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I Preliminary Lemmas

I.1 Regular Variation

With finite second moments, weak convergence is not sensitive to delicate tail features. This is captured by the

central limit theorem. However, weak convergence of sums of random variables without finite variance relies on

additional tail properties. The appropriate notion is regular variation. In this subsection, we take X and Y as

some generic univariate random variables, not necessarily the same as in the main paper.

Definition S.1 A random variable X has regularly varying tail at ∞ with index −γ < 0, if for all x > 0,

P[X > tx]/P[X > t] → x−γ as t → ∞. Similarly, X has regularly varying tail at −∞ if for all x > 0,

P[X < tx]/P[X < t] → x−γ as t → −∞. Assume P[X > 0] = 1, then it has regularly varying tail at 0 with

index γ if 1/X has regularly varying tail at ∞ with index −γ.

One special example of regular variation is “approximately polynomial tail”: assume P[X > x] = c(x)x−γ

with γ > 0 and c(x) tending to a strictly positive constant, then X has regularly varying tail at ∞ with index

−γ. Following is a complete characterization of regular variation.

Lemma S.1 Assume X has regularly varying tail at ∞ with index −γ, then for all x large enough,

P[X > x] = x−γc(x), with c(x) = L(x) exp

{∫ x

s

R(t)

t
dt

}
,

where L(x) tends to a strictly positive constant, limx→∞R(x) = 0, and s is some strictly positive constant.

If X has regularly varying right tail with index −γ, then it is clear that E[Xα1X>0] exists and is finite for

any α < γ. However, the expectation will be infinite for all α > γ. For the purpose of studying distributional

convergence of sums of heavy-tailed random variables, a more thorough characterization of the truncated moment

E[Xα10<X<x] is necessary.

Lemma S.2 Assume X has a regularly varying right tail at ∞ with index −γ, then for any α > γ,

E[Xα10<X<x]

xαP[X > x]
→ γ

α− γ
, as x→∞.

In the main paper, we take X to be the inverse probability weight multiplied by the binary indicator.

However, the primary quantity of interest involves the outcome variable, and it is unclear how multiplication

affects the tail behavior. The following lemma gives sufficient conditions under which the product XY has the

same tail index as X. Despite being intuitive, it doesn’t seem to be available in the literature.

Lemma S.3 Assume X is nonnegative and has regularly varying tail with index −γ. Further assume (i)

E[|Y |α|X = x] is uniformly bounded for some α > γ, and (ii) there exists a distribution F , such that for all

bounded and continuous `(·), E[`(Y )|X = x]→
∫
`(y)F (dy) as x→∞. Then

lim
x→∞

P[XY > x]

P[X > x]
= lim
x→∞

E[|Y |γ1Y >0|X = x], lim
x→∞

P[XY < −x]

P[X > x]
= lim
x→∞

E[|Y |γ1Y <0|X = x].

Therefore the product XY has regularly varying right (resp. left) tail with index −γ, if limx→∞ P[Y > 0|X =

x] > 0 (resp. limx→∞ P[Y < 0|X = x] > 0).

The first condition that E[|Y |α|X = x] is uniformly bounded is intuitive. To ensure the product that XY

has the same tail behavior as X, one needs to assume that the tail of Y is thin enough.
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In general, it is not possible to drop the second requirement that Y |X = x converges in distribution, unless

one is willing to impose additional structures on the conditional distribution. Following is a example, which

shows that when the conditional distribution of Y “oscillates” as X tends to infinity, the product XY does not

have a regularly varying tail even when Y is bounded.

Example S.1 Assume Y = 1 for X ∈ (2j , 2j+1] for j = 1, 3, 5, · · · , and equals 0 otherwise, then on the grid

(2j)j≥1, XY has right tail:

P[XY > 2j ] =

∞∑
k=j, k odd

FX(2k+1)− F (2k).

Now we take limit j →∞ along the sequence of odd numbers,

lim
j→∞, j odd

P[XY > 2j ]

P[X > 2j ]
= lim
j→∞, j odd

∞∑
k=j,k odd

FX(2k+1)− F (2k)

P[X > 2j ]
=
(

1− 2−γ
) ∞∑
k=0

2−2kγ =
1− 2−γ

1− 2−2γ
.

If we take the limit along the sequence of even numbers,

lim
j→∞, j even

P[XY > 2j ]

P[X > 2j ]
=
(

1− 2−γ
) ∞∑
k=1

2−2kγ = 2−2γ 1− 2−γ

1− 2−2γ
.

Since X has regularly varying tail and the ratio P[XY > x]/P[X > x] oscillates between two numbers, we

conclude XY does not have regularly varying tail. ‖

I.2 Distributional Convergence

Assume (Xi,n)1≤i≤n,n≥1 is a triangular array, such that for each n, (Xi,n)1≤i≤n are independently and identically

distributed. The following lemma characterizes the asymptotic distribution of the sum
∑n
i=1Xi,n (assuming it

exists).

Lemma S.4 Assume E[Xi,n] = 0 for all n, and that the sum
∑n
i=1Xi,n converges in distribution. Then the

limiting distribution has a characteristic function given by the canonical form:

ψ(ζ) = exp

∫
R

eiζx − 1− iζx
x2

M(dx),

where M is a nonnegative measure satisfying (i) M(I) < ∞ for all bounded intervals I, and (ii) the integrals∫∞
c
x−1M(dx) and

∫ −c
−∞ x−1M(dx) are finite for all c > 0.

The next lemma gives conditions under which the distributional convergence of the partial sum,
∑n
i=1Xi,n,

happens.

Lemma S.5 Assume E[Xi,n] = 0 for all n, and let Fn be the distribution function of Xi,n. Then the sum∑n
i=1Xi,n converges in distribution if and only if, for some measure M ,

nE
[
X2
i,n1Xi,n∈I

]
→M(I)

for all compact intervals with M(∂I) = 0; and

n(1− Fn(c))→
∫ ∞
c

x−2M(dx), nFn(−c)→
∫ −c
−∞

x−2M(dx),
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for all c > 0 with M({c}) = 0. In this case, the limiting distribution is infinitely divisible, and its characteristic

function is given by the form in Lemma S.4.

II Additional Results

In this section we provide additional results on (i) large sample properties of our local polynomial bias estimator,

and (ii) generalizations of our IPW framework to provide robust inference for treatment effect estimands and

parameters defined by nonlinear estimating equations.

II.1 Local Polynomial Regression

In the main paper, local polynomial regression is employed for estimating the trimming bias. To be more

specific, the outcome variable is regressed on the probability weight in a region local to the origin. That is,

β̂ =
[
β̂0, β̂1, · · · , β̂p

]′
= argmin
β0,β1,··· ,βp

n∑
i=1

Di

[
Yi −

p∑
j=0

βje(Xi)
j
]2
1e(Xi)≤hn ,

where for ease of exposition we assume that the true probability weights are used. The following lemma

characterizes the properties of the local polynomial estimates.

Lemma S.6 Assume Assumption 1 and 2 hold. In addition, assume (i) µ1(·) is p + 1 times continuously

differentiable; (ii) µ2(0) − µ1(0)2 > 0; and (iii) the bandwidth sequence satisfies nhnP[e(X) ≤ hn] → ∞ and

nh2p+3
n P[e(X) ≤ hn] = O(1). Let β =

[
µ1(0), µ

(1)
1 (0), · · · , 1

p!µ
(p)
1 (0)

]′
and β̂ be defined in the above, then

√
nhnP[e(X) ≤ hn]Hn

(
β̂ − β − hp+1

n H−1
n

µ
(p+1)
1 (0)

(p+ 1)!
S−1R

)
 N

(
0, (µ2(0)− µ1(0)2)S−1

)
,

where Hn = diagonal(1, hn, h
2
n, · · · , hpn), S = (sij)1≤i,j≤p with sij = (γ0− 1)/(γ0 + i+ j− 2), and R = (ri)1≤i≤p

with ri = (γ0 − 1)/(γ0 + i+ p).

II.2 Treatment Effect Estimation

In this subsection, we extend the IPW framework to provide robust inference for treatment effect estimands

when the probability weights can be close to zero and one. Let the binary indicator denote a treatment status:

D = 1 for the treatment group and 0 for the control group. The corresponding potential outcomes are denoted by

Y (1) and Y (0), respectively. The observed outcome is Y = DY (1) + (1−D)Y (0). We assume that, conditional

on the covariates X, potential outcomes (Y (1), Y (0)) and the treatment status D are independent. Following

the convention in the literature, we use the terminology “propensity score” rather than probability weight. We

ignore the issue of using estimated propensity scores for ease of exposition (see Section 2.3 for discussions).

Treatment Effect on the Treated (ATT)

We first consider the treatment effect on the treated estimand: τ ATT0 = E[Y (1)−Y (0)|D = 1]. Both Assumption

1 and 2 can be modified in a straightforward way.
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Assumption ATT (i) For some γ0 > 1, the propensity score has regularly varying tail with index γ0 − 1 at 1:

lim
t↓0

P[1− e(X) ≤ tx]

P[1− e(X) ≤ t]
= xγ0−1, for all x > 0.

(ii) For some ε > 0, E
[
|Y (0) + Y (1)|(γ0∨2)+ε

∣∣e(X) = x
]

is uniformly bounded. There exists a probability

distribution F(0), such that for all bounded and continuous `(·), E[`(Y (0))|e(X) = x]→
∫
R `(y)F(0)(dy) as x ↑ 1.

Using inverse probability weighting, a natural estimator of τ ATT0 is

τ̂ ATTn,bn =
1

n1

n∑
i=1

[
DiYi −

e(Xi)

1− e(Xi)
(1−Di)Yi11−e(Xi)≥bn

]
=

1

n

n∑
i=1

(Di − e(Xi))Yi

P̂[D = 1](1− e(Xi))
11−e(Xi)≥(1−Di)bn ,

where n1 =
∑n
i=1Di is size of the treatment group, and P̂[D = 1] = n1/n. It should be clear that propensity

scores that are close to 1 will pose a challenge to both estimation and inference. The following proposition

characterizes the large sample properties of τ̂ ATTn,bn
.

Proposition S.1 (Asymptotic Distribution of the ATT Estimator) Assume Assumption ATT holds,

bn → 0, and α(0),+(0) + α(0),−(0) > 0, where

α(0),+(x) = lim
t→1

E
[
|Y (0)|γ01Y (0)>x

∣∣∣e(X) = t
]
, α(0),−(x) = lim

t→1
E
[
|Y (0)|γ01Y (0)<x

∣∣∣e(X) = t
]
.

Let an be defined from

n

a2
n

E

[∣∣∣∣ (D − e(X))Y

P[D = 0](1− e(X))
− τ ATT0

∣∣∣∣2 1(∣∣∣∣ (D − e(X))Y

P[D = 0](1− e(X))

∣∣∣∣ ≤ an)
]
→ 1.

(i) If γ0 ≥ 2, let an,bn = an, then n
an,bn

(τ̂ ATTn,bn
− τ ATT0 − Bn,bn) converges to the standard Gaussian distribution.

(ii.1) No trimming, light trimming and moderate trimming: if γ0 < 2 and bnan → t ∈ [0,∞), let an,bn = an,

then n
an,bn

(τ̂ ATTn,bn
− τ ATT0 − Bn,bn) converges in distribution, with the asymptotic characteristic function given by

ψ(ζ) = exp

{∫
R

eiζx − 1− iζx
x2

M(dx)

}
,

where M(dx) = dx

[
2− γ0

α(0),+(0) + α(0),−(0)
|x|1−γ0

(
α(0),+(−tx)1x<0 + α(0),−(−tx)1x≥0

)]
.

(ii.2) Heavy trimming: if γ0 < 2 and bnan → ∞, let an,bn =
√
nV[ (D−e(X))Y

P[D=1](1−e(X))11−e(X)≥(1−D)bn ], then
n

an,bn
(τ̂ ATTn,bn

− τ ATT0 − Bn,bn) converges to the standard Gaussian distribution.

For the trimmed ATT estimator (i.e., bn > 0), observations from the control group with propensity scores

above 1− bn are discarded, and it can be shown that the trimming bias is

Bn,bn =
1

P[D = 1]
E
[
e(X)E[Y (0)|e(X)]1e(X)≥1−bn

]
.

To implement bias correction, one first regresses the outcome variable on a p-th order polynomial of the propen-

sity score, using only observations from the control group:

[
β̂0, β̂1, · · · , β̂p

]′
= argmin
β0,β1,··· ,βp

n∑
i=1

(1−Di)
[
Yi −

p∑
j=0

βje(Xi)
j
]2
1e(Xi)≥1−hn .
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Then the bias is estimated by

B̂n,bn =
1

n1

n∑
i=1

p∑
j=0

β̂je(Xi)
j+11e(Xi)≥1−bn .

Average Treatment Effect (ATE)

The average treatment effect, τ ATE0 = E[Y (1)−Y (0)], is another commonly employed treatment effect estimand.

Because both small and large propensity scores can lead to “small denominators,” Assumptions 1 and 2 have

to be properly modified. To be specific, we require

Assumption ATE (i) For some γ0 > 1 and ω ∈ [0, 1],

lim
t↓0

P[e(X) ≤ t]
P[e(X) ≤ t] + P[1− e(X) ≤ t]

= ω,

and lim
t↓0

P[e(X) ≤ tx] + P[1− e(X) ≤ tx]

P[e(X) ≤ t] + P[1− e(X) ≤ t]
= xγ0−1, for all x > 0.

(ii) For some ε > 0, E[|Y (1) + Y (0)|(γ0∨2)+ε|e(X) = x] is uniformly bounded. Further, there exist probability

distributions, F(1) and F(0), such that for all bounded and continuous `(·), E[`(Y (1))|e(X) = x]→
∫
`(y)F(1)(dy)

and E[`(Y (0))|e(X) = 1− x]→
∫
`(y)F(0)(dy) as x ↓ 0.

Note that in part (i), we do not require the two tails of the propensity score having the same index, since

it is possible to have ω = 0 or 1. Asymptotically, the heavier tail “wins.” Part (ii) takes into account that both

potential outcomes can affect the tail behavior of the estimator. The following is a natural estimator of ATE

using inverse probability weighting:

τ̂ ATEn,bn =
1

n

n∑
i=1

[
DiYi
e(Xi)

1e(Xi)≥bn −
(1−Di)Yi
1− e(Xi)

1e(Xi)≤1−bn

]

=
1

n

n∑
i=1

(2Di − 1)Yi
1−Di + (2Di − 1)e(Xi)

11−Di+(2Di−1)e(Xi)≥bn . (S.1)

For ATE estimation, trimming can lead to further complications beyond affecting the limiting distribution

and introducing a bias: different trimming thresholds can be applied to the treatment and control groups.

For the treatment group (D = 1), it is natural to discard observations with small propensity scores, while for

the control group (D = 0) observations with large propensity scores will be dropped. To see how having two

trimming thresholds can complicate the asymptotic analysis, assume ω = 1 so that the propensity score has

a heavier left tail, and Proposition S.2 essentially reduces to Theorem 1. When different trimming thresholds

are applied to small and large propensity scores in the treatment and control groups, however, the relative

magnitude of the two tails can be overturned. To see this, consider the extreme scenario where fixed trimming

is applied to the treatment group but no trimming (or light trimming) for the control group. Then the trimmed

ATE estimator will be greatly influenced by the relatively heavier right tail of the propensity score (i.e., “small

denominators” in the D = 0 subsample).

To avoid cumbersome notation and lengthy discussions on each possible scenarios, we instead focus on

the “symmetric trimming” in (S.1), which is easy to analyze and implement, but employing different trim-

ming thresholds is also justified in practice. As discussed, trimming introduces a bias which is generally non-

negligible. For estimating the ATE, however, it is possible to achieve “small bias” by choosing the two trimming

thresholds appropriately. To see this, the trimming bias in (S.1) is Bn,bn = E[E[Y (0)|e(X)]1e(X)≥1−bn −
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E[Y (1)|e(X)]1e(X)≤bn ] ≈ E[Y (0)|e(X) = 1]P[e(X) ≥ 1 − bn] − E[Y (1)|e(X) = 0]P[e(X) ≤ bn]. Assuming that

the propensity score has similar tails at the two ends and that the two conditional expectations have the same

sign and magnitude, then it is possible to use different trimming thresholds so that the two components in

the bias formula cancel each other. However, this strategy is not always feasible, especially when the two tails

behave very differently.

