
Supplementary Material for:
Performance Evaluation of Regression Splines for

Propensity Score Adjustment in Post-Market Safety

Analysis with Multiple Treatments

1 Notation

For the i = 1, · · · , n individuals in the observed data, let Ti ∈ {0, 1, 2} denote the treat-

ment variable with observed value ti, Yi denote the binary outcome variable with observed

value yi, and xi = (xi,1 · · ·xi,p) denote a vector of p pretreatment baseline covariates. The

propensity score (PS) has three components indicating probability of assignment to each

treatment: ei = (ei,0, ei,1, ei,2), where ei,t = Pr(Ti = t|xi), t = 0, 1, 2. Because the three

PS components sum to 1, when we use the PS directly in the outcome model regression

we drop the first component ei,0 (similar to using a scalar PS for two treatments). We use

e∗ = (e∗1, e
∗
2) = (logit(e1), logit(e2)) to denote the logit of the PS.

2 Marginal Relative Risk Estimator

Let our logistic outcome model be logit(E(Yi)) = β0 + β1 ∗ I(ti = 1) + β2 ∗ I(ti =

2) + xi,rβr, where I is an indicator function for the treatments, β1 and β2 are the effect

sizes for treatments 1 and 2, and xi,r represents a (k − 3)-dimensional vector of all other

outcome model components. When using IPTW, we fit a weighted outcome model with

only treatment as covariates, so xi,r is null. When using direct outcome model regression,

xi,r = xi. When using spline methods, xi,r are the values of e∗
i under the corresponding

spline basis functions.

Let β be the k-dimensional vector of outome model parameters (β0, β1, β2,βr)
T and β̂

be its maximum likelihood estimate. Let X0,X1,X2 be the n x k dimensional matrix
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of outcome model parameter values (1, I(ti = 1), I(ti = 2),xi,r) when all patients are on

treatments 0, 1, and 2, respectively. Also, define X = (XT
0 ,X

T
1 ,X

T
2 )

T to be a 3n x k matrix

of all outcome model parameter values for all treatments.

Using treatment 0 as the reference, the marginal risk estimators for treatments 1 and 2

are respectively

RR1 =
p̄1
p̄0
, RR2 =

p̄2
p̄0

(1)

where p̄k = 1
n

∑n
i=1 p̂i,k, k = 0, 1, 2 is the average outcome when all patients are on the

same treatment k. We express the relative risk estimators as functions of these average

outcomes, as in RR1 = p̄1/p̄0 ≡ f(p̄0, p̄1). Using the multivariate Delta method, the variance

of the RR1 estimator is

V(f(p̄0, p̄1)) = [
∂f(p̄0, p̄1)

∂p̄0
]2V(p̄0) + [

∂f(p̄0, p̄1)

∂p̄1
]2V(p̄1) + 2

∂f(p̄0, p̄1)

∂p̄0

∂f(p̄0, p̄1)

∂p̄1
Cov(p̄0, p̄1)

=
p̄21
p̄40
V(p̄0) +

1

p̄20
V(p̄1)− 2

p̄1
p̄30

Cov(p̄0, p̄1)

(2)

We obtain the variances and covariances of p̄0 and p̄1 using the estimated variance-

covariace matrix of β̂ and another application of the Delta method, which we detail below.

Let p̂0 = (p̂1,0, · · · , p̂n,0) be the n-dimensional vector of predicted outcomes under treat-

ment 0, with corresponding definitions for p̂1 and p̂2. The 3n-dimensional vector p̂ =

(p̂0, p̂1, p̂2) has expected value p̂ = h(Xβ̂), where h(θ) is the inverse logit function of linear

predictor θ.

