Supplementary Information

Photophysical aspects of BODIPY-Coumarin conjugated sensor and detection of Al^{3+} in MCF-7 cell

Kumari Somlata Kashyap ${ }^{\text {a }}$, Sumit Kumar Hira, ${ }^{\text {b }}$ and Swapan Dey ${ }^{\text {a }}$ *

SI. No.	Table of content	Page No.
1	${ }^{1}$ HNMR Spectra of compound 2 and 7-(N,N-diethylamino)-3-acetyl coumarin	2
2	${ }^{1} \mathrm{H}-\mathrm{NMR} \mathrm{Spectra} \mathrm{of} \mathrm{R1} \mathrm{and} \mathrm{R1:} \mathrm{Al}^{3+}$	3
3	${ }^{13} \mathrm{C}$-NMR Spectra of compound 2, 3 and R1	4-5
4	ESI-MS of compound 2 and R1	5-6
5	LCMS of R1: $\mathbf{A l}^{3+}$ and FT-IR of R1 and R1: $\mathbf{A l ~}^{3+}$	6-7
6	Binding constant	7
7	Titration curve and job plots	7-8
8	Calculation of limit of detection (LOD)	8-9
9	pH studies	9-10
10	Comparing study	11-12

Fig. S1: ${ }^{1} \mathrm{H}$-NMR spectra of compound $3\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Fig.S2: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ compound 2

Fig. S3: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\mathbf{R 1}\left(\mathbf{C D C l}_{\mathbf{3}}, \mathbf{4 0 0} \mathbf{M H z}\right)$

Fig.S4: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\mathrm{R1}: \mathrm{Al}^{\mathbf{3 +}}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$

Fig. S5: ${ }^{13} \mathrm{C}$ NMR of compound 2

Fig. S6: ${ }^{13} \mathrm{C}$ NMR of compound 3

Fig. S7: ${ }^{13} \mathrm{C}$ NMR of R1

Fig. S8: LC-MS of compound $2(\mathbf{m} / \mathbf{z}, \%)$: calculated For $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{BF}_{2} \mathrm{~N}_{4} ; 304.5$, found: 303.5 [compound $2-\mathrm{H}^{+}$]

Fig. S9: ESI-MS of R1 (m/z,\%): Calculated 545.2771; found $546.2871\left(\mathrm{R} 1+\mathrm{H}^{+}\right)$

Fig. S10:LCMS-MS of R1: $\mathbf{A l}^{\mathbf{3 +}}(\mathbf{m} / \mathbf{z}, \%)$: Calculated 572.2; found $590.3\left(\mathrm{R} 1+\mathrm{Al}^{3+}+\mathrm{H}_{2} \mathrm{O}\right)$

Fig. S11: FTIR spectra of R1:

Fig. S12: FTIR spectra of R1:Al ${ }^{\mathbf{3 +}}$

Binding Constant calculation (Fluorescence)

Binding constant (Ka) analysis was calculated by using Benesi-Hildebrand linear regression analysis subsequent equation (i).

$$
\begin{equation*}
\left.1 /\left(\mathrm{I}-\mathrm{I}_{0}\right)=1 /\left(\mathrm{I}_{\infty}-\mathrm{I}_{0}\right) \mathrm{K}_{\mathrm{a}}[\mathrm{G}]+1 /\left(\mathrm{I}_{\infty}-\mathrm{I}_{0}\right)\right) \tag{i}
\end{equation*}
$$

$\mathrm{I}=\left(\mathrm{I}-\mathrm{I}_{0}\right),(1 / \Delta \mathrm{I})=$ reciprocal of intensity difference, was plotted against the reciprocal of concentration of guest ($1 /[\mathrm{G}]$), association constant $K_{a}=$ intercept/slope.

The binding constant (K_{a}) plot was calculated by plotting $1 / \Delta \mathrm{I}$ against $1 / /\left[\mathrm{Al}^{3+}\right]$. The binding constant of complex R1:Al ${ }^{3+}$ were obtained 4.6×10^{4}.

Fig. S13:Binding constant calculation was calculated using fluorescence spectra (a) plot with R1: $\mathbf{A l}^{3+}$

Fig.S14: Titration curve of $\mathbf{R 1}$ with different concentration of metal ions using Fluorescence technique (a) R1: $\mathbf{A l}^{\mathbf{3 +}}$

Fig.S15: Ratiometric analysis of complex using fluorescence technique by Job's plots in $\mathrm{CH}_{3} \mathrm{CN}$ (a) R1: $\mathbf{A l}^{\mathbf{3 +}}$.

Calculation of limit of detection (LOD):

The limit of detection of $\mathbf{R 1}: \mathbf{A l}^{3+}$ was calculated through fluorescence titration data. The limit of detection was calculated by using following equation.

$$
\mathrm{LOD}=\mathrm{K} \times \mathrm{SD} / \mathrm{S}
$$

Where, SD is the standard deviation of the receptor ($\mathbf{R 1}$) solution is $0.52, \mathrm{~K}=2$ or 3 (we take 2 in this case) and S is the slop of the calibration curve.
For R1: Al^{3+} We obtained slop value $=2.5 \times 10^{6}$ respectively from linear fit graph. By using above formula we get the value of limit of detection of $\mathbf{R 1}$: Al^{3+} is $4.1 \times 10^{-7} \mathrm{M}$.

Fig.S16: LOD of R1 towards R1: $\mathbf{A l}^{\mathbf{3 +}}$.

pH studies

pH titration experiment was carried out in the presence and absence of metal ions for investigating practical application of sensor. R1 was stable in between 6-13 pH range and maximum peak intensity was found at pH 1 due to protonation of $\mathbf{R 1}$. The intensity of $\mathbf{R 1}$ was almost decreased at basic condition. In the presence of $\mathbf{A l}^{\mathbf{3 +}}$ ion the maximum fluorescence intensity was appeared at pH range at 7 and complex $\mathbf{R 1}$: $\mathbf{A l}^{3+}$ produced pink fluorescent. So, R1 was applicable in biological environment for detecting of $\mathbf{A l}{ }^{3+}$ ion.

Fig. S17: pH titration curve in the presence and absence of metal ions (a) $\mathbf{R 1}$ at 598 nm .

Table for comparing chemosensor for $\mathbf{A l}^{\mathbf{3 +}}$ ion.

Sensors	Detection of limit $(\mu \mathrm{M})$	Ref
	0.1	1
	$0.1-0.3$	2

	0.6	6	
		0.4	Present

References

1. Liao, Z.-C.; Yang, Z.-Y.; Li, Y.; Wang, B.-D.; Zhou, Q.-X. Dyes and Pigments 2013, 97, 124-128
2. Sahana, A.; Banerjee, A.; Das, S.; Lohar, S.; Karak, D.; Sarkar, B.

Org Biomol Chem 2011, 9, 5523-9.
3. Park, H. M.; Oh, B. N.; Kim, J. H.; Qiong, W.; Hwang, I. H.; Jung, K.D. Tetrahedron Lett, 2011, 52, 5581-5584.
4. Zhu, J.; Zhang,Y.; Wang, Lun.; Sun, T.; Wang, M.; Wang,Y. Ma, D.; Yang,Q.; Tang , Y. Tetrahedron Lett. 2016.
5. Tian, J. Yan, X.; Yang, H.; Tian, F. RSC Adv, 2015, 00, 1-3.
6. Sen, S.; Mukherjee, T.; Chattopadhyay, B.; Moirangthem, A.; Basu, A.; Marek, J. Analyst 2012,137, 3975-81.