Assumption ATE suffices to characterize the tail of (2D−1)Y
(1−D+(2D−1)e(X)) . For next result, let

α(1),+(x) = lim
t→0

E
[
|Y (1)|γ01Y (1)>x

∣∣∣e(X) = t
]
, α(1),−(x) = lim

t→0
E
[
|Y (1)|γ01Y (1)<x

∣∣∣e(X) = t
]
,

and re-define α+(x) and α−(x) as

α+(x) = ωα(1),+(x) + (1− ω)α(0),−(−x), α−(x) = ωα(1),−(x) + (1− ω)α(0),+(−x).

Proposition S.2 (Asymptotic Distribution of the ATE Estimator) Assume Assumption ATE holds,

bn → 0, and α(0),+(0) + α(0),−(0) > 0. Let an be defined from

n

a2
n

E

[∣∣∣∣ (2D − 1)Y

1−D + (2D − 1)e(X)
− θ0

∣∣∣∣2 1(∣∣∣∣ (2D − 1)Y

1−D + (2D − 1)e(X)

∣∣∣∣ ≤ an)
]
→ 1.

(i) If γ0 ≥ 2, let an,bn = an, then n
an,bn

(τ̂ ATEn,bn
− τ ATE0 − Bn,bn) converges to the standard Gaussian distribution.

(ii.1) No trimming, light trimming and moderate trimming: if γ0 < 2 and bnan → t ∈ [0,∞), let an,bn = an,

then n
an,bn

(τ̂ ATEn,bn
− τ ATE0 − Bn,bn) converges in distribution, with the asymptotic characteristic function given by

ψ(ζ) = exp

{∫
R

eiζx − 1− iζx
x2

M(dx)

}
,

where M(dx) = dx

[
2− γ0

α+(0) + α−(0)
|x|1−γ0

(
α+(tx)1x≥0 + α−(tx)1x<0

)]
.

(ii.2) Heavy trimming: if γ0 < 2 and bnan →∞, let an,bn =
√
nV[ (2D−1)Y

(1−D+(2D−1)e(X))11−D+(2D−1)e(X)≥bn ], then
n

an,bn
(τ̂ ATEn,bn

− τ ATE0 − Bn,bn) converges to the standard Gaussian distribution.

Bias correction can be implemented according to Algorithm 1 with a straightforward modification: one first

runs two local polynomial regressions, one for the treatment group and the other for the control group:

[
β̂l0, β̂

l
1, · · · , β̂lp

]′
= argmin
β0,β1,··· ,βp

n∑
i=1

Di

[
Yi −

p∑
j=0

βje(Xi)
j
]2
1e(Xi)≤hn

[
β̂r0, β̂

r
1, · · · , β̂rp

]′
= argmin
β0,β1,··· ,βp

n∑
i=1

(1−Di)
[
Yi −

p∑
j=0

βje(Xi)
j
]2
1e(Xi)≥1−hn .

Then the bias is estimated by

B̂n,bn =
1

n

n∑
i=1

p∑
j=0

(
β̂rj1e(Xi)≥1−bn − β̂

l
j1e(Xi)≤bn

)
e(Xi)

j .

We assume the same bandwidth hn is used for the two local polynomial regressions for simplicity, although in

practice different bandwidths can be employed.

Finally, we compare the trimmed ATE estimator τ̂ ATEn,bn
in (S.1) to another commonly used trimming strategy.
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Trimming in (S.1) can be understood as “discarding observations with small denominators.” It is different,

however, from

τ̌ ATEn,bn =
1

n

n∑
i=1

[
DiYi
e(Xi)

− (1−Di)Yi
1− e(Xi)

]
1bn≤e(Xi)≤1−bn ,

which “discards observations with small or large propensity scores.” To see how bias correction can be conducted

for τ̌ ATEn,bn
, we note that its bias has four terms:

Bn,bn,1(τ̌ ATEn,bn) = E[Yi|Di = 0, e(Xi) ≤ bn], Bn,bn,2(τ̌ ATEn,bn) = E[Yi|Di = 1, e(Xi) ≤ bn]

Bn,bn,3(τ̌ ATEn,bn) = E[Yi|Di = 0, e(Xi) ≥ 1− bn], Bn,bn,4(τ̌ ATEn,bn) = E[Yi|Di = 1, e(Xi) ≥ 1− bn].

Term Bn,bn,1(τ̌ ATEn,bn
) and Bn,bn,4(τ̌ ATEn,bn

) can be easily estimated by a sample average without introducing small

denominators, as

B̂n,bn,1(τ̌ ATEn,bn) =
1

n

n∑
i=1

(1−Di)Yi
1− e(Xi)

1e(Xi)≤bn , B̂n,bn,4(τ̌ ATEn,bn) =
1

n

n∑
i=1

DiYi
e(Xi)

1e(Xi)≥1−bn ,

and indeed, τ̌ ATEn,bn
+ B̂n,bn,1(τ̌ ATEn,bn

) + B̂n,bn,4(τ̌ ATEn,bn
) = τ̂ ATEn,bn

. To correct for the other bias terms, Bn,bn,2(τ̌ ATEn,bn
) and

Bn,bn,3(τ̌ ATEn,bn
), it will require the use of our local polynomial bias correction technique.

Whether the researcher should choose τ̌ ATEn,bn
without bias correction (and hence reinterpret the parameter)

or employ τ̂ ATEn,bn
with bias correction depends on the specific dataset and the distribution of the propensity score

(or, equivalently, the covariates distributions for the control and treatment group). For example, there might be

a spike very close to zero (or one) in the propensity score distribution, or that the propensity score can actually

be zero (or one). In either case, bias correction requires extrapolating a local polynomial regression, and hence

may not be very reliable.

II.3 General Estimating Equation

We employ the same notation used in Section 1 and 2 of the main paper. Instead of focusing on a popula-

tion mean, the parameter θ0 is defined by a possibly nonlinear moment condition E[µ1(e(X), θ0)] = 0, where

µ1(e(X), θ) = E[g(Y,X, θ)|e(X), D = 1] and g is a known function. Alternatively, we have E[Dg(Yi, Xi, θ0)/e(X)] =

0. For ease of exposition, we assume that both the parameter and the moment condition are univariate. To

estimate θ0, one can solve the following sample analogue:

0 =
1

n

n∑
i=1

Dig(Yi, Xi, θ̂n,bn)

e(Xi)
1e(Xi)≥bn .

As long as the trimming threshold bn shrinks to zero as the sample size increases, the trimmed estimator

θ̂n,bn will be consistent for θ0 under mild regularity conditions (for example, by employing a uniform law of large

numbers argument, such as Newey and McFadden 1994). Assuming this is the case, we can employ a Taylor

expansion and linearize the estimator:

n

an,bn
(θ̂n,bn − θ0 − Σ0Bn,bn) =

Σ0

an,bn

n∑
i=1

[
DiGi
e(Xi)

1e(Xi)≥bn − Bn,bn

]
+ op(1),

Σ0 =

(
−E

[
∂

∂θ
µ1(e(X), θ0)

])−1

, Bn,bn = −E[µ1(e(X), θ0)1e(X)≤bn ]. (S.2)
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The bias term Bn,bn only represents the leading bias in an asymptotic linear expansion, with higher order bias

absorbed into the op(1) term. The bias arises because after trimming the estimating equation may not have a

zero mean in finite samples. Assuming µ1(·) is continuous in its first argument, the bias can be further simplified

as Bn,bn = −µ1(0, θ0)P[e(X) ≤ bn], which gives its precise order. From this, one can immediately see that if

µ1(x, θ0) = 0 for all x small enough, trimming does not induce any bias, and at the same time can improve the

performance of the IPW estimator. Such “small bias” scenario, however, is difficult to justify in practice because

it requires that the information provided by observations with small probability weights does not feature in the

estimating equation.

Once the estimator has been linearized as above, we can prove a result similar to Theorem 1. To economize

notation, define the random variables Gi(θ) = g(Yi, Xi, θ) and Gi = Gi(θ0). We make the following assumption.

Assumption GEE (i) θ0 is the unique root of E[µ1(e(X), θ)] = 0 in the interior of a compact parameter space

Θ. (ii) g(Y,X, θ) is continuously differentiable in θ, and E[supθ∈Θ |g(Yi, Xi, θ)| ∨ | ∂∂θg(Yi, Xi, θ)|] < ∞. (iii)

For some ε > 0, E[|G|(γ0∨2)+ε|e(X) = x,D = 1] is uniformly bounded. There exists a probability distribution F ,

such that for any bounded and continuous function `, E[`(G)|e(X) = x,D = 1]→
∫
R `(y)F (dy) as x ↓ 0.

The following proposition characterizes the large-sample properties of the IPW-based GEE estimator.

Proposition S.3 (Asymptotic Distribution of the GEE Estimator) Assume Assumptions 1 and GEE

hold, bn → 0, and αG,+(0) + αG,−(0) > 0, where

αG,+(x) = lim
t→0

E
[
|G|γ01G>x

∣∣∣e(X) = t,D = 1
]
, αG,−(x) = lim

t→0
E
[
|G|γ01G<x

∣∣∣e(X) = t,D = 1
]
.

Let an be such that

n

a2
n

E

[∣∣∣∣ DGe(X)

∣∣∣∣2 1|DG/e(X)|≤an

]
→ 1.

(i) If γ0 ≥ 2, let an,bn = an, then n
an,bn

(θ̂n,bn − θ0 − Σ0Bn,bn) converges to the standard Gaussian distribution.

(ii.1) No trimming, light trimming and moderate trimming: if γ0 < 2 and bnan → t ∈ [0,∞), let an,bn = an,

then n
an,bn

(θ̂n,bn − θ0 − Σ0Bn,bn) converges in distribution, with the asymptotic characteristic function given by

ψ(ζ) = exp

{∫
R

eiΣ0ζx − 1− iΣ0ζx

x2
M(dx)

}
,

where M(dx) = dx

[
2− γ0

αG,+(0) + αG,−(0)
|x|1−γ0

(
αG,+(tx)1x≥0 + αG,−(tx)1x<0

)]
.

(ii.2) Heavy trimming: if γ0 < 2 and bnan →∞, let an,bn =
√
nV[DG/e(X)1e(X)≥bn ], then n

an,bn
(θ̂n,bn − θ0 −

Σ0Bn,bn) converges to the standard Gaussian distribution.

Proposition S.3 can be further generalized to a vector-valued parameter. As long as the moment condition

permits identification (and consistent estimation), one can employ the Cramér-Wold device to characterize the

limiting distribution.

Selecting the trimming threshold is more complicated, since now the conditional first and second moment

cannot be estimated directly. It is possible to employ a three-step procedure. In the first step, one constructs

a pilot point estimate. Next, one can estimate the conditional moments applying local polynomial regression,

with Gi(θ̂n,bn) being the dependent variable. In the final step, the trimming threshold is chosen by plugging

the second-step estimated conditional moments into the procedure of Theorem 2.
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As a final remark, bias correction is still feasible in this setting by exploiting the asymptotic linear repre-

sentation in (S.2). To form the bias estimate, one can employ the local polynomial regression technique and

regress Gi(θ̂n,bn) on the probability weights to form an estimate of the bias Bn,bn (Algorithm 1). Then a bias

estimate can be constructed as Σ̂nBn,bn , where Σ̂n estimates Σ0 as by a sample average.

III Simulation Evidence

In our main simulation design, the probability weight is distributed according to P[e(X) ≤ x] = xγ0−1 with

γ0 ∈ {1.3, 1.5, 1.9}. A typical realization with γ0 = 1.5 is given in Figure S.1. With γ0 = 1.5, the convergence

rate of the IPW estimator is n1/3. Conditional on the weight and D = 1, the outcome variable is generated as

µ1(e(X)) + η, where the mean equation is either cos(2πe(X)) or 1− e(X), and the error η follows a chi-square

distribution with four degrees of freedom, and is centered and scaled to have zero mean and unit variance.

In the first specification, the conditional mean function is nonlinear, and a typical realization of the outcome

variable is given in Section 3, Figure 1. In the second specification, the leading bias remains the same, but

the conditional mean function is linear in the probability weight. Our bias correction technique is therefore

expected to perform well.

Throughout, we use 5,000 Monte Carlo repetitions, and for each repetition, 1,000 subsampling iterations

are used with subsample size m = bn/ log(n)c, and the full sample size is n ∈ {2, 000, 5, 000, 10, 000}. We

follow Theorem 2 to set the trimming threshold, by solving b̂snP̂[e(Xi) ≤ b̂n] = (2n)−1 with s ∈ {1, 1.5, 2, 3}.
For s = 1, the trimming threshold is rate optimal (in terms of the leading mean squared error) and corresponds

to moderate trimming. The other cases fall into the heavy trimming category. Bias correction is based on

Algorithm 1 with local linear regression.

The first set of simulation results are collected in Table S.1 and S.2. Under “Conventional” we report bias,

standard deviation and root mean squared error of the IPW estimator, both with and without trimming. Note

that they have been scaled by n1−1/γ0 = n1/3. We also report empirical coverage of the conventional Gaussian-

based confidence interval under “cov,” [θ̂n,bn ± 1.96 · Sn,bn/
√
n]. Average confidence interval length is reported

under “|ci|,” scaled by n1−1/γ0 = n1/3. We also include the trimming strategy proposed by Crump et al. (2009),

and report the performance of the point estimate and the associated Gaussian-based confidence interval. Under

“Robust” we report bias, standard deviation, and root mean squared error of the bias-corrected IPW estimator,

θ̂bcn,bn (Algorithm 1). Note that without trimming (the first row of each table), the bias correction term is exactly

zero, which is why the bias, standard deviation, and root mean squared error remain the same. Under “cov”

we report empirical coverage of the subsampling-based confidence interval (Algorithm 2). Also reported is the

average length of the subsampling-based confidence interval under “|ci|.” In the following, we highlight several

observations from Table S.1.

First, inference based on the Gaussian approximation performs poorly, as predicted by our theoretical

results. Without trimming, the limiting distribution of the IPW estimator is heavy-tailed (Theorem 1(ii.1)),

and hence using critical values computed from Gaussian quantiles lead to confidence intervals that are overly

optimistic/narrow. Although heavy trimming can help restore asymptotic Gaussianity (Theorem 1(ii.2)), it is

unclear how well distributional approximation based on this result performs in samples of moderate size. In

addition, trimming introduces a bias that can significantly shift the limiting distribution away from the target

parameter. Indeed, in a sample of size 2, 000, using 0.1 as the trimming threshold will lead to a bias that is so

severe that a nominal 95% confidence interval will have almost zero coverage: the researcher essentially changes

the target estimand.

Second, it is not surprising that employing a larger trimming threshold can help stabilize the estimator,
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leading to a smaller empirical standard deviation. However, the mean squared error increases due to the

trimming bias. In addition, by comparing the scaled bias across the three panels in Table S.1, it is clear that the

bias is explosive when heavy trimming is used. We also employ the trimming strategy of Crump et al. (2009).

Since their method is based on minimizing an asymptotic variance term, it is not surprising that it can lead to

a relatively large trimming threshold, which in turn implies a large trimming bias.

Third, despite the fact that the conditional mean function is highly nonlinear, our bias correction procedure

successfully removes most of the bias, making the subsampling-based confidence interval having an empirical

coverage very close to the 95% nominal level. The performance of our inference procedure is quite robust across

a range of trimming threshold choices. For the very heavy trimming case, under-coverage remains to be an issue

even with bias correction, because it is quite difficult to estimate a nonlinear function local to a point where

observations are scarce. In addition, bias correction may introduce extra variability in samples of moderate size.

This is again confirmed by our simulation results, and is why we recommend conduct bias correction not only

for the main estimator but also in each subsampling iteration.

