et al. (2015) in the proof of

Lemma 2. Under the assumption ||X||/p < λ1 < 4||X||
√

log p, we obtain∫
e−||XbS0

||2
(
λ1

2

)q
e−λ1|bS0

|d bS0 > e−1

(
λ1

||X||

)q e−λ1/||X||

q!
>

e−1

pqq!
(A.10)

To simplify the integral in (A.8), we use ||Xβ|| ≤ ||X|| |β| to find that∫
e
−||XβSc0 ||

2

ΠSc0
(β | θ)dβSc0 >

∫
|βi|≤δ;i/∈S0

e
−||X||2|βSc0 |

2

ΠSc0
(β | θ)dβSc0 (A.11)

≥e−(p−q)2||X||2δ2
P(|β1| ≤ δ)p−q. (A.12)

Combining (A.10) and (A.12) and noting θ > π ≡ P(|β1| > δ | θ), we obtain∫
Λn,β,β0

Π(β | θ)dβ > e−(p−q)2||X||2δ2
e−1−λ1|β0|πq(1− π)p−q

1

pqq!
.

Recall that π(q | θ) =
(
p
q

)
πq(1−π)p−q is the prior probability of the effective dimensionality

q. Since
(
p
q

)
q! ≤ pq, we can write∫

Λn,β,β0
Π(β | θ)dβ > e−(p−q)2||X||2δ2

e−1−λ1|β0|π(q | θ)
p2 q

.

Using the fact δ = 1
λ0−λ1

log[1/p?(0)− 1], we obtain

(p− q)2||X||2δ2 =
(p− q)2||X||2

(λ0 − λ1)2
log2[1/p?(0)− 1] (A.13)

Since ||X|| =
√
n <

√
p we have λ1 ≤ 4||X||

√
log p < 4p. Because λ0 � pd with d ≥ 2, we

have (p−q)2

λ0−λ1
� 1

pd−2 . Because (1− θ)/θ ∼ pa, we have

log2[1/p?(0)− 1] � log2 p+ log2 λ0.
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Therefore, with p > n and λ0 � pd with d ≥ 2 we obtain

(p− q)2||X||2δ2 � n (log2 p+ log2 λ0)

pd−2λ0
→ 0.

A.2.1 Proof of Theorem 7

Proof. Denote by B = {β : |γ(β)| > R}. Then E β0
P(B | Y , θ) ≤ E β0

P(B | Y , θ)Iτ0 + 2
p ,

where τ0 = {||X ′(Y −Xβ0)||∞ ≤ λ̄} and λ̄ = 2
√
n log p. Then

P(B |Y , θ) =

∫
B Λn,β,β0

Π(β | θ)dβ∫
Λn,β,β0

Π(β | θ)dβ
≤ Aeλ1|β0|

∫
B

e−
1
2
||X(β−β0)||2+(Y −Xβ0)′X(β−β0)Π(β |θ)dβ,

(A.14)

where A = p2 q

π(q | θ)e1+D. Similarly as in the proof of Theorem 12 of Castillo et al. (2015),

we use Hölder’s inequality to obtain on τ0

(Y −Xβ0)′X(β − β0) ≤ λ̄|β − β0|. (A.15)

Therefore, the expectation under β0 of the integrand satisfies

e−
1
2
||X(β−β0)||2E β0

[
e

(
1− λ1

2 λ̄

)
(Y −Xβ)′X(β−β0)Iτ0

]
e
λ1
2
|β−β0| (A.16)

≤ e
− 1

2

[
1−
(

1− λ1
2 λ̄

)2
]
||X(β−β0)||2

e
λ1
2
|β−β0| (A.17)

≤ e−
λ1
4λ̄
||X(β−β0)||2e

λ1
2
|β−β0|, (A.18)

where we used λ1 ≤ 2λ̄ and invoked the expectation of a log-normally distributed r.v. Thus,

E β0
P(B | Y , θ) Iτ0 ≤ A eλ1|β0|

∫
B

e−
λ1
4λ̄
||X(β−β0)||2e

λ1
2
|β−β0|d Π(β | θ). (A.19)