We assume β̂ is asymptotically normal, and use its estimated variance-covariance matrix

V(β̂) = Σ and the Delta method to find the variance of the the predicted outcomes p̂:

V(p̂) = h′(Xβ̂)XV(β̂)XTh′(Xβ̂)T

= h′(Xβ̂)XΣXTh′(Xβ̂)T
(3)

where h′(Xβ̂) is a 3n x 3n diagonal matrix of inverse logit derivatives. We need the
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variance of p̄0, which can be written as a function of p̂:

p̄0 =
1

n
p̂T [1, 0, 0] (4)

where 0 and 1 are n-dimensional vectors of 0 and 1, respectively. The variance is then

V(p̄0) =
1

n2
[1, 0, 0]TV(p̂)[1, 0, 0]

=
1

n2
[1, 0, 0]Th′(Xβ̂)XΣXTh′(Xβ̂)T [1, 0, 0]

=
1

n2
1
Th′(X0β̂)X0ΣX

T
0 h

′(X0β̂)
T
1

(5)

Likewise, p̄1 is the second component of p̂, p̄1 = 1
n
[010]p̂, and its variance is

V(p̄1) =
1

n2
[0,1, 0]TV(p̂)[0,1, 0]

=
1

n2
[0,1, 0]Th′(Xβ̂)XΣXTh′(Xβ̂)T [0,1, 0]

=
1

n2
1
Th′(X1β̂)X1ΣX

T
1 h

′(X1β̂)
T
1

Finally, the covariance of p̄0 and p̄1 is the off diagonal component of V(p̂):

Cov(p̄0, p̄1) =
1

n2
[1, 0, 0]TV(p̂)[0,1, 0]

=
1

n2
1
Th′(X0β̂)X0ΣX

T
1 h

′(X1β̂)
T
1

3 Simulation Design

Our simulation design follows partly that of (Yoshida et al., 2017), which in turn follows

that of (Franklin et al., 2014).

3.1 Covariate Generation

We simulate ten covariates with the following distributions:
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Variable Generation Process
X1 Normal(0, 12)
X2 Log-Normal(0, 0.52)
X3 Normal(0, 22)
X4 Bernoulli(p = exp(2X1)/ exp(1 + exp(2X1)))
X5 Bernoulli(p = 0.2)
X6 Multinomial(p = (0.5, 0.3, 0.1, 0.05, 0.05)T )
X7 sin(X1)
X8 X2

2

X9 X3 ∗X4

X10 X4 ∗X5

3.2 Treatment Generation

Each subject’s treatment is generated from a multinomial distribution with probabilities

(ei,0, ei,1, ei,2). The probabilities represent propensity scores ei,t = Pr(Ti = t|xi), t = 0, 1, 2,

and are derived from a multinomial logistic model. We define the linear predictors for each

treatment as:
ηi,0 = xiα0

ηi,1 = xiα1

ηi,2 = xiα2

(6)

where x includes an intercept term xi,0 = 1 and the ten covariates xi,j, j = 1, · · · 10. Each

patient’s treatment probabilities for the three treatments are:

qi = exp(ηi,0) + exp(ηi,1) + exp(ηi,2)

ei,0 = Pr(zi = 0|xi) = exp(ηi,0)/qi

ei,1 = Pr(zi = 1|xi) = exp(ηi,1)/qi

ei,2 = Pr(zi = 2|xi) = exp(ηi,2)/qi

(7)

We select α1, α2 and α3 to give desired treatment proportions and propensity score

distributions. We simulate under 3 propensity score distributions that we judge to be

“good”, “fair”, and “poor”, and we simulate under two treatment prevalence proportions,

equal(33:33:33) and unequal(10:45:45). For each of these 3 x 2 = 6 treatment generating
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distributions, we present the coefficients and the resultant PS distributions for a sample of

5000 patients. The following pages detail each distribution.
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3.2.1 Equal (33:33:33) treatment prevalence, “good” PS overlap

α0 = {0.300,−0.027, 0.158, 0.188,−0.290,−0.300,−0.130, 0.140, 0.170,−0.019,−0.338}
α1 = {0.162,−0.040, 0.075, 0.181,−0.303,−0.048, 0.156, 0.051,−0.054, 0.395,−0.053}
α2 = {−0.401,−0.121,−0.222, 0.206, 0.360, 0.122, 0.311,−0.207, 0.146, 0.006,−0.249}

Figure 1: PS distribution for equal (33:33:33) treatment prevalence and good PS overlap.
The three PS components (e0, e1, e2) lie on a two-dimensional equilateral triangle in the
plane e0 + e1 + e2 = 1 and constrained by 0 <e0, e1, e2 <1.
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3.2.2 Equal (33:33:33) treatment prevalence, “fair” PS overlap