For the untrimmed IPW estimator (the first row of each table), coverage of the subsampling-based confi-

dence interval is still not very close to the nominal 95% level, and it tends to be wide. Having a wide confidence

interval in this case is unavoidable: with small denominators entering the IPW estimator and no trimming, the

asymptotic distribution is Lévy stable, which is heavy-tailed. As for the unsatisfactory coverage, it is recognized

in the literature that conducting inference for the mean of heavy-tailed random variables is difficult, and cov-

erage of subsampling-based confidence intervals may not be very close to the nominal level. Compared to the

untrimmed IPW estimator, the subsampling-based confidence interval using the bias-corrected and trimmed

IPW estimator performs much better. Therefore, with small denominators entering the IPW estimator, we

recommend employ some degree of trimming according to Theorem 2, and conduct bias correction.

Now we consider how the form of the conditional mean function affects the performance of our procedure.

In Table S.2, the conditional mean is a linear function of the probability weight. If this is known a priori, a better

estimation strategy is to fit a global linear regression and extrapolate to observations with small probability

weights. Such regression-based estimator will converge at the
√
n-rate and will be asymptotically Gaussian. In

practice, however, the shape of the conditional mean function is rarely known, so the setting in Table S.2 is

best understood as a favorable situation in which our bias correction and inference procedure are expected to

perform well. Indeed, the remaining bias is almost zero.

We also provide finite sample comparisons in simulation studies through Table S.3-S.4 for γ0 = 1.3 and

in Table S.5-S.6 for γ0 = 1.9. Encouragingly, we can reach similar conclusions. Meanwhile, we observe that

the trimming threshold b̂n increases with the tail index γ0, which is in line with our analysis in Theorem 1.

Additionally, we see that the effective number of trimmed observations decreases with γ0. Indeed, with γ0 closer

to 2, the probability weights have a lighter tail at zero, and thus it is sensible that only a smaller fraction of

observations needs to be trimmed to achieve desired properties.

IV Proofs

IV.1 Proof of Lemma S.1

See Theorem VIII.9.1 and the corresponding corollary in Feller (1991). �

IV.2 Proof of Lemma S.2

See Theorem VIII.9.2 in Feller (1991). �

11



IV.3 Proof of Lemma S.3

We split the proof into three parts.

Part 1

We first assume X and Y are independent. For simplicity, we denote by FX and FY the distribution functions
of X and Y , and ε = α− γ > 0. Define a(y, x) be

a(y, x) =
1− FX(x/y)

1− FX(x)
.

Then from the definition of regularly varying functions, one has limx→∞ a(x, y) = yγ for all y > 0. Consider
the following limit:

lim
x→∞

P[XY > x]

P[X > x]
= lim
x→∞

∫ ∞
0

a(y, x)FY (dy) = lim
x→∞

∫ b(x)1/(γ+ε)

0

a(y, x)FY (dy)︸ ︷︷ ︸
(I)

+ lim
x→∞

∫ ∞
b(x)1/(γ+ε)

a(y, x)FY (dy)︸ ︷︷ ︸
(II)

,

where b(x) satisfies limx→∞ b(x)(1 − FX(x)) = ∞ and limx→∞ b(x)/xγ+ε = 0. We first show that the second
limit is zero:

(II) = lim
x→∞

∫ ∞
b(x)1/(γ+ε)

1− FX(x/y)

1− FX(x)
FY (dy) ≤ lim

x→∞

∫ ∞
b(x)1/(γ+ε)

1

1− FX(x)
FY (dy)

≤ lim
x→∞

∫ ∞
b(x)1/(γ+ε)

yγ+ε

(1− FX(x))b(x)
FY (dy) ≤ lim

x→∞

1

(1− FX(x))b(x)
E[|Y |γ+ε] = 0.

Now we consider (I), and show that for all x large enough, the integrand is bounded by an integrable function
(of y), hence dominated convergence can be applied. First, we note that for y ∈ (0, 1), a(y, x) ≤ 1 for all x.
Therefore we only need to consider y ∈ [1, b(x)1/(γ+ε)]. Since y ≤ b(x)1/(γ+ε), we have

x

y
≥
(
xγ+ε

b(x)

) 1
γ+ε

,

which can be made arbitrarily large for all x large enough. Also note that (where the functions L(·) and R(·)
are defined in Lemma S.1)

a(y, x) = yγ
L(x/y)

L(x)
exp

{∫ x/y

x

R(t)

t
dt

}
,

where the ratio |L(x/y)/L(x)| is bounded by a constant for all x large enough, uniformly in y. Similarly,
|R(t)| can be chosen to be arbitrarily small, which means the exponential term is bounded by yε. Hence, for
y ∈ [1, b(x)1/(γ+ε)],

a(y, x) ≤ Cyγ+ε,

which is integrable with respect to the distribution FY . Applying the dominated convergence, one concludes
that

lim
x→∞

P[XY > x]

P[X > x]
=

∫ ∞
0

yγFY (dy) = E[Y γ1Y >0],

so that the product XY also has regularly varying tail with index γ, provided that P[Y > 0] > 0. Similar
argument can be applied to characterize the left tail of XY .
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Part 2

Now we drop the independence assumption, and assume instead that Y is bounded by a constant C. For
simplicity, we use F to denote the limit of the conditional distribution FY |X=x as x→∞. Same as before, let
ε = α− γ > 0. First,

P[XY > x]

P[X > x]
=

∫ ∞
0

P[Y > x/y|X = y]

P[X > x]
FX(dy) =

∫ ∞
x/C

P[Y > x/y|X = y]

P[X > x]
FX(dy).

Further, let U ⊥⊥ (X,Y ) be distributed according to F . Since the conditional distribution Y |X = x converges
weakly to that of U as x→∞, one has, for all x large enough,∣∣∣P[Y > x|X = y]− P[U > x]

∣∣∣ ≤ η + 1x∈A(y),

where η > 0 is arbitrary, and the set A(y) takes the form

A(y) =

J⋃
j=1

(
aj − δ(y), aj + δ(y)

)
,

with δ(y) monotonically decreasing to zero as y → ∞. (Note that if F is a continuous distribution, then one
can simply use |P[Y > x|X = y]−P[U > x]| ≤ η. The purpose of introducing A(y) is to handle a discontinuous
F .) Then we have∫ ∞

x/C

∣∣∣∣P[Y > x/y|X = y]− P[U > x/y]

P[X > x]

∣∣∣∣FX(dy)

≤ ηP[X > x/C]

P[X > x]
+

∑
1≤j≤J: 0≤aj≤C

FX(x/(aj − δ(x/c)))− FX(x/(aj + δ(x/c)))

P[X > x]
,

where the right-hand-side has limit ηCγ . Since η is arbitrary, the left-hand-side tends to zero as x→∞. As a
result, we have

lim
x→∞

P[XY > x]

P[X > x]
= lim
x→∞

∫ ∞
x/C

P[U > x/y]

P[X > x]
FX(dy) = lim

x→∞

P[XU > x]

P[X > x]
.

Since we have U ⊥⊥ X, Part 1 of this proof can be applied to obtain the desired result.

Part 3

Now we drop the boundedness condition on Y . For this purpose, we only need to show that the following∫ x/C

0

P[Y > x/y|X = y]

P[X > x]
FX(dy),

∫ x/C

0

P[U > x/y]

P[X > x]
FX(dy),

can be made arbitrarily small by choosing C large enough. We only demonstrate for the first term. By Markov’s
inequality and the assumption that E[|Y |γ+ε|X = x] is uniformly bounded, we have∫ x/C

0

P[Y > x/y|X = y]

P[X > x]
FX(dy) ≤

(
sup
x

E[|Y |γ+ε|X = x]
)∫ x/C

0

yγ+ε

xγ+εP[X > x]
FX(dy)

→
(

sup
x

E[|Y |γ+ε|X = x]
)
C−ε

γ

ε
,

where the last line follows from Lemma S.2. �

IV.4 Proof of Lemma S.4 and S.5

See Section XVII.2 in Feller (1991). �
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IV.5 Proof of Lemma S.6

Define r(x) = [1, x, · · · , xp]′, then the estimator can be rewritten as[
n∑
i=1

r(e(Xi))r(e(Xi))
′wi

]−1 [ n∑
i=1

r(e(Xi))Yiwi

]
,

where wi = 1e(Xi)≤hn,Di=1. We use Fe(X) to denote the distribution function of the probability weight. We
first analyze the “denominator” term. Consider the following:

An =
1

n

1

hnFe(X)(hn)

n∑
i=1

r(e(Xi)/hn)r(e(Xi)/hn)′wi,

whose expectation is given by (we use ṙ(x) to denote the derivative dr(x)/dx)

E[An] =
1

Fe(X)(hn)

∫ hn

0

r(x/hn)r(x/hn)′x/hnFe(X)(dx)

=
1

Fe(X)(hn)

[
r(1)r(1)′Fe(X)(hn)−

∫ 1

0

(
(ṙ(x)r(x)′ + r(x)ṙ(x)′)x+ r(x)r(x)′

)
Fe(X)(xhn)dx

]
→
[
r(1)r(1)′ −

∫ 1

0

(
(ṙ(x)r(x)′ + r(x)ṙ(x)′)x+ r(x)r(x)′

)
xγ0−1dx

]
= S,

which is always invertible. Next we show that An converges to the expectation computed above. For this
purpose, we consider the variance of individual terms in An, which is bounded by

1

n

1

hnFe(X)(hn)2

∫ hn

0

(x/hn)j+1Fe(X)(dx) =
1

n

1

hnFe(X)(hn)2

[
Fe(X)(hn)−

∫ 1

0

(j + 1)xjFe(X)(xhn)dx

]
� 1

n

1

hnFe(X)(hn)

[
1−

∫ 1

0

(j + 1)xjxγ0−1dx

]
� 1

n

1

hnFe(X)(hn)
,

which shrinks to zero under our assumptions.
Now we consider the “numerator” term. Let ηi = Yi −E[Yi|e(Xi), Di = 1] be the residual from conditional

expectation projection. Then the following

Ln =

√
1

nhnFe(X)(hn)

n∑
i=1

r(e(Xi)/hn)ηiwi

has zero mean, and variance given by

V[Ln] =
1

Fe(X)(hn)

∫ hn

0

x/hnr(x/hn)r(x/hn)′V[Y |e(X) = x,D = 1]Fe(X)(dx)

= (µ2(0)− µ1(0)2)
1

Fe(X)(hn)

∫ hn

0

x/hnr(x/hn)r(x/hn)′Fe(X)(dx)(1 + o(1))

→ (µ2(0)− µ1(0)2)S.

The Lindeberg condition can be easily verified by calculating higher moments, and Ln will be asymptotically
Gaussian provided that nhnFe(X)(hn)→∞. We do not elaborate details here.

Next we consider the bias. Assuming µ1 is sufficiently smooth, one has

µ1(x) =

p∑
j=0

1

j!
µ

(j)
1 (0)xj +

1

(p+ 1)!
µ

(p+1)
1 (x̃)xp+1,
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where x̃ ∈ [0, x]. Now we consider the following[
n∑
i=1

r(e(Xi))r(e(Xi))
′wi

]−1 [ n∑
i=1

r(e(Xi))Yiwi

]
− β = H−1

n A−1
n

[√
1

nhnFe(X)(hn)
Ln + hp+1

n Rn

]
,

where Hn is a diagonal matrix with elements 1, hn, · · · , hpn, and Rn is

Rn =
1

(p+ 1)!

1

nhp+2
n Fe(X)(hn)

n∑
i=1

r(e(Xi)/hn)µ
(p+1)
1 (λie(Xi))e(Xi)

p+1wi,

with λi ∈ [0, 1]. We can show that Rn has expectation

E[Rn] =
µ

(p+1)
1 (0)

(p+ 1)!

1

Fe(X)(hn)

[∫ hn

0

r(x/hn)(x/hn)p+2Fe(X)(dx)

]
(1 + o(1))

=
µ

(p+1)
1 (0)

(p+ 1)!

1

Fe(X)(hn)

[
r(1)Fe(X)(hn)−

∫ 1

0

(
ṙ(x)(x)p+2 + (p+ 1)r(x)(x)p+1

)
Fe(X)(xhn)dx

]
(1 + o(1))

→ µ
(p+1)
1 (0)

(p+ 1)!

[
r(1)−

∫ 1

0

(
ṙ(x)xp+2 + (p+ 1)r(x)xp+1

)
xγ0−1dx

]
=
µ

(p+1)
1 (0)

(p+ 1)!
R,

and with the same technique used for analyzing An,∣∣∣Rn − E[Rn]
∣∣∣2 = op (1) ,

which closes the proof. �

IV.6 Proof of Lemma 1

Let F1/e(X) be the distribution function of the inverse probability weight 1/e(X). First consider the tail
probability P[D/e(X) > x]:

P[D/e(X) > x] = E[e(X)1e(X)<x−1 ] =

∫ x−1

0

P[t < e(X) < x−1]dt =

∫ 1

0

x−1P[sx−1 < e(X) < x−1]ds,

Therefore,

lim
x→∞

xP[D/e(X) > x]

P[e(X) < x−1]
= lim
x→∞

∫ 1

0

P[sx−1 < e(X) < x−1]

P[e(X) < x−1]
ds =

∫ 1

0

(
1− sγ0−1

)
ds = 1− γ0 − 1

γ0
,

where for the second equality we use the definition of regular variation. As a result, D/e(X) has regularly
varying tail with index −γ0. The rest follows from Lemma S.3. �

IV.7 Proof of Theorem 1

Part (i)

We first assume γ0 > 2 and there is no trimming (bn = 0). In this case, DY/e(X) has a finite variance,
which is also nonzero since α+(0) + α−(0) > 0. Then we set an,bn = an =

√
nV[DY/e(X)], which satisfies the

requirement of the theorem. Then asymptotic Gaussianity follows from the central limit theorem. The case
with trimming (bn > 0) follows from the same argument.

Next we consider the γ0 = 2 case. Again we demonstrate assuming there is no trimming (bn = 0), and the
trimming case can be justified with the same argument. We compute the limits in Lemma S.5 and show that
M is a point mass at the origin. Let (recall that we set an,bn = an)

Wn =
Z

an
, Z =

DY

e(X)
− θ0,

15



and FZ be the distribution function of Z. Without loss of generality, we assume α+(0) > 0, so that DY/e(X)
has a regularly varying right tail with index −2. First consider the following,

nE[W 2
n1|Wn|≤c] =

n

a2
n

E
[
Z21|Z/an|≤c

]
=

n

a2
n

∫ anc

0

x2F|Z|(dx)

=
n

a2
n

∫ anc

0

2tP[t < |Z| < anc]dt = n

∫ c

0

2sP[ans < |Z| < anc]ds

= n
(∫ 1

0

2sP[ans < |Z| < an]ds︸ ︷︷ ︸
(I)

+

∫ 1

0

2sP[an < |Z| < anc]ds︸ ︷︷ ︸
(II)

+

∫ c

1

2sP[ans < |Z| < anc]ds︸ ︷︷ ︸
(III)

)
.

Without loss of generality, assume c > 1, then

0 ≤ (III) ≤ (c2 − 1)
(
F|Z|(anc)− F|Z|(an)

)
,

which implies (using Fatou’s lemma)

lim inf
n→∞

(I)

(III)
≥ lim inf

n→∞

1

c2 − 1

∫ 1

0

2s
P[ans < |Z| < an]

P[an < |Z| < anc]
ds ≥ 1

c2 − 1

∫ 1

0

2s lim inf
n→∞

P[ans < |Z| < an]

P[an < |Z| < anc]
ds

=
1

c2 − 1

∫ 1

0

2s
s−2 − 1

1− c−2
ds =∞.

With the same reasoning, one has

lim inf
n→∞

(I)

(II)
=∞.

The same conclusion can be shown for any 0 < c < 1. As a result,

nE[W 2
n1|Wn|≤c] = n · (I) · (1 + o(1)) =

n

a2
n

E
[
Z21|Z/an|≤1

]
(1 + o(1))→ 1,

where the last step follows form the definition of an. Applying the same technique, one has

lim inf
n→∞

n · (I)
n(1− F|Z|(anc))

→∞,

for any c > 0. And since the numerator converges to 1, we have the denominator converges to zero. To
summarize, we showed that, for any compact interval I whose interior contains the origin,

nE[W 2
n1|Wn|∈I ]→ 1,

and for any c > 0,

n(1− F|Z|(anc))→ 0.