Now, when 5|βS0
− β0| ≤ |βSc0 |, then

|β0|+
1

2
|β − β0| ≤ |βS0

|+ 5

4
|βS − β0|+

3

4
|βSc0 | −

1

4
|β − β0| < −

1

4
|β − β0|+ |β| (A.20)

< −1

4
|β − β0|+ |β|+

1

4λ̄
||X(β − β0)||2 + 2

λ̄|S0|
||X||2φ̃(S0)2

. (A.21)

When 5|βS0
− β0| > |βSc0 |, we use the definition of the compatibility number to find that

|βS0
|+ 5

4
|βS0

− β0|+
3

4
|βSc0 | −

1

4
|β − β0| < −

1

4
|β − β0|+ |β|+

5

4

||X(β − β0)|| |S0|1/2

||X||φ̃(S0)
.

Invoking the inequality 4uv ≤ u2 + 4v2, we can bound the last display from above by

−1

4
|β − β0|+ |β|+

1

4λ̄
||X(β − β0)||2 + 2

λ̄ q

||X||2φ̃(S0)2
.
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Thus (A.19) can be bounded by

A e
2λ1 λ̄ q

||X||2φ̃(S0)2

∫
B

eλ1|β|−λ1
4
|β−β0|Π(β | θ)dβ.

Note that π(β | θ) < θλ1e−λ1|β| when |β| > δ. For B = {β : |γ(β)| > R}, we can write∫
B

eλ1|β|−λ1
4
|β−β0|Π(β | θ)dβ ≤

∑
S:|S|>R

θ|S|λ
|S|
1

∫
|βi|>δ;i∈S

e−
λ1
4
|βS−β0S |dβS (A.22)

×
∫
|βi|≤δ;i∈Sc

eλ1|βSc |−
λ1
4
|βSc−β0Sc |ΠSc(β | θ)dβSc (A.23)

<

p∑
k=R+1

(
p

k

)
(8 θ)keλ1δ(p−k)(1− π)p−k. (A.24)

Recall that π ≡ P(|β1| > δ | θ) = θ e−δλ1

(
1 + λ1

λ0

)
< θ. Because θ < πeδλ1 , we can bound

the last display by

eλ1p δ
p∑

k=R+1

8k
(
p

k

)
πk(1− π)p−k = eλ1p δ

p∑
k=R+1

8kπ(k | θ).

Because π/(1− π) < θ/(1− θ) � 1/pa for a ≥ 2, we have

π(k | θ) ≤
(

1

p

)a−1

π(k − 1 | θ) for k ≥ 1.

Thereby, we can write for R > q

eλ1p δ
p∑

k=R+1

8kπ(k | θ) < eλ1p δ 8q π(q | θ)
(

8

pa−1

)R+1−q ∞∑
k=0

(
8

pa−1

)k
.

With (1− θ)/θ ∼ pa and λ0 � pd and ||X||2 = n, we have λ1δp � 1. Altogether

P(B | Y , θ) � e
2q log p+λ1p δ+

2λ1λ̄ q

nφ̃(S0)2

(
8

pa−1

)R+1−q
+

2

p

� e(R+1−q) log 8+2q log p[1+4λ1/(λ̄φ̃(S0)2)]−(R+1−q)(a−1) log p +
2

p
.

The right side of the above display goes to zero when R > q
[
1 + M

a−1

(
1 + 4λ1

λ̄φ̃(S0)2

)]
for

some M > 2.