α0 = {0.599,−0.054, 0.316, 0.375,−0.580,−0.599,−0.261, 0.281, 0.339,−0.038,−0.676}
α1 = {0.323,−0.080, 0.150, 0.362,−0.606,−0.096, 0.312, 0.102,−0.107, 0.790,−0.106}
α2 = {−0.803,−0.242,−0.445, 0.411, 0.720, 0.244, 0.622,−0.415, 0.293, 0.011,−0.498}

Figure 2: PS distribution for equal (33:33:33) treatment prevalence and fair PS overlap. The
three PS components (e0, e1, e2) lie on a two-dimensional equilateral triangle in the plane
e0 + e1 + e2 = 1 and constrained by 0 <e0, e1, e2 <1.
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3.2.3 Equal (33:33:33) treatment prevalence, “poor” PS overlap

α0 = {1.199,−0.107, 0.633, 0.751,−1.160,−1.198,−0.522, 0.561, 0.679,−0.077,−1.351}
α1 = {0.646,−0.160, 0.301, 0.724,−1.211,−0.191, 0.623, 0.203,−0.215, 1.579,−0.212}
α2 = {−1.605,−0.483,−0.889, 0.822, 1.439, 0.488, 1.244,−0.829, 0.586, 0.023,−0.997}

Figure 3: PS distribution for equal (33:33:33) treatment prevalence and poor PS overlap.
The three PS components (e0, e1, e2) lie on a two-dimensional equilateral triangle in the
plane e0 + e1 + e2 = 1 and constrained by 0 <e0, e1, e2 <1.
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3.2.4 Unequal (10:45:45) treatment prevalence, “good” PS overlap

α0 = {0.300,−0.027, 0.158, 0.188,−0.290,−0.300,−0.130, 0.140, 0.170,−0.019,−0.338}
α1 = {1.762,−0.040, 0.075, 0.181,−0.303,−0.048, 0.156, 0.051,−0.054, 0.395,−0.053}
α2 = {1.199,−0.121,−0.222, 0.206, 0.360, 0.122, 0.311,−0.207, 0.146, 0.006,−0.249}

Figure 4: PS distribution for unequal (10:45:45) treatment prevalence and good PS overlap.
The three PS components (e0, e1, e2) lie on a two-dimensional equilateral triangle in the
plane e0 + e1 + e2 = 1 and constrained by 0 <e0, e1, e2 <1.
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3.2.5 Unequal (10:45:45) treatment prevalence, “fair” PS overlap

α0 = {0.599,−0.054, 0.316, 0.375,−0.580,−0.599,−0.261, 0.281, 0.339,−0.038,−0.676}
α1 = {2.173,−0.080, 0.150, 0.362,−0.606,−0.096, 0.312, 0.102,−0.107, 0.790,−0.106}
α2 = {1.047,−0.242,−0.445, 0.411, 0.720, 0.244, 0.622,−0.415, 0.293, 0.011,−0.498}

Figure 5: PS distribution for unequal (10:45:45) treatment prevalence and fair PS overlap.
The three PS components (e0, e1, e2) lie on a two-dimensional equilateral triangle in the
plane e0 + e1 + e2 = 1 and constrained by 0 <e0, e1, e2 <1.
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3.2.6 Unequal (10:45:45) treatment prevalence, “poor” PS overlap

α0 = {1.199,−0.107, 0.633, 0.751,−1.160,−1.198,−0.522, 0.561, 0.679,−0.077,−1.351}
α1 = {3.146,−0.160, 0.301, 0.724,−1.211,−0.191, 0.623, 0.203,−0.215, 1.579,−0.212}
α2 = {0.995,−0.483,−0.889, 0.822, 1.439, 0.488, 1.244,−0.829, 0.586, 0.023,−0.997}

Figure 6: PS distribution for unequal (10:45:45) treatment prevalence and poor PS overlap.
The three PS components (e0, e1, e2) lie on a two-dimensional equilateral triangle in the
plane e0 + e1 + e2 = 1 and constrained by 0 <e0, e1, e2 <1.
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3.3 Outcome Generation

We use a binomial logistic model to generate outcomes, and use the 10 covariates and

treatment as linear predictors. The outcome probability is:

logit(Pr(Yi = 1)) = β0+xT
i βX+β1I(ti = 1)+β2I(ti = 2)+βI,1xi,4I(ti = 1)+βI,2xi,4I(ti = 2)

(8)

where:

• β0 is intercept term that we adjust to set outcome prevalence

• βX are effects of the ten covariates

• β1 and β2 are effects of treatments 1 and 2 compared to treatment 0

• βI,1 and βI,2 are effect of interaction of covariate X4 and treatments 1 or 2, respectively.