By applying Lemma S.5, it implies that M is a point mass at the origin, and the limiting distribution is Gaussian.

Part (ii.1), no trimming bn = 0

Again we assume, without loss of generality, that α+(0) > 0, so that DY/e(X) has regularly varying right tail
with index −γ0. For c > 0, we compute the following (recall that an,bn = an):

n
(

1− FZ(anc)
)

=
1− FZ(anc)

1− F|Z|(an)
n
(

1− F|Z|(an)
)

=
1− FZ(anc)

1− F|Z|(an)︸ ︷︷ ︸
(I)

a2
n(1− F|Z|(an))

E[|Z|21|Z|≤an ]︸ ︷︷ ︸
(II)

n

a2
n

E[|Z|21|Z|≤an ]︸ ︷︷ ︸
(III)

.
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Next, (I) converges to α+(0)
α+(0)+α−(0)c

−γ0 as Z has regularly varying tails; (II) converges to 2−γ0
γ0

by Lemma S.2;

and (III) converges to 1 due to the definition of an. Therefore,

n
(

1− FZ(anc)
)
→ α+(0)

α+(0) + α−(0)

2− γ0

γ0
c−γ0 =

∫ ∞
c

1

x2

( (2− γ0)α+(0)

α+(0) + α−(0)
x1−γ0

)
dx.

Similarly, we have, for the left tail,

nFZ(−anc)→
α−(0)

α+(0) + α−(0)

2− γ0

γ0
c−γ0 =

∫ ∞
c

1

x2

( (2− γ0)α−(0)

α+(0) + α−(0)
x1−γ0

)
dx.

Therefore, we conjecture that the measure M in Lemma S.5 takes the following form:

M(dx) = dx

[
2− γ0

α+(0) + α−(0)
|x|1−γ0

(
α+(0)1x≥0 + α−(0)1x<0

)]
.

To confirmed, we compute the other condition in Lemma S.5. Fore example, take an interval I = [c1, c2]
with c1 > 0,

nE[X2
n1|Wn|∈I ] =

n

a2
n

∫ anc2

anc1

x2FZ(dx) = n

∫ anc2

0

2tP[(anc1 ∨ t) < Z < anc2]dt

=
n

a2
n

(
a2
nc

2
1P[anc1 < Z < anc2] +

∫ anc2

anc1

2tP[t < Z < anc2]dt

)
.

Next, we have

nc21P[anc1 < Z < anc2]→ α−(0)

α+(0) + α−(0)

2− γ0

γ0

(
c2−γ01 − c21c

−γ0
2

)
,

and

n

a2
n

∫ anc2

anc1

2tP[t < Z < anc2]dt = n(P[Z > anc1])
1

a2
n

∫ anc2

anc1

2t
P[t < Z < anc2]

P[Z > anc1]
dt

= n(P[Z > anc1])

∫ c2

c1

2s
P[ans < Z < anc2]

P[Z > anc1]
ds

→ α−(0)

α+(0) + α−(0)

2− γ0

γ0
c−γ01

∫ c2

c1

2s
s−γ0 − c−γ02

c−γ01

ds

=
α−(0)

α+(0) + α−(0)

2− γ0

γ0

(
2

2− γ0
(c2−γ02 − c2−γ01 )− c−γ02 (c22 − c21)

)
.

Therefore,

nE[X2
n1|Wn|∈I ]→

α−(0)

α+(0) + α−(0)

(
2− γ0

γ0
(c2−γ01 − c21c

−γ0
2 ) +

2

γ0
(c2−γ02 − c2−γ01 )− 2− γ0

γ0
c−γ02 (c22 − c21)

)
=

α−(0)

α+(0) + α−(0)

(
c2−γ02 − c2−γ01

)
= M(I)

Given the measure M , the characteristic function can be found by evaluating the integral in lemma S.4, which
gives ∫

R

eiζx − 1− iζx
x2

M(dx) = −|ζ|γ0 Γ(3− γ0)

γ0(γ0 − 1)
cos
(γ0π

2

)[
i
α+(0)− α−(0)

α+(0) + α−(0)
sgn(ζ) tan

(γ0π

2

)
− 1

]
.
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Part (ii.1), light trimming bnan → 0

Take c > 0 and first consider the following probability:∫ bn

0

xP[Y > ancx|e(X) = x,D = 1]Fe(X)(dx) ≤
∫ bn

0

xFe(X)(dx)

= E[e(X)1e(X)<bn ] = P
[
D

e(X)
> b−1

n

]
.

If anbn → 0, the right-hand-side will be asymptotically negligible compared to P[D/e(X) > anc] for any c > 0.
As a result,

P
[
DY
e(X)1e(X)≥bn > anc

]
P
[

D
e(X) > anc

] =
1

P
[

D
e(X) > anc

] ∫ 1

bn

xP[Y > ancx|e(X) = x,D = 1]Fe(X)(dx)

=
1

P
[

D
e(X) > anc

] ∫ 1

0

xP[Y > ancx|e(X) = x,D = 1]Fe(X)(dx) + o(1)

=
P
[
DY
e(X) > anc

]
P
[

D
e(X) > anc

] + o(1)→ α+(0),

where the last line follows from Lemma 1. The above shows that, as long as anbn → 0, DY
e(X)1e(X)≥bn and DY

e(X)

have the same tail property, meaning that the same Lévy stable limiting distribution emerges under the light
trimming regime.

Part (ii.1), moderate trimming bnan → t ∈ (0,∞)

As before we ignore the centering, as it is irrelevant for computing tail probabilities (or truncated moments).
Let FU be the limiting distribution of FY |e(X)=x,D=1 as x→ 0, U ⊥⊥ (X,Y ) be distributed according to FU , and
c > 0. We first compute the following limit (recall that we set an,bn = an for the moderate trimming scenario):

lim
n→∞

nP
[
DU

e(X)
1e(X)≥ta−1

n
> anc

]
= n

∫ ∞
0

P
[
D

e(X)
1e(X)≥ta−1

n
>
anc

x

]
FU (dx)

= lim
n→∞

n

∫ ∞
0

∫ x/(anc)

t/an

yFe(X)(dy)FU (dx) = lim
n→∞

n

∫ ∞
ct

∫ x/(anc)

t/an

yFe(X)(dy)FU (dx).

To proceed, note that∫ x/(anc)

t/an

yFe(X)(dy) =

∫ ∞
0

∫ x/(anc)

t/an

1y>sFe(X)(dy)ds

=
t

an
P[(t/an) < e(X) < x/(anc)] +

∫ x/(anc)

t/an

P[s < e(X) < x/(anc)]ds

=
t

an

(
Fe(X)(x/(anc))− Fe(X)(t/an)

)
+

(
x

anc
− t

an

)
Fe(X)(x/(anc))−

∫ x/(anc)

t/an

Fe(X)(s)ds

=
x

anc
Fe(X)(x/(anc))−

t

an
Fe(X)(t/an)−

∫ x/(anc)

t/an

Fe(X)(s)ds.
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Therefore,

lim
n→∞

nP
[
DU

e(X)
1e(X)≥ta−1

n
> anc

]
= lim
n→∞

n

∫ ∞
ct

[
x

anc
Fe(X)

(
x

anc

)
− t

an
Fe(X)

(
t

an

)
−
∫ x/(anc)

t/an

Fe(X)(y)dy

]
FU (dx)

= lim
n→∞

n

∫ ∞
ct

[
x

anc
Fe(X)

(
x

anc

)
− t

an
Fe(X)

(
t

an

)
− 1

an

∫ x/c

t

Fe(X)

(
y

an

)
dy

]
FU (dx)

= lim
n→∞

[
nFe(X)(1/an)

an

][∫ ∞
ct

[
x

c

Fe(X) (x/(anc))

Fe(X) (1/an)
− t

Fe(X) (t/an)

Fe(X) (1/an)
−
∫ x/c

t

Fe(X)(y/an)

Fe(X)(1/an)
dy

]
FU (dx)

]
.

Next, we have

lim
n→∞

nFe(X)(1/an)

an
= lim
n→∞

nP[|DY/e(X)| > an]
Fe(X)(1/an)

anP[|DY/e(X)| > an]

= lim
n→∞

n

a2
n

E[|DY/e(X)|21|DY/e(X)|≤an ]︸ ︷︷ ︸
(I)

a2
nP[|DY/e(X)| > an]

E[|DY/e(X)|21|DY/e(X)|≤an ]︸ ︷︷ ︸
(II)

Fe(X)(1/an)

anP[|DY/e(X)| > an]︸ ︷︷ ︸
(III)

.

Term (I) converges to 1 due to the definition of an; term (II) converges to (2− γ0)/γ0 by Lemma S.2; and term
(III) converges to γ0/((γ0 − 1)(α+(0) + α−(0))) by Lemma 1. Therefore,

lim
n→∞

nFe(X)(1/an)

an
=

2− γ0

γ0 − 1

1

α+(0) + α−(0)
,

and

lim
n→∞

nP
[
DU

e(X)
1e(X)≥ta−1

n
> anc

]
=

2− γ0

γ0 − 1

1

α+(0) + α−(0)
lim
n→∞

[∫ ∞
ct

[
x

c

Fe(X) (x/(anc))

Fe(X) (1/an)
− t

Fe(X) (t/an)

Fe(X) (1/an)
−
∫ x/c

t

Fe(X)(y/an)

Fe(X)(1/an)
dy

]
FU (dx)

]

=
2− γ0

γ0

1

α+(0) + α−(0)

[∫ ∞
ct

[(x
c

)γ0
− tγ0 −

∫ x/c

t

yγ0−1dy

]
FU (dx)

]

=
2− γ0

γ0

1

α+(0) + α−(0)

[∫ ∞
ct

[(x
c

)γ0
− tγ0

]
FU (dx)

]
=

∫ ∞
c

1

x2

[
2− γ0

α+(0) + α−(0)
x1−γ0α+(tx)

]
dx.

Similarly, we can obtain, for the left tail,

lim
n→∞

nP
[
DU

e(X)
1e(X)≥ta−1

n
< −anc

]
=

∫ ∞
c

1

x2

[
2− γ0

α+(0) + α−(0)
x1−γ0α−(tx)

]
dx,

where F−U is the distribution function of −U . Define a measure M as

M(dx) = dx

[
2− γ0

α+(0) + α−(0)
|x|1−γ0

(
α+(tx)1x≥0 + α−(tx)1x<0

)]
,

and we verify the other condition in Lemma S.5.
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For simplicity, take I = [c1, c2] with 0 < c1 < c2 and t = 1. Then the truncated second moment is

n

a2
n

E
[
DU2

e(X)2
1e(X)≥a−1

n
1

(
anc1 <

DU

e(X)
1e(X)≥a−1

n
< anc2

)]
=
n

a2
n

∫ ∞
−∞

∫ 1

0

1x≥a−1
n
1x∈[u/(anc2),u/(anc1)]

u2

x
Fe(X)(dx)FU (du)

=
n

a2
n

∫ ∞
c1

∫ u/(anc1)

((u/c2)∨1)/an

u2

x
Fe(X)(dx)FU (du)

=
n

a2
n

∫ ∞
c1

u2

[
Fe(X)(u/(anc1))

u/(anc1)
−
Fe(X)(((u/c2) ∨ 1)/an)

((u/c2) ∨ 1)/an
+

∫ u/(anc1)

((u/c2)∨1)/an

1

x2
Fe(X)(x)dx

]
FU (du)

=n

∫ ∞
c1

u2

[
Fe(X)(u/(anc1))

anu/c1
−
Fe(X)(((u/c2) ∨ 1)/an)

an((u/c2) ∨ 1)
+

∫ u/c1

((u/c2)∨1)

1

anx2
Fe(X)(x/an)dx

]
FU (du)

=(1 + o(1))
2− γ0

γ0 − 1

1

α+ + α−

∫ ∞
c1

u2[
1

u/c1

Fe(X)(u/(anc1))

Fe(X)(1/an)
− 1

(u/c2) ∨ 1

Fe(X)(((u/c2) ∨ 1)/an)

Fe(X)(1/an)
+

∫ u/c1

((u/c2)∨1)

1

x2

Fe(X)(x/an)

Fe(X)(1/an)
dx

]
FU (du)

→2− γ0

γ0 − 1

1

α+(0) + α−(0)

∫ ∞
c1

u2

[
(u/c1)γ0−2 − ((u/c2) ∨ 1)γ0−2 +

∫ u/c1

((u/c2)∨1)

xγ0−3dx

]
FU (du)

=− 1

α+(0) + α−(0)

∫ ∞
c1

u2
[
(u/c1)γ0−2 − ((u/c2) ∨ 1)γ0−2

]
FU (du)

=− 1

α+(0) + α−(0)

[∫ c2

c1

uγ0

cγ0−2
1

− u2FU (du) +

∫ ∞
c2

uγ0

cγ0−2
1

− uγ0

cγ0−2
2

FU (du)

]
,

which, by simple algebra, can be shown to be the same as M([c1, c2]). The next step is to replace DU/e(X) by
DY/e(X). The same argument used to proved Lemma S.3 applies here, which we do not repeat.

Part (ii.2), heavy trimming bnan →∞

We verify a Lyapunov condition. Let 0 < η < ε, where ε is defined in Assumption 2. Consider the following

n

a2+η
n,bn

E

[∣∣∣∣ DYe(X)
1e(X)≥bn − θ0 − Bn,bn

∣∣∣∣2+η
]
� n

a2+η
n,bn

E
[
D|Y |2+η

e(X)2+η
1e(X)≥bn

]

-
n

a2+η
n,bn

E
[

1

e(X)1+η
1e(X)≥bn

]
=

n

a2+η
n,bn

∫ 1/bn

1

x1+ηF1/e(X)(dx).

Next,

an,bn =

√
nV
[
DY

e(X)
1e(X)≥bn

]
�

√
nE
[
D|Y |2
e(X)2

1e(X)≥bn

]
�

√
nE
[

1

e(X)
1e(X)≥bn

]

=

√
n

∫ 1/bn

1

xF1/e(X)(dx).
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Therefore,

n

a2+η
n,bn

E

[∣∣∣∣ DYe(X)
1e(X)≥bn − θ0 − Bn,bn

∣∣∣∣2+η
]
� n−η/2

[∫ 1/bn

1

x1+ηF1/e(X)(dx)

][∫ 1/bn

1

xF1/e(X)(dx)

]−1−η/2

=

∫ 1/bn
1

x1+ηF1/e(X)(dx)

b−1−η
n P[e(X) ≤ bn]︸ ︷︷ ︸

(I)

[∫ 1/bn
1

xF1/e(X)(dx)

b−1
n P[e(X) ≤ bn]

]−1−η/2

︸ ︷︷ ︸
(II)

[
1

nbnP[e(X) ≤ bn]

]η/2
︸ ︷︷ ︸

(III)

.

By Lemma S.2, both (I) and (II) converges to finite constant. For (III),

1

nbnP[e(X) ≤ bn]
=

P[|DY/e(X)| ≥ b−1
n ]

bnP[e(X) ≤ bn]

1

nP[|DY/e(X)| ≥ b−1
n ]

=
P[|DY/e(X)| ≥ b−1

n ]

bnP[e(X) ≤ bn]︸ ︷︷ ︸
(III.1)

P[|DY/e(X)| ≥ an]

P[|DY/e(X)| ≥ b−1
n ]︸ ︷︷ ︸

(III.2)

E[|DY/e(X)|21|DY/e(X)|≤a−1
n

]

a−2
n P[|DY/e(X)| ≥ a−1

n ]︸ ︷︷ ︸
(III.3)

1

na2
nE[|DY/e(X)|21|DY/e(X)|≤a−1

n
]︸ ︷︷ ︸

(III.4)

.

