Supplementary Information

Photophysical aspects of BODIPY-Coumarin conjugated sensor and detection of Al³⁺ in MCF-7 cell

Sl. No.	Table of content	Page No.
1	¹ HNMR Spectra of compound 2 and 7-(N,N-diethylamino)-3-acetyl coumarin	2
2	¹ H-NMR Spectra of R1 and R1: Al ³⁺	3
3	¹³ C-NMR Spectra of compound 2, 3 and R1	4-5
4	ESI-MS of compound 2 and R1	5-6
5	LCMS of R1: Al ³⁺ and FT-IR of R1 and R1: Al ³⁺	6-7
6	Binding constant	7
7	Titration curve and job plots	7-8
8	Calculation of limit of detection (LOD)	8-9
9	pH studies	9-10
10	Comparing study	11-12

Kumari Somlata Kashyap^a, Sumit Kumar Hira,^b and Swapan Dey^a*

Fig. S1: ¹H-NMR spectra of compound 3(CDCl₃, 400 MHz)

Fig.S2:¹H-NMR spectra of (CDCl₃, 400 MHz) compound 2

Fig.S4: ¹H-NMR spectra of R1:Al³⁺ (CDCl₃, 500 MHz)

Fig. S6: ¹³C NMR of compound 3

Fig. S7: ¹³C NMR of R1

Fig. S8: LC-MS of compound 2 (m/z,%): calculated For $C_{23}H_{25}BF_2N_4$; 304.5, **found**: 303.5 [compound 2-H⁺]

Fig. S9: ESI-MS of R1 (m/z,%): Calculated 545.2771; found 546.2871 (R1+H⁺)

Fig. S10:LCMS-MS of R1:Al³⁺ (m/z,%): Calculated 572.2; found 590.3 (R1+Al³⁺+H₂O)

Fig. S11: FTIR spectra of R1:

Fig. S12: FTIR spectra of R1:Al³⁺

Binding Constant calculation (Fluorescence)

Binding constant (Ka) analysis was calculated by using Benesi-Hildebrand linear regression analysis subsequent equation (i).

$$1/(I - I_0) = 1/(I_{\infty} - I_0)K_a[G] + 1/(I_{\infty} - I_0)) \qquad \dots \dots eqn. (i)$$

I = (I – I₀), (1/ Δ I) = reciprocal of intensity difference, was plotted against the reciprocal of concentration of guest (1/[G]),association constant K_a = intercept/slope.

The binding constant (K_a) plot was calculated by plotting $1/\Delta I$ against $1//[Al^{3+}]$. The binding constant of complex R1:Al³⁺ were obtained 4.6×10^4 .

Fig. S13:Binding constant calculation was calculated using fluorescence spectra (a) plot with **R1:**Al³⁺

Fig.S14: Titration curve of **R1** with different concentration of metal ions using Fluorescence technique (a) **R1:Al**³⁺

Fig.S15: Ratiometric analysis of complex using fluorescence technique by Job's plots in CH_3CN (a) **R1:Al³⁺**.

Calculation of limit of detection (LOD):

The limit of detection of $\mathbf{R1:Al}^{3+}$ was calculated through fluorescence titration data. The limit of detection was calculated by using following equation.

$LOD = K \times SD/S$

Where, SD is the standard deviation of the receptor (**R1**) solution is 0.52, K=2 or 3 (we take 2 in this case) and S is the slop of the calibration curve.

For **R1**:Al³⁺ We obtained slop value = 2.5×10^6 respectively from linear fit graph. By using above formula we get the value of limit of detection of **R1**: Al³⁺is 4.1×10^{-7} M.

Fig.S16: LOD of **R1** towards **R1:** AI^{3+} .

pH studies

pH titration experiment was carried out in the presence and absence of metal ions for investigating practical application of sensor. **R1** was stable in between 6-13 pH range and maximum peak intensity was found at pH 1 due to protonation of **R1**. The intensity of **R1** was almost decreased at basic condition. In the presence of Al^{3+} ion the maximum fluorescence intensity was appeared at pH range at 7 and complex **R1**: Al^{3+} produced pink fluorescent. So, **R1** was applicable in biological environment for detecting of Al^{3+} ion.

Fig. S17: pH titration curve in the presence and absence of metal ions (a) R1 at 598 nm.

Table for comparing chemosensor for Al^{3+} ion.

Sensors	Detection of limit (µM)	Ref
	0.1	1
N H N OH HO	0.1-0.3	2
N-COH	1	3
N NH ₂	0.1	4
MeO	0.1	5

References

1. Liao, Z.-C.; Yang, Z.-Y.; Li, Y.; Wang, B.-D.; Zhou, Q.-X. Dyes and Pigments 2013, 97, 124-128

2. Sahana, A.; Banerjee, A.; Das, S.; Lohar, S.; Karak, D.; Sarkar, B.

Org Biomol Chem 2011, 9, 5523-9.

3. Park, H. M.; Oh, B. N.; Kim, J. H.; Qiong, W.; Hwang, I. H.; Jung, K.D. Tetrahedron Lett, 2011, 52, 5581-5584.

4. Zhu, J.; Zhang, Y.; Wang, Lun.; Sun, T.; Wang, M.; Wang, Y. Ma, D.; Yang, Q.; Tang, Y. *Tetrahedron Lett.* **2016.**

5. Tian, J. Yan, X.; Yang, H.; Tian, F. RSC Adv, 2015, 00, 1-3.

6. Sen, S.; Mukherjee, T.; Chattopadhyay, B.; Moirangthem, A.; Basu, A.; Marek, J. *Analyst* **2012**,137, 3975-81.