Only used when simulating treatment effect heterogeneity

We select specific values of β based on desired simulation outcome prevalence, treatment

effects, and covariate effects:

Outcome Prevalence: We simulate under two different values of β0:

1. β0 = log(0.02) corresponds roughly to a “rare” outcome prevalence of 2%

2. β0 = log(0.10) corresponds roughly to a “common” outcome prevalence of 10%

Main Effects: For all simulations, we use the following covariate effects for the 10 covariates:

βX = (−0.15, 0.20, 0.10,−0.30, 0.30, 0.15,−0.50,−0.20, 0.40,−0.10)

Treatment Effects: We simulate under null and non-null true marginal relative risks, with

treatment 0 as the reference:

1. Null: RR1 = RR2 = 1
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2. Non-null: RR1 = 0.8, RR2 = 0.6

However, these are marginal relative risks, that are different from the conditional log

odds ratios β1 and β2. When simulating, we empirically find the β1 and β2 that provide the

desired effect sizes.

Heterogeneity: We simulate with and without heterogeneity, modeled as an interaction of

treatment and covariate X4:

1. No heterogeneity: βI,1 = βI,2 = 0

2. Heterogeneity: βI,1 = log(0.7), βI,2 = log(0.5)

3.4 Simulation Parameters

We simulate 24 “scenarios” that represent all combinations of different simulations set-

tings for treatment prevalence (equal, unequal), PS overlap (good, fair, poor), outcome

prevalence (rare, approximately 2%; common, approximately 10%), and true treatment ef-

fect (null, non-null). We simulate 1000 times with a sample size of 5000. We estimate the

two treatment effects RR1 and RR2 relative to reference treatment 0.

4 Propensity Score Methods

4.1 Propensity Score Estimation

Although we know the true PS for each patient, we use an estimated PS for PS adjust-

ment. Our PS estimation model is a multinomial logistic regression fit on the ten covariates

X1 through X10, with an intercept term.

4.2 Propensity Score Adjustment

We compare 10 PS adjustment methods that we list below. All outcome models include

intercept estimation. We use s generally to represent spline functions as described in each

method. We use the logit of the PS, e∗ for the PS splines. For the purpose of simplicity in
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these model equations, we use Z1 = I(Ti = 1) and Z2 = I(Ti = 2) as indicator variables for

treatments 1 and 2, respectively.

1. IPTW: regress outcome on treatment indicators using stabilized IPTW weights (Xu

et al., 2010)

wi = pei/ei,ti

where pk, k = 0, 1, 2 are the marginal treatment probabilities.

2. IPTW Truncated: truncate stabilized weights that lie outside the range [0.1, 10] to 0.1

or 10, as appropriate.

3. IPTW Truncated %: truncate stabilized weights only on high end that exceed 99th

percentile of weights among same treatment groups.

4. Outcome model: regress outcome on covariates directly without using the PS. Contin-

uous covariates are modeled with natural cubic splines with four interior knots placed

at evenly spaced quantiles. The splines are not smoothed.

Y ∼ Z1 +Z2 + s(X1) + s(X2) + s(X3) +X4 +X5 +X6 + s(X7) + s(X8) + s(X9) +X10

5. Cubic 1: regress outcome on treatments and natural cubic splines of PS that have one

internal knot located at the median. The splines are not smoothed.

Y ∼ Z1 + Z2 + s(e∗1) + s(e∗2)

6. Cubic 4: regress outcome on treatments and natural cubic splines of PS that have four

internal knots located at evenly spaced quantiles. The splines are not smoothed.