Term (III.1) converges to a finite constant by Lemma 1, term (III.3) converges to a finite constant by Lemma
S.2, and term (III.4) converges to 1 due to the definition of an. Finally, since anbn →∞, term (III.2) vanishes,
which closes the proof. �

IV.8 Proof of Proposition 1

Part 1: no trimming bn = 0

n

an,bn

(
θ̂n,bn − θ0

)
=

1

an,bn

n∑
i=1

(
DiYi
e(Xi)

− θ0

)
+

1

an,bn

n∑
i=1

DiYi
e(Xi)

(
e(Xi)

ê(Xi)
− 1

)

=
1

an,bn

n∑
i=1

(
DiYi
e(Xi)

− θ0

)
+

(
− 1

n

n∑
i=1

DiYi
e(Xi, π̃n)2

∂e(Xi, π̃n)

∂π

)
n

an,bn
(π̂n − π0) ,

where π̃n is some convex combination of π̂n and π0, hence |π̃n − π0| = Op(1/
√
n). By Assumption 3, the class{

DiYi
e(Xi, π)2

∂e(Xi, π)

∂π
: |π − π0| ≤ ε

}
is Glivenko-Cantelli, which implies

1

n

n∑
i=1

DiYi
e(Xi, π̃n)2

∂e(Xi, π̃n)

∂π

p→ E
[
DY

e(Xi)2

∂e(Xi, π0)

∂π

]
.

Therefore, we have

n

an,bn

(
θ̂n,bn − θ0

)
=

1

an,bn

n∑
i=1

(
DiYi
e(Xi)

− θ0 − E
[
µ1(e(Xi))

e(Xi)

∂e(Xi, π0)

∂π

]
h(Di, Xi)

)
+ op(1).

For γ0 > 2, we have n/an,bn �
√
n, and the above is asymptotically Gaussian. For the other case, the additional

term in the summand is asymptotically negligible.

21



Part 2: trimming bn > 0

To start,

1

an,bn

n∑
i=1

(
DiYi

e(Xi, π̂n)
1e(Xi,π̂n)≥bn − θ0 − Bn,bn

)

=
1

an,bn

n∑
i=1

(
DiYi

e(Xi, π0)
1e(Xi,π0)≥bn − θ0 − Bn,bn

)
(I)

+
1

an,bn

n∑
i=1

(
DiYi

e(Xi, π̂n)
1e(Xi,π̂n)≥bn −

DiYi
e(Xi, π0)

1e(Xi,π0)≥bn

)
, (II)

where asymptotic properties of (I) has been discussed in Theorem 1. For (II), we further expand it as

(II) =
1

an,bn

n∑
i=1

(
DiYi

e(Xi, π̂n)
− DiYi
e(Xi, π0)

)
1e(Xi,π̂n)≥bn︸ ︷︷ ︸

(II.1)

+
1

an,bn

n∑
i=1

DiYi
e(Xi, π0)

(
1e(Xi,π̂n)≥bn − 1e(Xi,π0)≥bn

)
︸ ︷︷ ︸

(II.2)

.

By the same argument used for the no trimming case, it satisfies

(II.1) = − 1

an,bn

n∑
i=1

A0h(Di, Xi) + op(1).

For (II.2), we first make some auxiliary calculation. Take π be a generic element in the parameter space Π,

e(Xi, π)

e(Xi, π0)
− 1 =

1

e(Xi, π0)

∂e(Xi, π̃)

∂π
(π − π0),

where π̃ is some convex combination of π and π0. Next define

Zi(ε) = sup
|π−π0|≤ε

∣∣∣∣ 1

e(Xi, π0)

∂e(Xi, π)

∂π

∣∣∣∣ .
Then we have∣∣∣1e(Xi,π)≥bn − 1e(Xi,π0)≥bn

∣∣∣ ≤ 1

(
bn

1 + Zi(ε)ε
≤ e(Xi, π0) ≤ bn

1− Zi(ε)ε

)
+ 1 (|π − π0| > ε) .

Now fix some K > 0 and let ε = K/
√
n in the above, we have

|(II.2)|

≤ 1

an,bn

n∑
i=1

Di|Yi|
e(Xi, π0)

1

(
bn

1 + Zi(
K√
n

) K√
n

≤ e(Xi, π0) ≤ bn

1− Zi( K√n ) K√
n

)
︸ ︷︷ ︸

(II.2.1)

+ (II.2) · 1
(
|π̂n − π0| >

K√
n

)
︸ ︷︷ ︸

(II.2.2)

.

Now take a sequence cn, we expand (II.2.1) as

|(II.2.1)| ≤ 1

an,bn

n∑
i=1

Di|Yi|
e(Xi, π0)

1

(
bn

1 + K√
n
cn
≤ e(Xi, π0) ≤ bn

1− K√
n
cn

)
︸ ︷︷ ︸

(II.2.1.1)

+ (II.2.1) · 1
(

max
1≤i≤n

Zi(
K√
n

) > cn

)
︸ ︷︷ ︸

(II.2.1.2)

.
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Further,

E[|(II.2.1.1)|] - n

an,bn

[
Fe(X)

(
bn

1− K√
n
cn

)
− Fe(X)

(
bn

1 + K√
n
cn

)]

-
n

an,bn
Fe(X)(bn)

(1 + 2

K√
n
cn

1− K√
n
cn

)γ0−1

− 1

 � n

an,bn
Fe(X)(bn)

K√
n
cn.

In the above, nFe(X)(bn)/an,bn is the rate of the asymptotic bias, and hence to bound this term, it suffices to
consider the heavy trimming scenario with γ0 < 2. From Lemma 2, we have

n

an,bn
Fe(X)(bn) -

√
nbnP[e(X) ≤ bn],

which means that

(II.2.1.1) -p

√
bnP[e(X) ≤ bn]cn → 0,

by Markov’s inequality and Assumption 4. In addition, term (II.2.1.2) is asymptotically negligible by Assumption
4. Therefore, for any % > 0,

lim sup
n

P [|(II.2)| > %] = lim sup
n

P
[
|π̂n − π0| >

K

2
√
n

]
.

The left-hand-side is independent of K and the right-hand-side decreases to 0 as K ↑ ∞, we have that (II.2)
converges in probability to zero. �

IV.9 Omitted Details of Remark 2

Assumption 3(ii) and Assumption 4 in Logit models

We first consider Assumption 3(ii).∣∣∣∣L(X ′π0)

L(X ′π)2

∂

∂π
L(X ′π)

∣∣∣∣ =

∣∣∣∣L(X ′π0)

L(X ′π)

(
1− L(X ′π)

)
X

∣∣∣∣ =
eX
′π0

eX′π0 + 1

eX
′π + 1

eX′π
1

eX′π + 1
|X| ≤ eX

′(π0−π)|X|.

Then

E

[
sup

|π−π0|≤ε

∣∣∣∣L(X ′π0)

L(X ′π)2

∂

∂π
L(X ′π)

∣∣∣∣
]
≤ E

[
eε|X||X|

]
≤
√
E[e2ε|X|]E[|X|2],

which will be finite if we have E[e2ε|X|] <∞ for some small ε > 0.
Now consider Assumption 4.∣∣∣∣ 1

L(X ′π0)

∂

∂π
L(X ′π)

∣∣∣∣ =

∣∣∣∣ L(X ′π)

L(X ′π0)

(
1− L(X ′π)

)
X

∣∣∣∣ =
eX
′π

eX′π + 1

eX
′π0 + 1

eX′π0

1

eX′π + 1
|X|

≤ eX
′(π−π0) e

X′π0 + 1

eX′π + 1
|X| ≤ eX

′(π−π0)
(
eX
′(π0−π) + 1

)
|X|

≤
(
eX
′(π−π0) + 1

)
|X|.

Therefore,

max
1≤i≤n

sup
π:|π−π0|≤ε/

√
n

∣∣∣∣ 1

L(X ′iπ0)

∂

∂π
L(X ′iπ)

∣∣∣∣ ≤ max
1≤i≤n

(
eε|Xi|/

√
n + 1

)(
max

1≤i≤n
|Xi|

)
= Op

(
(n1/

√
n + 1) log(n)

)
= Op(log(n)).
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Assumption 3(ii) and Assumption 4 in Probit models

We first consider Assumption 3(ii).∣∣∣∣L(X ′π0)

L(X ′π)2

∂

∂π
L(X ′π)

∣∣∣∣ =

∣∣∣∣Φ(X ′π0)φ(X ′π)

Φ(X ′π)2
X

∣∣∣∣ =

∣∣∣∣1X′π≥−2
Φ(X ′π0)φ(X ′π)

Φ(X ′π)2
X + 1X′π≤−2

Φ(X ′π0)φ(X ′π)

Φ(X ′π)2
X

∣∣∣∣
≤ Φ(−2)−2Φ(X ′π0)φ(X ′π)|X|+ 1X′π≤−2

Φ(X ′π0)φ(X ′π)

Φ(X ′π)2
|X|

≤ Φ(−2)−2Φ(X ′π0)φ(X ′π)|X|︸ ︷︷ ︸
(I)

+1X′π≤−2
φ(X ′π0)

φ(X ′π)

(
|X ′π|3

|X ′π|2 − 1

)2

|X|︸ ︷︷ ︸
(II)

,

where for the last line we use Proposition 2.1.2 of Vershynin (2018). Term (I) is easily bounded by

E

[
sup

|π−π0|≤ε
|(I)|

]
≤ Φ(−2)−2φ(0)E[|X|].

We can bound (II) by

(II) ≤ 41X′π≤−2 exp

{
1

2
|X|2|π + π0||π − π0|

}
|X ′π|2|X|,

Hence

E

[
sup

|π−π0|≤ε
|(II)|

]
≤ 4(|π0|+ ε)2E

[
exp

{
1

2
|X|2ε(2|π0|+ ε)

}
|X|3

]
,

which is finite if E[eε(2|π0|+ε)|X|2 ] <∞ for some small ε > 0.
Now consider Assumption 4.∣∣∣∣ 1

L(X ′π0)2

∂

∂π
L(X ′π)

∣∣∣∣ =

∣∣∣∣ φ(X ′π)

Φ(X ′π0)
X

∣∣∣∣ =
φ(X ′π)

φ(X ′π0)

φ(X ′π0)

Φ(X ′π0)
|X|,

where we can further bound each terms in the above as

φ(X ′π)

φ(X ′π0)
= e

1
2 (|X′π0|2−|X′π|2) = e

1
2 (X′(π+π0))(X′(π−π0)) ≤ e 1

2 |X|
2|π+π0||π−π0|,

and

φ(X ′π0)

Φ(X ′π0)
≤ 1√

2πΦ(−2)
+ 1X′π0≤−2

|X ′π0|3

|X ′π0|2 − 1
≤ 1√

2πΦ(−2)
+
|X|3|π0|3

|X|2|π0|2 − 1
,

where in the above, the first inequality is obtained by splitting into two event, X ′π0 > −2 and X ′π0 ≤ −2, and
then applying Proposition 2.1.2 of Vershynin (2018). As a result, we have

max
1≤i≤n

sup
π:|π−π0|≤ε/

√
n

∣∣∣∣ 1

L(X ′iπ0)2

∂

∂π
L(X ′iπ)

∣∣∣∣
≤
(

max
1≤i≤n

e
1
2 ε|Xi|

2|π0|(1+ε/
√
n)/
√
n

)(
max

1≤i≤n

1√
2πΦ(−2)

|Xi|+ max
1≤i≤n

|Xi|4|π0|3

|Xi|2|π0|2 − 1

)
=Op

(
n1/
√
n
(

log(n)1/2 + log(n)
))

= Op(log(n)).

�
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IV.10 Proof of Lemma 2

The bias of θ̂n,bn is quite easy to derive. Note that the IPW estimator θ̂n is unbiased for θ0, hence the bias can
be written as the following expectation:

Bn,bn = E[θ̂n,bn ]− θ0 = −E

[
1

n

n∑
i=1

DiYi
e(Xi)

1e(Xi)≤bn

]
= −E

[
E[Y |e(X), D = 1]1e(X)<bn

]
≈ −µ1(0) · P[e(X) ≤ bn],

so that the leading bias vanishes at the rate P[e(X) ≤ bn], unless the data generating process is that the
conditional mean shrinks as the probability weight approaches zero.

For the variance of DY/e(X)1e(X)≥bn , we note that when γ0 ∈ (1, 2) and bn → 0, it diverges to infinity.
As a result,

Vn,bn =
1

n
V
[
DY

e(X)
1e(X)≥bn

]
≈ 1

n
E
[
DY 2

e(X)2
1e(X)≥bn

]
=

1

n

∫ 1

bn

E[Y 2|e(X) = x,D = 1]

x
dP[e(X) ≤ x].

Recall that µ2(0) = limx→0 E[Y 2|e(X) = x,D = 1]. Choose c > 0 small enough so that

sup
x≤c

∣∣∣E[Y 2|e(X) = x,D = 1]− µ2(0)
∣∣∣ ≤ η.

Then ∫ 1

bn
µ2(0)x−1Fe(X)(dx)∫ 1

bn
E[Y 2|e(X) = x,D = 1]x−1Fe(X)(dx)

= 1 +
A+B − C∫ 1

bn
E[Y 2|e(X) = x,D = 1]x−1Fe(X)(dx)

,

where

A =

∫ 1

c

µ2(0)x−1Fe(X)(dx)

B =

∫ c

bn

(
µ2(0)− E[Y 2|e(X) = x,D = 1]

)
x−1Fe(X)(dx)

C =

∫ 1

c

E[Y 2|e(X) = x,D = 1]x−1Fe(X)(dx).

Note that both A and C are bounded, which means

A∫ 1

bn
E[Y 2|e(X) = x,D = 1]x−1Fe(X)(dx)

→ 0,
C∫ 1

bn
E[Y 2|e(X) = x,D = 1]x−1Fe(X)(dx)

→ 0.

For B, we have

B∫ 1

bn
E[Y 2|e(X) = x,D = 1]x−1Fe(X)(dx)

≤ η

infx∈[0,c] E[Y 2|e(X) = x,D = 1]
,

which can be made arbitrarily small (for η close to zero, we can choose c close to zero, which means the
denominator will be close to µ2(0) > 0). Therefore,∫ 1

bn
µ2(0)x−1Fe(X)(dx)∫ 1

bn
E[Y 2|e(X) = x,D = 1]x−1Fe(X)(dx)

→ 1.
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For the final claim, we first note, by a slight modification of Lemma S.2,

b−1
n P[e(X) ≤ bn]

E[e(X)−11e(X)≥bn ]
→ 2− γ0

γ0 − 1
,

as bn → 0. �

IV.11 Proof of Theorem 2

Part 1: using true probability weights

Let F̂e(X)(x) =
∑n
i=1 1e(X)≤x/n, c0 = µ2(0)/2µ1(0)2, and ĉn be an estimator of c0. We first consider the

behavior of bsF̂e(X)(b) at bn (defined in the theorem), which is given by the following probability bound (Markov’s
inequality):

P
[
n
∣∣∣bsnF̂e(X)(bn)− bsnFe(X)(bn)

∣∣∣ > δ
]
≤ n2

(
bsn
δ

)2

E
∣∣∣F̂e(X)(bn)− Fe(X)(bn)

∣∣∣2
= n

(
bsn
δ

)2

V
[
1e(X)≤bn

]
= n

(
bsn
δ

)2

Fe(X)(bn)(1− Fe(X)(bn))

=
c0
δ2
bsn

(
1 + o(1)

)
,

which implies

n
∣∣∣bsnF̂e(X)(bn)− bsnFe(X)(bn)

∣∣∣ p→ 0.

To complete the proof, take some constant a ∈ (0, 1), and define bl,n and br,n as:

bsl,nFe(X)(bl,n) =
ac0
n
, bsr,nFe(X)(br,n) =

c0
an
.

Then it is easy to see that

P
[
b̂n ≤ bl,n

]
≤ P

[
bsl,nF̂e(X)(bl,n) ≥ b̂snF̂e(X)(b̂n)

]
= P

[
bsl,nF̂e(X)(bl,n) ≥ ĉn

n

]
= P

[
bsl,nF̂e(X)(bl,n)− bsl,nFe(X)(bl,n) ≥ (1− a)c0 + (ĉn − c0)

n

]
= P

[
n
(
bsl,nF̂e(X)(bl,n)− bsl,nFe(X)(bl,n)

)
≥ (1− a)c0 + (ĉn − c0)︸ ︷︷ ︸

p→(1−a)c0>0

]
→ 0,

as the first term n
(
bsl,nF̂e(X)(bl,n)− bsl,nFe(X)(bl,n)

)
is op(1). Using a similar technique, we can show that

P[b̂n ≥ br,n]→ 0. Therefore,

P
[
bl,n ≤ b̂n ≤ br,n

]
= P

[
bl,n
bn
≤ b̂n
bn
≤ br,n

bn

]
→ 1.
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As the choice of a is arbitrary, we only need to show that both bl,n/bn and br,n/bn are arbitrarily close to 1 for
all a close to 1. To see this, note that since bn → 0, one has

a =
bsl,nFe(X)(bl,n)

bsnFe(X)(bn)
=
bsl,n
bsn

Fe(X)((bl,n/bn)bn)

Fe(X)(bn)︸ ︷︷ ︸
→(bl,n/bn)γ0−1

=

(
bl,n
bn

)γ0−1+s

(1 + o(1)).

and the same argument applies to br,n.