A.2.2 Proof of Theorem 8

Proof. By Theorem 6.3, the posterior distribution is asymptotically supported on the event

E = {β : |γ(β)| ≤ q(1 +K)|}, where K = M
a−1

(
1 + 4λ1

λ̄φ̃(S0)2

)
. Thus, we confine attention to
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E? = E ∩ τ0, where τ0 was defined in the proof of Theorem 6.3. From (A.14) and (A.15),

we can see that

Π(B | Y , θ)Iτ0 ≤
p2qe1+D

π(q | θ)

∫
B

e−
1
2
||X(β−β0)||2+3λ̄|β−β0|+λ1|β|Π(β | θ)dβ. (A.25)

We now use the definition of the compatibility number in vectors of generalized dimension-

ality (A.6). With the inequality 4uv ≤ u2 + 4v2, we can then write

(4− 1)λ̄|β − β0| ≤
4λ̄||X(β − β0)|| |γ(β − β0)|1/2√

n φ̄(|γ(β − β0)|)
− λ̄|β − β0|

≤ 1

4
||X(β − β0)||2 +

16λ̄2|γ(β − β0)|
n φ̄(|γ(β − β0)|)2

− λ̄|β − β0|

Thus,

Π(B | Y , θ)Iτ0 ≤
p2qe1+D

π(q | θ)
e

16λ̄q(2+K)

n[φ̄(2q+Kq)]2

∫
B

e−
1
4
||X(β−β0)||2−λ̄|β−β0|+λ1|β|Π(β | θ)dβ.

Denote now B = {β ∈ E? : ||X(β − β0)|| > R}. Then

Π(B | Y , θ)Iτ0 ≤
p2qe1+D

π(q | θ)
e

16λ̄q(2+K)

n[φ̄(2q+Kq)]2 e−
R2

4

∫
B

e−λ̄|β−β0|+λ1|β|Π(β | θ)dβ

≤ p2qe1+D

π(q | θ)
e

16λ̄q(1+K)

n[φ̄(2q+Kq)]2 e−
R2

4 eλ1δp
p∑

k=0

8kπ(k | θ)

Now, because π > θe−δλ1 and θ ∼ 1/pa we can write

π(q | θ) � π(q − 1 | θ)e−δλ1

pa
� π(q − 1 | θ)C2

pa
,

where we used the fact e−δλ1 > C2. Thus, π(q | θ) � Cq2/pa qπ(0 | θ). Thereby,

Π(B | Y , θ)Iτ0 ≤ C
−q
2 pq(2+a)e1+De

16λ̄2q(2+K)

n[φ̄(2q+Kq)]2 e−
R2

4 eλ1δp
p∑

k=0

(
8

pa−1

)k
.

This quantity will tend to zero for

R2 � 4q(2 + a) log p+
16λ̄2q(2 +K)

n[φ̄(2q +Kq)]2
� q(2 +K) log p

[φ̄(2q +Kq)]2
.

This proofs the first assertion. The second assertion follows from

λ̄|β − β0| ≤ ||X(β − β0)||2 +
λ̄2q(2 +K)

2nφ̄(2q +Kq)2

and the last one from the definition of a minimal eigenvalue restricted to β of generalized

dimensionality at most s in (A.7), which yields ||X(β − β0)|| > c̄(2q +Kq)||X|| ||β − β0||.

7



A.2.3 Proof of Lemma 6

Proof. Denote by ej the jth canonical vector. The global optimality of β̂ yields

−||Y −Xβ̂||/2 + penNS(β̂) ≥ −||Y −Xβ̂ − tXj ||/2 + penNS(β̂ + tej)

for any t ∈ R. Because ||Xj ||2 = n, this is equivalent to

tX ′j(Y −Xβ̂) ≤ t2n/2 + log

[
π(β̂)

π(β̂ + tej)

]
< nt2/2− ρ̃(t; β̂ j),

where we used the definition of the conditional singleton (3.10) together with (3.8) and

(3.9). The statement of the lemma follows from the definition ∆j .

B Simulation Study: Initialization

In order to assess the sensitivity of the Spike-and-Slab LASSO to initialization, we repeated

the simulation study from Section 5 (with the correlated block design), considering different

starting vectors β0 as well as different spike penalty sequences {λ1
0, . . . , λ

L
0 }. In particular,

we generated 100 datasets and initialized SSL at (a) the zero vector, (b) a random vector

from Np(0, I) and (c) a random vector from Np(0, 10×I). Different random starting vectors

were used for each dataset. The results are summarized in Table 1. With a fine grid of λ0

values (e.g. choosing λ0 ∈ {1, 2, . . . , 100}), we do not observe any sensitivity to initialization!