Y ∼ Z1 + Z2 + s(e∗1) + s(e∗2)
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7. TPRS 1D: regress outcome on treatments and separate thin plate regression splines

for each PS component. We use the default parameters in the “mgcv” R package that

uses 10 degrees of freedom for a 1-dimensional TPRS.

Y ∼ Z1 + Z2 + s(e∗1) + s(e∗2)

8. TPRS 2D: regress outcome of treatments and joint thin plate (tp) regression spline on

both PS components. We use the default parameters in the “mgcv” R package that

uses 27 degrees of freedom for a 2-dimensional TPRS.

Y ∼ Z1 + Z2 + s(e∗1, e
∗
2)

9. Cubic 4 + interaction: similar to Cubic 4, with interactions of treatment and PS

splines.

Y ∼ Z1 + Z2 + s(e∗1) + s(e∗2) + Z1 ∗ s(e∗1) + Z1 ∗ s(e∗2) + Z2 ∗ s(e∗1) + Z2 ∗ s(e∗2)

10. TPRS 2D + interaction: similar to TPRS 2D, with interactions of treatment and PS

spline:

Y ∼ Z1 + Z2 + s(e∗1, e
∗
2) + Z1 ∗ s(e∗1, e∗2) + Z2 ∗ s(e∗1, e∗2)

For methods using cubic splines, we use the estimated frequentist covariance matrix of

model parameters in our variance calculation for the marginal relative risk. For methods

using IPTW, we use a sandwich variance estimator that is the default approach in the

“sandwich” R package. For methods using thin plate regression splines, we use the Bayesian

covariance matrix calculated by the default “gam{mgcv}” function for our variance calcula-

tion, that has been shown to provide more accurate confidence interval estimates than the

frequentist covariance matrix in the presence of smoothing (Marra and Wood, 2012).
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For each scenario, we fit methods under four “settings”:

1. Heterogeneity: added treatment-covariate X4 interaction in outcome generating model

2. Trimming: based on PS, and applied to study population before PS adjustment

3. PS misspecification: intentional removal of covariate X9 from PS estimation process

4. Standard: no heterogeneity, trimming, or PS misspecification

PS misspecification is accomplished by intentionally removing covariate X9 from the PS

estimation model. We perform percentile based trimming (Stürmer et al., 2014) using a 1%

threshold. That is, for each of the three treatments k = 0, 1, 2, we find the 1st percentile of

{ei,k : ti = k}, then all patients of any treatment with ei,k smaller than this threshold are