Part 2: using estimated probability weights

To show that estimated probability weights can be employed, we only need to show that for all δ > 0,

P
[
n
∣∣∣bsnF̂ê(X)(bn)− bsnF̂e(X)(bn)

∣∣∣ > δ
]
→ 0,

where again bn is defined in the theorem. From the proof of Proposition 1, we have, for any |π − π0| ≤ ε,∣∣∣1e(Xi,π)≥bn − 1e(Xi,π0)≥bn

∣∣∣ ≤ 1

(
bn

1 + Zi(ε)ε
≤ e(Xi, π0) ≤ bn

1− Zi(ε)ε

)
,

where

Zi(ε) = sup
|π−π0|≤ε

∣∣∣∣ 1

e(Xi, π0)

∂e(Xi, π)

∂π

∣∣∣∣ .
Therefore, for any K > 0,

P
[
n
∣∣∣bsnF̂ê(X)(bn)− bsnF̂e(X)(bn)

∣∣∣ > δ
]

≤ P

[
bsn

n∑
i=1

1

(
bn

1 + Zi(
K√
n

) K√
n

≤ e(Xi, π0) ≤ bn

1− Zi( K√n ) K√
n

)
> δ

]
+ P

[
|π̂n − π0| ≥

K√
n

]

≤ P

[
bsn

n∑
i=1

1

(
bn

1 + K√
n
cn
≤ e(Xi, π0) ≤ bn

1− K√
n
cn

)
> δ

]
+ P

[
max

1≤i≤n
Zi(

K√
n

) > cn

]
+ P

[
|π̂n − π0| ≥

K√
n

]
,

where cn is to be specified. For the first term, one has

E

[
bsn

n∑
i=1

1

(
bn

1 + K√
n
cn
≤ e(Xi, π0) ≤ bn

1− K√
n
cn

)]
= nbsn

[
Fe(X)

(
bn

1− K√
n
cn

)
− Fe(X)

(
bn

1 + K√
n
cn

)]

- nbsnFe(X)(bn)

(1 + 2

K√
n
cn

1− K√
n
cn

)γ0−1

− 1

 � nbsnFe(X)(bn)
K√
n
cn �

K√
n
cn → 0,

which holds if cn =
√
n/ log(n). By our assumption,

P
[

max
1≤i≤n

Zi

(
K√
n

)
> cn

]
→ 0.

Finally,

P
[
|π̂n − π0| ≥

K

n

]
can be made arbitrarily small by taking K large. As

P
[
n
∣∣∣bsnF̂ê(X)(bn)− bsnF̂e(X)(bn)

∣∣∣ > δ
]
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does not depend on K, this probability converges to 0 for all δ > 0. �

IV.12 Proof of Proposition 2

We only demonstrate part (ii). To show that Proposition 1 holds with data-driven trimming threshold, first let
bn be defined from

bsnP[e(X) ≤ bn] =
1

2n

µ2(0)

µ1(0)2
,

for some s > 0. Recall that s < 1, s = 1 and s > 1 correspond to light, moderate and heavy trimming,
respectively. Let b̂n be the estimated trimming threshold from

b̂sn

(
1

n

n∑
i=1

1ê(X)≤b̂n

)
=

1

2n

µ̂2(0)

µ̂1(0)2
.

Then we consider the following:∣∣∣∣∣ 1

an,bn

n∑
i=1

DiYi
ê(Xi)

(
1ê(Xi)≥b̂n − 1ê(Xi)≥bn

)∣∣∣∣∣ ≤ 1

an,bn

n∑
i=1

Di|Yi|
ê(Xi)

∣∣∣1ê(Xi)≥b̂n − 1ê(Xi)≥bn ∣∣∣
≤

(
1

an,bn

n∑
i=1

Di|Yi|
ê(Xi)

)
1|b̂n/bn−1|≥εn︸ ︷︷ ︸

(I)

+
1

an,bn

n∑
i=1

Di|Yi|
ê(Xi)

1(1−εn)bn≤e(Xi)≤(1+εn)bn︸ ︷︷ ︸
(II)

+
1

an,bn

n∑
i=1

Di|Yi|
ê(Xi)

∣∣∣1(1−εn)bn≤e(Xi)≤(1+εn)bn − 1(1−εn)bn≤ê(Xi)≤(1+εn)bn

∣∣∣︸ ︷︷ ︸
(III)

,

where 0 < εn < 1 will be specified later. Employing the same technique used to prove Proposition 1, one can
show that (III) = op(1). Now we consider (I).

(I) -p P
[
|b̂n/bn − 1| ≥ εn

]
= P

[
b̂n ≤ (1− εn)bn

]
︸ ︷︷ ︸

(I.1)

+P
[
b̂n ≥ (1 + εn)bn

]
︸ ︷︷ ︸

(I.2)

.

Next, let bl,n = (1− εn)bn, c0 = µ2(0)/2µ1(0)2 and ĉn = µ̂2(0)/2µ̂1(0)2, then

(I.1) ≤ P
[
bsl,nF̂e(X)(bl,n) ≥ b̂snF̂e(X)(b̂n)

]
= P

[
bsl,nF̂e(X)(bl,n) ≥ ĉn

n

]
� P

[
bsl,nF̂e(X)(bl,n)− bsl,nFe(X)(bl,n) ≥ ĉn

n
− (1− εn)γ0+s−1 c0

n

]
= P

[
n
∣∣∣bsl,nF̂e(X)(bl,n)− bsl,nFe(X)(bl,n)

∣∣∣ ≥ ĉn − c0 +
(

1− (1− εn)γ0+s−1
)
c0

]
�
[
ĉn − c0 +

(
1− (1− εn)γ0+s−1

)
c0

]−2

bsn,

which tends to zero provided that bsn/ε
2
n → 0. It can be shown that (I.2) is also negligible under the same

condition. We take εn = b
s/2−1/4
n . For (II),

(II) -p
n

an,bn
P [(1− εn)bn ≤ e(Xi) ≤ (1 + εn)bn] � n

an,bn
Fe(X)(bn)

[(
1 +

2εn
1− εn

)γ0−1

− 1

]

� n

an,bn
Fe(X)(bn)εn -

√
nbnP[e(X) ≤ bn]εn �

√
b1−sn ε2

n =

√
b1−sn b

s−1/2
n = b1/4n → 0,
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where the second line in the above follows from Lemma 2. �

IV.13 Proof of Theorem 3

For ease of presentation, we assume the true probability weights are used in the local polynomial regression.
We split the proof into two parts, according to the behavior of nFe(X)(bn).

Part 1: nFe(X)(bn)→ 0

With nFe(X)(bn)→ 0, it is clear that this falls into the light trimming scenario. To show that our bias correction
does not contribute to the limiting distribution, note that

n

an,bn
|B̂n,bn − Bn,bn | ≤

n

an,bn
|Bn,bn |︸ ︷︷ ︸

op(1), due to light trimming

+
n

an,bn

∣∣∣B̂n,bn ∣∣∣ .
The second term has expansion

n

an,bn

∣∣∣B̂n,bn ∣∣∣ ≤ ∣∣∣ p∑
j=0

β̂j

∣∣∣︸ ︷︷ ︸
Op(1), Lemma S.6

n

an,bn

1

n

n∑
i=1

1e(Xi)≤bn ,

where by Markov’s inequality,

n

an,bn

1

n

n∑
i=1

1e(Xi)≤bn = Op

(
n

an,bn
E[1e(Xi)≤bn ]

)
= Op

(
n

an,bn
Fe(X)(bn)

)
= op(1).

Part 1: nFe(X)(bn) % 1

We continue our proof assuming nFe(X)(bn) % 1. Note that the true bias Bn,bn has order Fe(X)(bn), hence we
consider the relative accuracy:

n

an,bn
|B̂n,bn − Bn,bn | ∼

(
n

an,bn
Bn,bn

)
|B̂n,bn − Bn,bn |
Fe(X)(bn)

≤
(

n

an,bn
Bn,bn

)(
(I) + (II) + (III)

)
,

where, by a (p+ 1)-th order Taylor expansion,

(I) =

p∑
j=0

(I)j =

p∑
j=0

(
|µ̂(j)

1 (0)− µ(j)
1 (0)|

j!Fe(X)(bn)

1

n

n∑
i=1

e(Xi)
j1e(Xi)≤bn

)
,

(II) =
1

(p+ 1)!Fe(X)(bn)

1

n

n∑
i=1

µ
(p+1)
1 (λie(Xi))e(Xi)

p+11e(Xi)≤bn ,

(III) =
1

nFe(X)(bn)

n∑
i=1

(
µ1(e(Xi))1e(Xi)≤bn − E[µ1(e(Xi))1e(Xi)≤bn ]

)
,

with λi ∈ [0, 1].
Term (III) has zero mean and variance:

V[(III)] =
1

nFe(X)(bn)2
V
[
µ1(e(Xi))1e(Xi)≤bn

]
-

1

nFe(X)(bn)
.

29



Therefore, (
n

an,bn
Bn,bn

)
(III) -p

√
nFe(X)(bn)

a2
n,bn

-

√√
nFe(X)(bn)

an,bn
-

√
1√
n

√
nbnFe(X)(bn) = o(1),

where we use nFe(X)(bn)/an,bn -
√
nbnFe(X)(bn) from Lemma 2.

Next, for 0 ≤ j ≤ p,

E[e(X)j1e(X)≤bn ] =

∫ bn

0

xjFe(X)(dx) = bjnFe(X)(bn)−
∫ bn

0

jxj−1Fe(X)(x)dx � bjnFe(X)(bn),

and its variance has order:

V

[
1

n

n∑
i=1

e(Xi)
j1e(X)≤bn

]
≤ 1

n
E[e(Xi)

2j1e(X)≤bn ] � 1

n
Fe(X)(bn)b2jn .

Therefore

1

Fe(X)(bn)

1

n

n∑
i=1

e(Xi)
j1e(X)≤bn = Op

(
bjn
)
,

which implies that (II) has order:

(II) = Op

(
bp+1
n

)
.

By Lemma S.6, term (I) has order:

(I) = Op

 p∑
j=0

√
1

nhnFe(X)(hn)

(
bn
hn

)j = Op

(√
1

nhnFe(X)(hn)

)
.

Now we apply Lemma 2 again, which leads to

n

an,bn
Bn,bn(II) -p

√
nb2p+3
n Fe(X)(bn)→ 0,

and

n

an,bn
Bn,bn(I) -p

√
nbnFe(X)(bn)

nhnFe(X)(hn)
→ 0.

�

IV.14 Proof of Theorem 4

Part 1: no trimming (bn = 0)

Define

Z =
DY

e(X)
− θ0, Un =

1

an

n∑
i=1

Zi, Vn =

√√√√ 1

a2
n

n∑
i=1

Z2
i ,

and recall that we set an,bn = an if there is no trimming. We first establish the joint limiting distribution of
(Un, V

2
n ) under γ0 < 2, which is the only interesting case. (Otherwise the self-normalized statistic is asymptot-

ically Gaussian). The argument relies on a modification of the method in Chapter XVII of Feller (1991). To
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start, consider the characteristic function

E
[
ei(ζ1Un+ζ2V

2
n )
]

=
(
E
[
ei(ζ1Wn+ζ2W

2
n)
] )n

=

(
1 +

1

n

∫
R

ei(ζ1x+ζ2x
2) − 1− iζ1x
x2

nx2FWn(dx)

)n
,

where

Wn =
Z

an
.

to proceed, let K : R → (0,∞) be an auxiliary function which is smooth, symmetric, and satisfies
limx→∞ xK(x) = 1. Take, for example, I = [c1, c2] to be a compact interval with 0 ≤ c1 < c2, following
the same argument used to prove Theorem 1,∫

I

K(x)nx2FWn(dx) =
n

a2
n

∫ anc2

anc1

K

(
x

an

)
x2FZ(dx)

=n

[
K(c2)c22FZ(anc2)−K(c1)c21FZ(anc1)−

∫ c2

c1

(
2xK (x) + x2K(1) (x)

)
FZ(anx)dx

]
=n

[
−K(c2)c22

(
1− FZ(anc2)

)
+K(c1)c21

(
1− FZ(anc1)

)
+

∫ c2

c1

(
2xK (x) + x2K(1) (x)

)(
1− FZ(anx)

)
dx

]
→2− γ0

γ0

α+(0)

α+(0) + α−(0)

[
−K(c2)c2−γ02 +K(c1)c2−γ01 +

∫ c2

c1

(
2xK (x) + x2K(1) (x)

)
x−γ0dx

]
=MK(I),

where the measure MK(dx) is defined as

MK(dx) = dx

[
2− γ0

α+(0) + α−(0)
K(x)|x|1−γ0

(
α+(0)1x≥0 + α−(0)1x<0

)]
.

The same convergence holds for compact intervals [c1, c2] with c2 ≤ 0. Finally, we note that∫
R
K(x)nx2FWn(dx)→MK(R) ∈ (0,∞).

Therefore, we have the following distributional convergence:

K(x)nx2FWn
(dx)∫

RK(x)nx2FWn
(dx)

d→ MK(dx)

MK(R)
.

As the following is bounded and is continuous in x

ei(ζ1x+ζ2x
2) − 1− iζ1x

x2K(x)

for any ζ1, ζ2 ∈ R, we have∫
R

ei(ζ1x+ζ2x
2) − 1− iζ1x
x2

nx2FWn
(dx) =

∫
R

ei(ζ1x+ζ2x
2) − 1− iζ1x

x2K(x)
K(x)nx2FWn

(dx)

→
∫
R

ei(ζ1x+ζ2x
2) − 1− iζ1x

x2K(x)
MK(dx) =

∫
R

ei(ζ1x+ζ2x
2) − 1− iζ1x
x2

M(dx),

where M(dx) is defined in Theorem 1(ii.1) with t = 0. To summarize, we showed:

E
[
ei(ζ1Un+ζ2V

2
n )
]
→ exp

{∫
R

ei(ζ1x+ζ2x
2) − 1− iζ1x
x2

M(dx)

}
.
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A similar result was derived in Logan et al. (1973). However, our argument only relies on the fact that Z has
a regularly varying tail, while they employ the stronger assumption that Z follows a Lévy stable distribution.
Given the joint limiting characteristic function, Logan et al. (1973) showed that the limiting distribution does
not have positive mass on R× {0}, implying that Un/Vn has a well-defined limiting distribution. Further, the
limiting distribution has a smooth density function.

For the self-normalized statistic Tn in Theorem 4, we rely on Proposition 1, which claims that estimating
the probability weights in a first step does not contribute to the limiting distribution when γ0 < 2. Then with
simple algebra,

Tn =
Un
Vn

√
n− 1

n− V 2
n

.

As a result, Tn has the same limiting distribution as Un/Vn. Therefore, subsampling is valid by standard
arguments in Politis and Romano (1994) or Romano and Wolf 1999.

Part 2: trimming (bn > 0)

Define:

Z =
DY

e(X)
1e(X)≥bn − θ0 − Bn,bn , Un =

1

an,bn

n∑
i=1

Zi, Vn =

√√√√ 1

a2
n,bn

n∑
i=1

Z2
i .

Similar as in the previous part, we first establish the joint limiting distribution of (Un, V
2
n ). Consider the

characteristic function:

E
[
ei(ζ1Un+ζ2V

2
n )
]

=
(
E
[
ei(ζ1Wn+ζ2W

2
n)
] )n

=

(
1 +

1

n

∫
R

ei(ζ1x+ζ2x
2) − 1− iζ1x
x2

nx2FWn
(dx)

)n
,

where Wn = Z/an,bn . Again, let K : R → (0,∞) be an auxiliary function that is smooth, symmetric, and
satisfies limx→∞ xK(x) = 1.