With a crude ladder of λ0 values (e.g. choosing λ0 ∈ {10, 20, 30, . . . , 100}), there is indeed

sensitivity to initialization. However, we observed that the zero starting vector performed

the best regardless of the choice of λ0 values.

C Further Implementations

C.1 Implementation via EMVS

The coordinate-wise optimization based on the univariate soft-thresholding operator (as

explained in Section 4)

S(z, λ) =
1

n
(|z| − λ)+sign(z).

resembles the LLA algorithm (Zou and Li, 2008; Candes et al., 2008), which iterates over

joint updates

β(k+1) = arg max
β∈Rp

−1

2
||Y −Xβ||2 −

p∑
j=1

λ?θ(β
(k)
j )|βj |

 . (C.1)
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λ0 λ1 θ MSE FDR FNR q̂ TRUE TIME HAM

β0 = 0p
{1, 2, . . . , 100} 1 B(1, p) 3.64 0.288 0.288 6 13 0.63 3.46
{1, 12, 23 . . . , 100} 1 B(1, p) 4.65 0.358 0.357 6.01 5 0.11 4.29
{10, 20, 30 . . . , 100} 1 B(1, p) 1.96 0.193 0.192 6.01 22 0.02 2.31

β0 ∼ Np(0p, Ip)
{1, 2, . . . , 100} 1 B(1, p) 3.64 0.288 0.288 6 13 0.74 3.46
{1, 12, 23 . . . , 100} 1 B(1, p) 5.78 0.427 0.42 6.07 2 0.14 5.11
{10, 20, 30 . . . , 100} 1 B(1, p) 5.22 0.38 0.377 6.03 8 0.09 4.55

β0 ∼ Np(0p, 10× Ip)
{1, 2, . . . , 100} 1 B(1, p) 3.64 0.288 0.288 6 13 0.78 3.46
{1, 12, 23 . . . , 100} 1 B(1, p) 7.74 0.524 0.517 6.09 2 0.18 6.29
{10, 20, 30 . . . , 100} 1 B(1, p) 14.38 0.88 0.842 7.93 0 0.16 12.03

Table 1: Simulation study using 100 repetitions; MSE (average mean squared error), FDR (false
discovery rate), FNR (false non-discovery rate), DIM (average size of the model), TRUE (# true
model detected), TIME (average execution time in seconds), HAM (average Hamming distance)

From another point of view, (C.1) coincides with the M-step of a Bayesian EM algo-

rithm for posterior mode detection under continuous spike-and-slab priors, which treats

γ as missing data and keeps θ fixed. This connection is made apparent by the fact

λ?θ(β
(k)
j ) = λ1p

?
θ(β

(k)
j ) + λ0[1 − p?θ(β

(k)
j )], and by noting p?θ(βj) = E (γj | β(k)

j , θ) (the E-step

calculation). A similar strategy was implemented for a mixture of two Gaussian distri-

butions in the EMVS procedure by Rockova and George (2014). Whereas their approach

was based on iteratively solving adaptive ridge regressions, here it entails solving weighted

LASSO regressions. The advantages of using EMVS with the LASSO updates are (a) auto-

matic variable selection through thresholding, (b) faster speed of convergence (follows from

considerations of Rockova and George (2016)).

Extending LLA to the case of a non-separable penalty is achieved naturally within the

Bayesian EM framework by treating θ as an additional model parameter. Instead of carrying

forward the same fixed value, one now simply updates θ throughout the algorithm. The

non-separable variant of the M-step thus uses θ = θ(k) to obtain β(k+1) from (C.1). This

step is followed by a new update θ(k+1) according to

θ(k+1) =

∑p
j=1 p

?
θ(k)(β

(k+1)
j ) + a− 1

a+ b+ p− 2
. (C.2)

The calculation (C.2) follows directly from equation (3.12) of Rockova and George (2014).