trimmed.
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5 IPTW Diagnostics
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Figure 7: IPTW diagnostics for simulations under equal treatment prevalence and good
PS overlap. Top left graph: Log base 10 percentiles of IPTW weights. Tips are 1st and
99th percentile, box spans 5th to 95th percentile, middle line is median, dot is mean. Top
right graph: density of log IPTW weights. Bottom left graph: Absolute standardized mean
differences between treatment groups 1 and 0 before and after IPTW weighting.. Bottom
right graph: Absolute standardized mean differences between treatment groups 2 and 0
before and after IPTW weighting. Top row of each graph: misspecified PS setting. Middle
row of each graph: trimmed setting. Bottom row of each graph: standard and treatment
heterogeneity setting.
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Figure 8: IPTW diagnostics for simulations under equal treatment prevalence and fair PS
overlap. Top left graph: Log base 10 percentiles of IPTW weights. Tips are 1st and 99th
percentile, box spans 5th to 95th percentile, middle line is median, dot is mean. Top right
graph: density of log IPTW weights. Bottom left graph: Absolute standardized mean
differences between treatment groups 1 and 0 before and after IPTW weighting.. Bottom
right graph: Absolute standardized mean differences between treatment groups 2 and 0
before and after IPTW weighting. Top row of each graph: misspecified PS setting. Middle
row of each graph: trimmed setting. Bottom row of each graph: standard and treatment
heterogeneity setting.
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Figure 9: IPTW diagnostics for simulations under equal treatment prevalence and poor
PS overlap. Top left graph: Log base 10 percentiles of IPTW weights. Tips are 1st and
99th percentile, box spans 5th to 95th percentile, middle line is median, dot is mean. Top
right graph: density of log IPTW weights. Bottom left graph: Absolute standardized mean
differences between treatment groups 1 and 0 before and after IPTW weighting.. Bottom
right graph: Absolute standardized mean differences between treatment groups 2 and 0
before and after IPTW weighting. Top row of each graph: misspecified PS setting. Middle
row of each graph: trimmed setting. Bottom row of each graph: standard and treatment
heterogeneity setting.
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Figure 10: IPTW diagnostics for simulations under unequal treatment prevalence and good
PS overlap. Top left graph: Log base 10 percentiles of IPTW weights. Tips are 1st and
99th percentile, box spans 5th to 95th percentile, middle line is median, dot is mean. Top
right graph: density of log IPTW weights. Bottom left graph: Absolute standardized mean
differences between treatment groups 1 and 0 before and after IPTW weighting.. Bottom
right graph: Absolute standardized mean differences between treatment groups 2 and 0
before and after IPTW weighting. Top row of each graph: misspecified PS setting. Middle
row of each graph: trimmed setting. Bottom row of each graph: standard and treatment
heterogeneity setting.
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Figure 11: IPTW diagnostics for simulations under unequal treatment prevalence and fair
PS overlap. Top left graph: Log base 10 percentiles of IPTW weights. Tips are 1st and
99th percentile, box spans 5th to 95th percentile, middle line is median, dot is mean. Top
right graph: density of log IPTW weights. Bottom left graph: Absolute standardized mean
differences between treatment groups 1 and 0 before and after IPTW weighting.. Bottom
right graph: Absolute standardized mean differences between treatment groups 2 and 0
before and after IPTW weighting. Top row of each graph: misspecified PS setting. Middle
row of each graph: trimmed setting. Bottom row of each graph: standard and treatment
heterogeneity setting.
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Figure 12: IPTW diagnostics for simulations under unequal treatment prevalence and poor
PS overlap. Top left graph: Log base 10 percentiles of IPTW weights. Tips are 1st and
99th percentile, box spans 5th to 95th percentile, middle line is median, dot is mean. Top
right graph: density of log IPTW weights. Bottom left graph: Absolute standardized mean
differences between treatment groups 1 and 0 before and after IPTW weighting.. Bottom
right graph: Absolute standardized mean differences between treatment groups 2 and 0
before and after IPTW weighting. Top row of each graph: misspecified PS setting. Middle
row of each graph: trimmed setting. Bottom row of each graph: standard and treatment
heterogeneity setting.
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6 Simulation Results

In the following simulation results, the scenarios are labeled as (ex: “Equal / Good /

Common / Null, RR1”), where

• The first parameter refers to treatment prevalence (Equal, Nonequal)

• The second parameter refers to PS overlap (Good, Fair, Poor)

• The third parameter refers to outcome prevalence (Rare, Common)

• The fourth parameter refers to true treatment effect (Null, Non-null)

• The last parameter refers to which of two marginal relative risks (RR1 = 0.8, RR2 =

0.6)
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6.1 Equal / Good / Rare / Null
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6.2 Equal / Good / Rare / Non-null
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6.3 Equal / Good / Common / Null
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6.4 Equal / Good / Common / Non-null
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6.5 Equal / Fair / Rare / Null

29



6.6 Equal / Fair / Rare / Non-null

30



6.7 Equal / Fair / Common / Null

31



6.8 Equal / Fair / Common / Non-null

32



6.9 Equal / Poor / Rare / Null

33



6.10 Equal / Poor / Rare / Non-null

34



6.11 Equal / Poor / Common / Null

35



6.12 Equal / Poor / Common / Non-null
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6.13 Unequal / Good / Rare / Null

37



6.14 Unequal / Good / Rare / Non-null
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6.15 Unequal / Good / Common / Null

39



6.16 Unequal / Good / Common / Non-null

40



6.17 Unequal / Fair / Rare / Null

41



6.18 Unequal / Fair / Rare / Non-null

42



6.19 Unequal / Fair / Common / Null
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6.20 Unequal / Fair / Common / Non-null

44



6.21 Unequal / Poor / Rare / Null

45



6.22 Unequal / Poor / Rare / Non-null

46



6.23 Unequal / Poor / Common / Null

47



6.24 Unequal / Poor / Common / Non-null
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