We split the rest of proof into three cases, the light, moderate and heavy trimming. For all three cases, we
show Un/Vn has a well-defined limiting distribution. And since we focus on γ0 < 2, the impact of estimating
the probability weights can be ignored. Therefore, the self-normalized statistic Tn,bn has the same limiting
distribution as Un/Vn, and subsampling is valid by standard arguments in Politis and Romano (1994), or
Romano and Wolf 1999.

Part 2-1: light trimming (bnan → 0)

The proof is essentially the same as that of the no trimming case. Take, for example, I = [c1, c2] to be a compact
interval with 0 ≤ c1 < c2, then∫

I

K(x)nx2FWn
(dx) =

n

a2
n,bn

∫ an,bnc2

an,bnc1

K

(
x

an,bn

)
x2dFZ(x)

=n
[
−K(c2)c22

(
1− FZ(an,bnc2)

)
+K(c1)c21

(
1− FZ(an,bnc1)

)
+

∫ c2

c1

(
2xK (x) + x2K(1) (x)

)(
1− FZ(an,bnx)

)
dx
]
.

The tail probabilities can be calculated as in the proof of Theorem 1(ii.1) with light trimming:∫
I

K(x)nx2FWn(dx)→MK(I),
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where the measure MK(dx) is

M†(dx) = dx

[
2− γ0

α+(0) + α−(0)
K(x)|x|1−γ0

(
α+(0)1x≥0 + α−(0)1x<0

)]
.

The same convergence holds for compact intervals [c1, c2] with c2 ≤ 0. Finally, we note that∫
R
K(x)nx2FWn

(dx)→MK(R) ∈ (0,∞).

Therefore, we have the following distributional convergence:

K(x)nx2FWn
(dx)∫

RK(x)nx2FWn(dx)

d→ MK(dx)

MK(R)
.

Since the following is bounded and continuous,

ei(ζ1x+ζ2x
2) − 1− iζ1x

x2K(x)
,

we have ∫
R

ei(ζ1x+ζ2x
2) − 1− iζ1x
x2

nx2FWn
(dx)→

∫
R

ei(ζ1x+ζ2x
2) − 1− iζ1x
x2

M(dx),

where

M(dx) = dx

[
2− γ0

α+(0) + α−(0)
|x|1−γ0

(
α+(0)1x≥0 + α−(0)1x<0

)]
,

as defined in Theorem 1(ii) for the light trimming scenario. To summarize, we showed:

E
[
ei(ζ1Un+ζ2V

2
n )
]
→ exp

{∫
R

ei(ζ1x+ζ2x
2) − 1− iζ1x
x2

M(dx)

}
,

which defines the joint limiting distribution of (Un, V
2
n ).

Part 2-2: moderate trimming (bnan → t ∈ (0,∞))

We do not repeat the lengthy argument. With the tail probability calculations used to prove the moderate
trimming scenario of Theorem 1(ii.1), one has

E
[
ei(ζ1Un+ζ2V

2
n )
]
→ exp

{∫
R

ei(ζ1x+ζ2x
2) − 1− iζ1x
x2

M(dx)

}
,

where

M(dx) = dx

[
2− γ0

α+(0) + α−(0)
|x|1−γ0

(
α+(tx)1x≥0 + α−(tx)1x<0

)]
.

Part 2-3: heavy trimming (bnan →∞)

This case is much easier, and one can directly show that Un/Vn converges to the standard Gaussian distribution.
�
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IV.15 Proof of Proposition S.1

Rewrite the estimator as

τ̂ ATTn,bn =
c0
ĉn

1

n

n∑
i=1

(Di − e(Xi))Yi
c0(1− e(Xi))

11−e(Xi)≥(1−Di)bn ,

where c0 = P[D = 1], and ĉn = n−1
∑n
i=1Di. We first consider the tail behavior of (D− e(X))Y/(c0(1− e(X)).

Note that

P
[

(D − e(X))Y

c0(1− e(X))
> x

]
= P[D = 1]P

[
Y (1)

c0
> x

∣∣∣∣D = 1

]
+ P[D = 0]P

[
e(X)Y (0)

c0(1− e(X))
< −x

∣∣∣∣D = 0

]
,

where we take x > 0. To proceed, let F1−e(X) be the distribution function of 1− e(X), then

lim
x↓0

P[1− e(X) ≤ x|D = 0]

xP[1− e(X) ≤ x]
= lim

x↓0

P[D = 0|1− e(X) ≤ x]

xP[D = 0]

= lim
x↓0

1

xP[1− e(X) ≤ x]P[D = 0]

∫ x

0

yF1−e(X)(dy)

= lim
x↓0

1

xP[1− e(X) ≤ x]P[D = 0]

(
xF1−e(X)(x)−

∫ x

0

F1−e(X)(y)dy

)
= lim

x↓0

1

xP[1− e(X) ≤ x]P[D = 0]

(
xF1−e(X)(x)−

∫ 1

0

xF1−e(X)(xy)dy

)
= lim

x↓0

1

P[D = 0]

(
1−

∫ 1

0

F1−e(X)(xy)

F1−e(X)(x)
dy

)
=

1

P[D = 0]

(
1−

∫ 1

0

yγ0−1dy

)
=
γ0 − 1

γ0

1

P[D = 0]
.

Applying the same argument used to prove Lemma 1, one has

lim
x→∞

P[D = 0]P
[

e(X)Y (0)
c0(1−e(X)) < −x

∣∣∣D = 0
]

x−1P[1− e(X) < x−1]

= lim
x→∞

P[D = 0]P[1− e(X) < x−1|D = 0]

x−1P[1− e(X) < x−1]

P
[

e(X)Y (0)
c0(1−e(X)) < −x

∣∣∣D = 0
]

P[1− e(X) < x−1|D = 0]

=
γ0 − 1

γ0
c−γ00 α(0),−(0),

where

α(0),−(x) = lim
t→1

E
[
|Y (0)|γ01Y (0)<x

∣∣∣e(X) = t
]
.

Therefore,

lim
x→∞

P
[

(D−e(X))Y
c0(1−e(X)) > x

]
x−1P[1− e(X) < x−1]

=
γ0 − 1

γ0
c−γ00 α(0),−(0).
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Similarly, we have

lim
x→∞

P
[

(D−e(X))Y
c0(1−e(X)) < −x

]
x−1P[1− e(X) < x−1]

=
γ0 − 1

γ0
c−γ00 α(0),+(0).

As a result, (D − e(X))Y/(c0(1− e(X)) has regularly varying tails with index −γ0 if α(0),+(0) + α(0),−(0) > 0.
The rest of the proof employs the same argument used to prove Theorem 1. �

IV.16 Proof of Proposition S.2

We first consider the tail behavior of (2D − 1)Y/(1−D + (2D − 1)e(X)). For this, we note that

P
[

(2D − 1)Y

1−D + (2D − 1)e(X)
> x

]
= P[D = 1]P

[
Y (1)

e(X)
> x

∣∣∣∣D = 1

]
+ P[D = 0]P

[
Y (0)

1− e(X)
< −x

∣∣∣∣D = 0

]
,

where we take x > 0. Then if ω > 0,

lim
x↓0

P[e(X) ≤ x|D = 1]

xP[e(X) ≤ x]
= lim

x↓0

P[D = 1|e(X) ≤ x]

xP[D = 1]

= lim
x↓0

1

xP[e(X) ≤ x]P[D = 1]

∫ x

0

yFe(X)(dy)

= lim
x↓0

1

xP[e(X) ≤ x]P[D = 1]

(
xP[e(X) ≤ x]−

∫ x

0

Fe(X)(y)dy

)
= lim

x↓0

1

xP[e(X) ≤ x]P[D = 1]

(
xP[e(X) ≤ x]−

∫ 1

0

xFe(X)(xy)dy

)
= lim

x↓0

1

P[D = 1]

(
1−

∫ 1

0

Fe(X)(xy)

Fe(X)(x)
dy

)
=

1

P[D = 1]

(
1−

∫ 1

0

yγ0−1dy

)
=
γ0 − 1

γ0

1

P[D = 1]
.

Therefore, conditional on D = 1, the probability weight has regularly varying left tail with index γ0. Applying
the same argument used to prove Lemma 1, one has

lim
x→∞

P[D = 1]P
[
Y (1)
e(X) > x

∣∣∣D = 1
]

x−1P[e(X) < x−1]
= lim
x→∞

P[D = 1]P[e(X) < x−1|D = 1]

x−1P[e(X) < x−1]

P
[
Y (1)
e(X) > x

∣∣∣D = 1
]

P[e(X) < x−1|D = 1]

=
γ0 − 1

γ0
α(1),+(0).

Similarly, we can show that if ω < 1,

lim
x↓0

P[D = 0]P
[

Y (0)
1−e(X) < −x

∣∣∣D = 0
]

x−1P[1− e(X) < x−1]
=
γ0 − 1

γ0
α(0),−(0).

Together, they imply

lim
x→∞

xP
[

(2D−1)Y
1−D+(2D−1)e(X) > x

]
P[e(X) < x−1] + P[1− e(X) < x−1]

=
γ0 − 1

γ0

(
ωα(1),+(0) + (1− ω)α(0),−(0)

)
.
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By the same argument,

lim
x→∞

xP
[

(2D−1)Y
1−D+(2D−1)e(X) < −x

]
P[e(X) < x−1] + P[1− e(X) < x−1]

=
γ0 − 1

γ0

(
ωα(1),−(0) + (1− ω)α(0),+(0)

)
.

As a result, (2D − 1)Y/(1−D + (2D − 1)e(X)) has regularly varying tail with index −γ0 if

ω
(
α(1),+(0) + α(1),−(0)

)
+ (1− ω)

(
α(0),+(0) + α(0),−(0)

)
> 0.

The rest of the proof employs the same argument used to prove Theorem 1. �

IV.17 Proof of Proposition S.3

This employs the same argument used to prove Theorem 1. �
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V Figures and Tables
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(b)

Figure S.1. Illustration of γ0. Sample size: n = 2, 000. P[e(X) ≤ x] = xγ0−1 with γ0 = 1.5. (a) Distribution of
the Probability Weights. (b) Distribution of the Probability Weights, Separately for Subgroups D = 1 (Red)
and D = 0 (Blue).
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Table S.1. Simulation Results. γ0 = 1.5, E[Y |e(X), D = 1] = cos(2πe(X)).

(a) n = 2, 000

Trimming Conventional Robust (ĥn = 0.377)

b̂n n≤b̂n bias sd rmse cov |ci| bias sd rmse cov |ci|
− − 0.131 3.773 3.776 0.775 7.308 0.131 3.773 3.776 0.844 21.235

0.004 0.170 0.800 1.493 1.694 0.740 5.116 0.238 1.565 1.583 0.924 7.387

0.016 1.338 1.576 0.979 1.855 0.541 3.713 0.465 1.169 1.258 0.926 5.757

0.036 4.606 2.373 0.741 2.486 0.158 2.849 0.628 1.064 1.236 0.913 4.973

0.094 19.225 3.718 0.503 3.752 0.000 1.956 0.711 0.999 1.226 0.906 4.219

Crump et al. (2009)

0.096 19.996 3.760 0.507 3.794 0.000 1.934 n.a. n.a. n.a. n.a. n.a.

(b) n = 5, 000

Trimming Conventional Robust (ĥn = 0.319)

b̂n n≤b̂n bias sd rmse cov |ci| bias sd rmse cov |ci|
− − 0.025 5.681 5.681 0.786 7.948 0.025 5.681 5.681 0.869 37.240

0.002 0.173 0.764 1.546 1.724 0.755 5.336 0.259 1.592 1.613 0.928 7.196

0.010 1.689 1.697 0.966 1.953 0.514 3.717 0.485 1.103 1.205 0.916 5.233

0.025 6.653 2.692 0.714 2.785 0.077 2.805 0.696 0.961 1.187 0.891 4.457

0.072 32.182 4.484 0.478 4.510 0.000 1.885 0.883 0.894 1.257 0.846 3.780

Crump et al. (2009)

0.096 49.586 5.100 0.429 5.118 0.000 1.666 n.a. n.a. n.a. n.a. n.a.

(c) n = 10, 000

Trimming Conventional Robust (ĥn = 0.281)

b̂n n≤b̂n bias sd rmse cov |ci| bias sd rmse cov |ci|
− − 0.053 7.909 7.909 0.787 7.761 0.053 7.909 7.909 0.862 59.629

0.001 0.168 0.781 1.575 1.758 0.757 5.404 0.213 1.609 1.623 0.922 6.944

0.007 1.994 1.812 0.975 2.058 0.477 3.698 0.441 1.086 1.172 0.910 4.870

0.019 8.752 2.971 0.708 3.054 0.037 2.756 0.668 0.916 1.134 0.877 4.097

0.059 47.837 5.175 0.466 5.196 0.000 1.824 0.895 0.831 1.221 0.817 3.490

Crump et al. (2009)

0.096 99.019 6.442 0.388 6.454 0.000 1.486 n.a. n.a. n.a. n.a. n.a.

Notes: (i) b̂n: trimming threshold. (ii) n≤b̂n =
∑n
i=1 1(e(Xi) ≤ bn, Di = 1): effective number of trimmed observations. (iii)

bias: empirical bias, scaled by n1−1/γ0 . (iv) sd: empirical standard deviation, scaled by n1−1/γ0 . (v) rmse: empirical root mean
squared error, scaled by n1−1/γ0 . (vi) cov: coverage probability (nominal level 0.95, calculated for the Gaussian-based confidence
interval under “Conventional”, and calculated for the subsampling-based confidence interval under “Robust”). (vii) |ci|: average

confidence interval length, scaled by n1−1/γ0 . (viii) ĥn: bandwidth for local polynomial bias correction. (ix) Number of Monte
Carlo repetitions: 5000. Number of subsampling iterations: 1000. Subsample size: bn/ log(n)c.
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Table S.2. Simulation Results. γ0 = 1.5, E[Y |e(X), D = 1] = 1− e(X).

(a) n = 2, 000

Trimming Conventional Robust (ĥn = 0.377)

b̂n n≤b̂n bias sd rmse cov |ci| bias sd rmse cov |ci|
− − 0.132 3.771 3.773 0.774 7.295 0.132 3.771 3.773 0.864 22.017

0.004 0.170 0.800 1.490 1.691 0.742 5.105 0.012 1.569 1.569 0.939 7.755

0.016 1.338 1.569 0.977 1.849 0.543 3.716 0.003 1.172 1.172 0.957 6.029

0.036 4.606 2.357 0.747 2.472 0.165 2.875 0.001 1.063 1.063 0.964 5.228

0.094 19.225 3.730 0.510 3.764 0.000 2.005 0.017 0.984 0.984 0.967 4.530

Crump et al. (2009)

0.096 19.996 3.775 0.511 3.810 0.000 1.983 n.a. n.a. n.a. n.a. n.a.

(b) n = 5, 000

Trimming Conventional Robust (ĥn = 0.319)

b̂n n≤b̂n bias sd rmse cov |ci| bias sd rmse cov |ci|
− − 0.025 5.678 5.678 0.784 7.933 0.025 5.678 5.678 0.873 37.233

0.002 0.173 0.763 1.549 1.726 0.754 5.323 0.031 1.600 1.601 0.935 7.334

0.010 1.689 1.692 0.967 1.949 0.514 3.712 0.015 1.112 1.112 0.956 5.346

0.025 6.653 2.676 0.719 2.771 0.081 2.817 0.015 0.967 0.967 0.963 4.559

0.072 32.182 4.467 0.491 4.494 0.000 1.927 0.019 0.890 0.890 0.964 3.958

Crump et al. (2009)

0.096 49.586 5.120 0.440 5.139 0.000 1.710 n.a. n.a. n.a. n.a. n.a.