A variant of this strategy was implemented for sparse factor analysis by Rockova and George

(2016), where more details on this algorithm can be found.
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EMVS Algorithm: The Spike-and-Slab LASSO
Input a grid of increasing λ0 values I = {λ10, . . . , λL0 }
For each value l ∈ {1, . . . , L}
Set k = 0

(a) Initialize: β
(k)
l = β?,θ(0) = θ?

(b) While diff > ε
(i) Increment k

(ii) Update β
(k)
l according to (C.1)

with θ = θ(k)

(iii) Update θ(k) according to (C.2)

(iv) diff = ||β(k) − β(k−1)||2
(c) Return β

(k)
l

(d) Assign β? = β
(k)
l

Table 2: The EMVS implementation of the Spike-and-Slab LASSO procedure

C.2 Posterior Simulation

The SSL and NSSL priors are also amenable to posterior simulation. Direct Gibbs sampling

is available through the exponential scale mixture representation of the Laplace distribu-

tion (Park and Casella, 2008), applying the SSVS strategy (George and McCulloch, 1993).

Alternatively, one could deploy a variant of an orthant sampler developed for the Bayesian

LASSO by Hans (2009). Whereas simulating from the full-dimensional posterior π(β | Y )

will only be practical when p is not overwhelmingly big, initiating the sampler at a poste-

rior mode can save burn-in time and provide a quick insight into uncertainty surrounding

the mode. Alternatively, one could confine the simulation to a lower-dimensional subspace,

sampling only from active coordinates identified by the mode hunting strategies.

D Identifiability Considerations

As a followup on Lemma 6.1, it is instructive to compare the geometry of the region C(η;β0)

under different penalty functions. This region captures the discrepancy Θ = β̂−β0 between

the true vector and its shrunken estimate. The shape of this region thus provides useful

insights about the nature of the shrinkage.

For the sake of illustration, we assume β0 = (0, 3)′ and η = 0.45. Under the LASSO

penalty (where λ1 = λ0), the set C(η;β0) has a diamond shape (Figure 1(a)), embedded

within a cone
{

Θ ∈ Rp : |ΘSc | ≤ 1+η
1−η |ΘS |

}
. On the other hand, for the other limiting case

λ0 =∞ and λ1 = 0, the SSL penalty corresponds to the `0 penalty. The set C(η;β0) then

consists of those values Θ = β̂ − β0 for which ||β̂||0 < 2, as marked by the two solid lines

corresponding to Θ1 = 0 and Θ2 = −3. The SSL penalty yields a compromise between
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(a) λ1 = λ2 (b) λ1 = 0.1, λ0 = 10, θ = 0.1 (c) λ1 = 0.1, λ0 = 10, a = 1, b = 9

Figure 1: Plots of the feasible regions for Θ under the LASSO penalty and the SSL penalty.

these two extremes. With 1 < λ0 < ∞ and 0 < λ1 < 1, C(η;β0) is a star-shaped wrap

around the set {Θ : ||β̂||0 < 2}. With larger λ1, the set begins to resemble a diamond. The

non-separable penalty ties the coordinates together, making the set larger in the center.

Figures 1(a), 1(b) and 1(c) are actual heat-maps of the restricted eigenvalues ||XΘ||
||X|| ||Θ||

inside C(η;β0); the darker the shade of grey, the larger the value. Here, X contains n = 100

observations on 2 highly collinear variables (correlation ρ = 0.96). The diamond in Figure

1(a) is seen as a continuum of rays of equal eigenvalues, the minimum attained on the ray

Θ2 = −Θ1 (marked by a solid line). This ray dissects all three sets in Figure 1. Under

the `0 penalty, the intersection occurs at β̂ = (3, 0)′, the “opposite” of β0 = (0, 3) where

the correct variable was mistaken for its “knockoff”. This unfavorable case is assigned a

very small c(η;β0) value, an indication that the true variable is not easily distinguishable.

Interestingly, compared to the LASSO set, the SSL feasible regions indicate that at least

one of the coordinates in β̂ must be negligible, acknowledging the sparsity of the true

β0. However, despite their different geometries, the minimal eigenvalue taken over these

different sets is the same. Thus, regardless of the penalty, the same identifiability condition

has to be imposed in this example.
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