(c) n = 10, 000

Trimming Conventional Robust (ĥn = 0.281)

b̂n n≤b̂n bias sd rmse cov |ci| bias sd rmse cov |ci|
− − 0.045 7.909 7.909 0.790 7.747 0.045 7.909 7.909 0.863 59.692

0.001 0.168 0.773 1.571 1.751 0.760 5.391 0.019 1.609 1.609 0.928 7.017

0.007 1.994 1.801 0.973 2.047 0.477 3.689 0.005 1.092 1.092 0.952 4.943

0.019 8.752 2.949 0.710 3.033 0.040 2.760 0.003 0.923 0.923 0.958 4.152

0.059 47.837 5.136 0.474 5.158 0.000 1.856 0.006 0.829 0.829 0.964 3.588

Crump et al. (2009)

0.096 99.019 6.460 0.395 6.472 0.000 1.524 n.a. n.a. n.a. n.a. n.a.

Notes: (i) b̂n: trimming threshold. (ii) n≤b̂n =
∑n
i=1 1(e(Xi) ≤ bn, Di = 1): effective number of trimmed observations. (iii)

bias: empirical bias, scaled by n1−1/γ0 . (iv) sd: empirical standard deviation, scaled by n1−1/γ0 . (v) rmse: empirical root mean
squared error, scaled by n1−1/γ0 . (vi) cov: coverage probability (nominal level 0.95, calculated for the Gaussian-based confidence
interval under “Conventional”, and calculated for the subsampling-based confidence interval under “Robust”). (vii) |ci|: average

confidence interval length, scaled by n1−1/γ0 . (viii) ĥn: bandwidth for local polynomial bias correction. (ix) Number of Monte
Carlo repetitions: 5000. Number of subsampling iterations: 1000. Subsample size: bn/ log(n)c.
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Table S.3. Simulation Results. γ0 = 1.3, E[Y |e(X), D = 1] = cos(2πe(X)).

(a) n = 2, 000

Trimming Conventional Robust (ĥn = 0.358)

b̂n n≤b̂n bias sd rmse cov |ci| bias sd rmse cov |ci|
− − 0.299 5.004 5.013 0.611 5.413 0.299 5.004 5.013 0.806 63.074

0.002 0.121 0.874 1.054 1.369 0.567 3.373 0.218 1.123 1.144 0.937 6.832

0.010 1.151 1.452 0.561 1.556 0.284 2.090 0.393 0.750 0.847 0.927 4.661

0.027 4.247 1.955 0.376 1.991 0.016 1.431 0.497 0.674 0.838 0.913 3.715

0.081 17.630 2.673 0.222 2.682 0.000 0.861 0.555 0.646 0.852 0.882 2.886

Crump et al. (2009)

0.092 20.735 2.761 0.214 2.769 0.000 0.808 n.a. n.a. n.a. n.a. n.a.

(b) n = 5, 000

Trimming Conventional Robust (ĥn = 0.301)

b̂n n≤b̂n bias sd rmse cov |ci| bias sd rmse cov |ci|
− − 0.226 5.860 5.864 0.619 5.665 0.226 5.860 5.864 0.829 90.294

0.001 0.105 0.832 1.090 1.372 0.584 3.494 0.230 1.133 1.156 0.933 6.215

0.006 1.456 1.523 0.540 1.616 0.238 2.027 0.388 0.676 0.780 0.912 3.818

0.018 6.323 2.141 0.348 2.169 0.002 1.338 0.498 0.571 0.758 0.871 3.001

0.061 30.642 3.058 0.199 3.064 0.000 0.780 0.591 0.536 0.797 0.824 2.379

Crump et al. (2009)

0.092 51.712 3.407 0.163 3.411 0.000 0.637 n.a. n.a. n.a. n.a. n.a.

(c) n = 10, 000

Trimming Conventional Robust (ĥn = 0.264)

b̂n n≤b̂n bias sd rmse cov |ci| bias sd rmse cov |ci|
− − 0.028 13.288 13.288 0.612 6.605 0.028 13.288 13.288 0.804 332.821

0.000 0.118 0.861 1.126 1.417 0.573 3.498 0.172 1.154 1.167 0.926 5.737

0.004 1.833 1.621 0.514 1.700 0.178 1.931 0.319 0.620 0.697 0.913 3.249

0.013 8.517 2.301 0.323 2.324 0.000 1.261 0.453 0.507 0.679 0.858 2.555

0.050 46.665 3.388 0.182 3.393 0.000 0.718 0.556 0.470 0.728 0.792 2.062

Crump et al. (2009)

0.092 103.456 4.007 0.138 4.010 0.000 0.528 n.a. n.a. n.a. n.a. n.a.

Notes: (i) b̂n: trimming threshold. (ii) n≤b̂n =
∑n
i=1 1(e(Xi) ≤ bn, Di = 1): effective number of trimmed observations. (iii)

bias: empirical bias, scaled by n1−1/γ0 . (iv) sd: empirical standard deviation, scaled by n1−1/γ0 . (v) rmse: empirical root mean
squared error, scaled by n1−1/γ0 . (vi) cov: coverage probability (nominal level 0.95, calculated for the Gaussian-based confidence
interval under “Conventional”, and calculated for the subsampling-based confidence interval under “Robust”). (vii) |ci|: average

confidence interval length, scaled by n1−1/γ0 . (viii) ĥn: bandwidth for local polynomial bias correction. (ix) Number of Monte
Carlo repetitions: 5000. Number of subsampling iterations: 1000. Subsample size: bn/ log(n)c.
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Table S.4. Simulation Results. γ0 = 1.3, E[Y |e(X), D = 1] = 1− e(X).

(a) n = 2, 000

Trimming Conventional Robust (ĥn = 0.358)

b̂n n≤b̂n bias sd rmse cov |ci| bias sd rmse cov |ci|
− − 0.300 4.999 5.008 0.610 5.407 0.300 4.999 5.008 0.825 64.859

0.002 0.121 0.875 1.048 1.365 0.565 3.368 0.027 1.126 1.126 0.951 7.155

0.010 1.151 1.449 0.559 1.553 0.282 2.092 0.009 0.757 0.757 0.971 4.882

0.027 4.247 1.947 0.375 1.983 0.016 1.446 0.008 0.674 0.674 0.979 3.935

0.081 17.630 2.668 0.229 2.678 0.000 0.895 0.010 0.639 0.639 0.975 3.182

Crump et al. (2009)

0.092 20.735 2.763 0.219 2.771 0.000 0.842 n.a. n.a. n.a. n.a. n.a.

(b) n = 5, 000

Trimming Conventional Robust (ĥn = 0.301)

b̂n n≤b̂n bias sd rmse cov |ci| bias sd rmse cov |ci|
− − 0.226 5.858 5.862 0.617 5.659 0.226 5.858 5.862 0.826 87.993

0.001 0.105 0.832 1.090 1.371 0.582 3.488 0.019 1.139 1.139 0.946 6.347

0.006 1.456 1.521 0.537 1.613 0.234 2.024 0.016 0.682 0.682 0.967 3.911

0.018 6.323 2.134 0.347 2.162 0.002 1.344 0.007 0.574 0.574 0.973 3.075

0.061 30.642 3.043 0.206 3.050 0.000 0.803 0.006 0.533 0.534 0.971 2.524

Crump et al. (2009)

0.092 51.712 3.408 0.169 3.412 0.000 0.664 n.a. n.a. n.a. n.a. n.a.

(c) n = 10, 000

Trimming Conventional Robust (ĥn = 0.264)

b̂n n≤b̂n bias sd rmse cov |ci| bias sd rmse cov |ci|
− − 0.027 13.287 13.287 0.610 6.600 0.027 13.287 13.287 0.804 325.798

0.000 0.118 0.860 1.124 1.415 0.570 3.493 0.008 1.155 1.155 0.936 5.821

0.004 1.833 1.619 0.513 1.698 0.178 1.927 0.014 0.624 0.625 0.967 3.312

0.013 8.517 2.295 0.323 2.317 0.000 1.263 0.003 0.509 0.509 0.973 2.591

0.050 46.665 3.370 0.186 3.375 0.000 0.735 0.008 0.466 0.467 0.971 2.133

Crump et al. (2009)

0.092 103.456 4.007 0.141 4.010 0.000 0.550 n.a. n.a. n.a. n.a. n.a.

Notes: (i) b̂n: trimming threshold. (ii) n≤b̂n =
∑n
i=1 1(e(Xi) ≤ bn, Di = 1): effective number of trimmed observations. (iii)

bias: empirical bias, scaled by n1−1/γ0 . (iv) sd: empirical standard deviation, scaled by n1−1/γ0 . (v) rmse: empirical root mean
squared error, scaled by n1−1/γ0 . (vi) cov: coverage probability (nominal level 0.95, calculated for the Gaussian-based confidence
interval under “Conventional”, and calculated for the subsampling-based confidence interval under “Robust”). (vii) |ci|: average

confidence interval length, scaled by n1−1/γ0 . (viii) ĥn: bandwidth for local polynomial bias correction. (ix) Number of Monte
Carlo repetitions: 5000. Number of subsampling iterations: 1000. Subsample size: bn/ log(n)c.
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Table S.5. Simulation Results. γ0 = 1.9, E[Y |e(X), D = 1] = cos(2πe(X)).

(a) n = 2, 000

Trimming Conventional Robust (ĥn = 0.414)

b̂n n≤b̂n bias sd rmse cov |ci| bias sd rmse cov |ci|
− − 0.006 3.612 3.612 0.902 10.703 0.006 3.612 3.612 0.876 13.413

0.013 0.241 0.711 2.325 2.431 0.885 8.840 0.238 2.401 2.413 0.930 9.776

0.032 1.340 1.594 1.966 2.531 0.816 7.654 0.477 2.155 2.207 0.936 8.993

0.057 4.164 2.715 1.702 3.204 0.613 6.691 0.638 2.026 2.124 0.944 8.497

0.119 16.767 4.926 1.386 5.117 0.073 5.484 0.702 1.940 2.063 0.947 8.012

Crump et al. (2009)

0.101 12.230 4.347 1.457 4.584 0.176 5.756 n.a. n.a. n.a. n.a. n.a.

(b) n = 5, 000

Trimming Conventional Robust (ĥn = 0.354)

b̂n n≤b̂n bias sd rmse cov |ci| bias sd rmse cov |ci|
− − 0.030 5.205 5.205 0.918 11.313 0.030 5.205 5.205 0.892 17.278

0.008 0.250 0.732 2.411 2.520 0.903 9.296 0.234 2.464 2.475 0.928 10.000

0.022 1.599 1.742 2.066 2.702 0.821 8.072 0.592 2.213 2.291 0.929 9.076

0.042 5.596 3.141 1.802 3.621 0.566 7.087 0.920 2.080 2.275 0.919 8.548

0.094 26.638 6.330 1.454 6.495 0.015 5.745 1.200 1.965 2.303 0.915 7.933

Crump et al. (2009)

0.101 30.355 6.680 1.440 6.833 0.005 5.634 n.a. n.a. n.a. n.a. n.a.

(c) n = 10, 000

Trimming Conventional Robust (ĥn = 0.315)

b̂n n≤b̂n bias sd rmse cov |ci| bias sd rmse cov |ci|
− − 0.106 3.456 3.458 0.913 11.353 0.106 3.456 3.458 0.890 13.015

0.005 0.229 0.767 2.547 2.660 0.899 9.728 0.186 2.589 2.596 0.934 10.285

0.016 1.836 1.932 2.173 2.908 0.804 8.395 0.548 2.292 2.357 0.926 9.172

0.033 7.162 3.620 1.910 4.093 0.507 7.347 0.934 2.145 2.340 0.913 8.572

0.079 38.011 7.701 1.543 7.854 0.002 5.935 1.383 2.024 2.451 0.888 7.943

Crump et al. (2009)

0.101 60.651 9.369 1.446 9.480 0.000 5.532 n.a. n.a. n.a. n.a. n.a.

Notes: (i) b̂n: trimming threshold. (ii) n≤b̂n =
∑n
i=1 1(e(Xi) ≤ bn, Di = 1): effective number of trimmed observations. (iii)

bias: empirical bias, scaled by n1−1/γ0 . (iv) sd: empirical standard deviation, scaled by n1−1/γ0 . (v) rmse: empirical root mean
squared error, scaled by n1−1/γ0 . (vi) cov: coverage probability (nominal level 0.95, calculated for the Gaussian-based confidence
interval under “Conventional”, and calculated for the subsampling-based confidence interval under “Robust”). (vii) |ci|: average

confidence interval length, scaled by n1−1/γ0 . (viii) ĥn: bandwidth for local polynomial bias correction. (ix) Number of Monte
Carlo repetitions: 5000. Number of subsampling iterations: 1000. Subsample size: bn/ log(n)c.
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Table S.6. Simulation Results. γ0 = 1.9, E[Y |e(X), D = 1] = 1− e(X).

(a) n = 2, 000

Trimming Conventional Robust (ĥn = 0.414)

b̂n n≤b̂n bias sd rmse cov |ci| bias sd rmse cov |ci|
− − 0.021 3.573 3.573 0.910 10.626 0.021 3.573 3.573 0.899 14.614

0.013 0.241 0.693 2.278 2.381 0.893 8.770 0.022 2.359 2.359 0.939 10.343

0.032 1.340 1.565 1.928 2.483 0.822 7.603 0.039 2.119 2.119 0.946 9.383

0.057 4.164 2.680 1.676 3.161 0.626 6.660 0.027 1.991 1.992 0.951 8.798

0.119 16.767 5.065 1.359 5.244 0.062 5.425 0.018 1.892 1.892 0.959 8.198

Crump et al. (2009)

0.101 12.230 4.395 1.431 4.622 0.171 5.718 n.a. n.a. n.a. n.a. n.a.

(b) n = 5, 000

Trimming Conventional Robust (ĥn = 0.354)

b̂n n≤b̂n bias sd rmse cov |ci| bias sd rmse cov |ci|
− − 0.036 5.190 5.191 0.913 11.239 0.036 5.190 5.191 0.901 17.806

0.008 0.250 0.723 2.425 2.531 0.898 9.224 0.005 2.481 2.481 0.936 10.269

0.022 1.599 1.722 2.073 2.695 0.815 8.013 0.048 2.224 2.224 0.943 9.265

0.042 5.596 3.105 1.810 3.594 0.567 7.049 0.075 2.084 2.085 0.950 8.693

0.094 26.638 6.384 1.463 6.549 0.015 5.717 0.066 1.952 1.953 0.955 8.078

Crump et al. (2009)

0.101 30.355 6.771 1.442 6.923 0.007 5.601 n.a. n.a. n.a. n.a. n.a.

(c) n = 10, 000

Trimming Conventional Robust (ĥn = 0.315)

b̂n n≤b̂n bias sd rmse cov |ci| bias sd rmse cov |ci|
− − 0.090 3.458 3.460 0.911 11.277 0.090 3.458 3.460 0.900 13.243

0.005 0.229 0.749 2.539 2.647 0.894 9.654 0.030 2.583 2.583 0.936 10.438

0.016 1.836 1.905 2.151 2.873 0.810 8.329 0.004 2.277 2.277 0.943 9.281

0.033 7.162 3.571 1.881 4.036 0.506 7.299 0.008 2.121 2.121 0.949 8.652

0.079 38.011 7.687 1.509 7.834 0.002 5.910 0.010 1.981 1.981 0.955 8.041

Crump et al. (2009)

0.101 60.651 9.486 1.399 9.589 0.000 5.498 n.a. n.a. n.a. n.a. n.a.

Notes: (i) b̂n: trimming threshold. (ii) n≤b̂n =
∑n
i=1 1(e(Xi) ≤ bn, Di = 1): effective number of trimmed observations. (iii)

bias: empirical bias, scaled by n1−1/γ0 . (iv) sd: empirical standard deviation, scaled by n1−1/γ0 . (v) rmse: empirical root mean
squared error, scaled by n1−1/γ0 . (vi) cov: coverage probability (nominal level 0.95, calculated for the Gaussian-based confidence
interval under “Conventional”, and calculated for the subsampling-based confidence interval under “Robust”). (vii) |ci|: average

confidence interval length, scaled by n1−1/γ0 . (viii) ĥn: bandwidth for local polynomial bias correction. (ix) Number of Monte
Carlo repetitions: 5000. Number of subsampling iterations: 1000. Subsample size: bn/ log(n)c.
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