Supplementary materials

Synthesis of new selective cytotoxic ricinine analogues against oral squamous cell carcinoma

Mai H. El-Naggar ${ }^{\text {a }}$, Fatma M. Abdel Bar ${ }^{\text {b,c }}$, Choudhary Harsha ${ }^{\text {d }}$, Javadi Monisha ${ }^{\text {d }}$, Kuniyoshi Shimizu ${ }^{\text {e }}$, Ajaikumar B. Kunnumakkara ${ }^{\text {d }}$, Farid A. Badria ${ }^{\mathrm{c}^{*}}$
${ }^{\text {a }}$ Pharmacognosy Department, Faculty of Pharmacy, Kafrelsheikh university, Kafrelsheikh, Egypt.
${ }^{\mathrm{b}}$ Pharmacognosy Department, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
${ }^{c}$ Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516 Egypt.
${ }^{d}$ Laboratory of Cancer Biology and DBT-AIST International Laboratory for Advanced Biomedicine, Biosciences and Bioengineering Department, Indian Institute of Technology Guwahati, Assam, India.
${ }^{\mathrm{e}}$ Systematic Forest and Forest Products Sciences Division, Agro-Environmental Sciences Department, Bioresource and Bioenvironmental Sciences Graduate School, Kyushu University, Fukuoka, Japan.

*Address Correspondence to:

Farid A. Badria, email: faridbadria@gmail.com.

Declarations of interest: Authors declare that there are no conflicts of interest.

Abstract

Sixteen new analogues were synthesized from ricinine and tested alongside with seven known analogues for their cytotoxic activity against oral cancer (SAS cells) and normal epithelial cells (L132 cells). In contrast to $5-\mathrm{FU}$, the synthesized ricinine analogues did not show toxicity to normal cells. However, some of them inhibited the proliferation of oral cancer cells at $25 \mu \mathrm{M}$ as evident from the MTT assay results. Ricinine analogue (19) was shown to be the most active derivative (69.22 \% inhibition). Potential targets involved in the oral cancer inhibitory activity of compound 19 were investigated using in-silico studies and western blot analysis. PTP1B was predicted to be a target for ricinine using reverse docking approach. This prediction was confirmed by western blot analysis that revealed the downregulation of PTP1B protein by compound 19. Moreover, it showed downregulation of COX-2 which is also extensively expressed in oral cancer.

Contents

1. Experimental	Page
1.1. General experimental methods.	5
1.2. Virtual screening.	5
1.3. Biological assays.	6
1.4. Detailed procedures of preparation, FT-IR, and ${ }^{\mathrm{T}} \mathrm{H}-\mathrm{NMR}$ of ricinine derivatives (5-9).	8
1.5. General method of preparation for compounds 12-14, 16, 17, and 19-22.	11
2. Spectra (MS \& NMR) of new compounds:	
Figure S1: High resolution $\mathrm{FAB}^{+}-\mathrm{MS}$ spectra of compound 5.	17
Figure S2. ${ }^{\text {I }} \mathrm{H}-\mathrm{NMR}$ spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 5.	18
Figure S3. Expansion of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{5}$.	18
Figure S4. APT spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 5.	19
Figure S5. High resolution $\mathrm{FAB}^{+}-\mathrm{MS}$ spectra of compound 6.	19
Figure S6. ${ }^{\text {I }} \mathrm{H}-\mathrm{NMR}$ spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 6.	20
Figure S7. APT spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 6.	20
Figure S8. High resolution $\mathrm{FAB}^{+}-\mathrm{MS}$ spectra of compound 7.	21
Figure S9. ${ }^{\mathrm{T}} \mathrm{H}-\mathrm{NMR}$ spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 7.	21
Figure S10. Expansion of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 7.	22
Figure S11. APT spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 7.	22
Figure S12. HMBC correlation spectrum of compound 7.	23
Figure S13. Selected HMBC correlations of compound 7 from $\delta_{\mathrm{H}} 6-8 \mathrm{ppm}$, and from $\delta_{\mathrm{C}} 100-170 \mathrm{ppm}$.	24
Figure S14. High resolution $\mathrm{FAB}^{+}-\mathrm{MS}$ spectra of compound 8.	25
Figure S15. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ of compound 8.	25
Figure S16. Expansion of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ of compound $\mathbf{8}$.	26
Figure S17. APT spectrum ($\left.100 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ of compound 8.	26
Figure S18. HMBC correlation spectrum of compound 8.	27
Figure S19. Selected HMBC correlations of compound $\mathbf{8}$ from $\delta_{\mathrm{H}} 5-8.5 \mathrm{ppm}$, and from $\delta_{\mathrm{C}} 70-190 \mathrm{ppm}$.	28
Figure S20. High resolution $\mathrm{FAB}^{+}-\mathrm{MS}$ spectra of compound 9.	29
Figure S21. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 9.	29
Figure S22. Expansion of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{9}$.	30
Figure S23. APT spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 9.	30
Figure S24. Expansion of APT spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 9.	31
Figure S25. HMBC correlation spectrum of compound 9.	32
Figure S26. Selected HMBC correlations of compound 9 from $\delta_{H} 5.5-8.5 \mathrm{ppm}$ and $\delta_{\mathrm{C}} 90-190 \mathrm{ppm}$.	33
Figure S27. High resolution $\mathrm{FAB}^{+}-\mathrm{MS}$ spectra of compound 12.	34
Figure S28. ${ }^{\text {T }} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 12.	34
Figure S29. Expansion of ${ }^{\text {I }} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 12.	35
Figure S30. APT spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 12.	35
Figure S31. High resolution $\mathrm{FAB}^{+}-\mathrm{MS}$ spectra of compound 13.	36
Figure S32. ${ }^{\text {I }} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ of compound 13.	36
Figure S33. Expansion of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum ($400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$) of compound 13.	37
Figure S34. APT spectrum ($100 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$) of compound 13.	37
Figure S35. High resolution $\mathrm{FAB}^{+}-\mathrm{MS}$ spectra of compound 14.	38
Figure S36. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ of compound 14.	38
Figure S37. APT spectrum ($100 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$) of compound 14.	39
Figure S38. High resolution $\mathrm{FAB}^{+}-\mathrm{MS}$ spectra of compound 15.	39
Figure S39. ${ }^{\text {I }} \mathrm{H}-\mathrm{NMR}$ spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 15.	40
Figure S40. Expansion of ${ }^{\mathrm{T}} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) of compound 15.	40
Figure S41. APT spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 15.	41
Figure S42. High resolution $\mathrm{FAB}^{+}-\mathrm{MS}$ spectra of compound 16.	41

Figure S43. ${ }^{\text {² }} \mathrm{H}-\mathrm{NMR}$ spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 16.	42
Figure S44. APT spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 16.	42
Figure S45. High resolution FAB^{+}-MS spectra of compound 17.	43
Figure S46. ${ }^{\text {² }} \mathrm{H}-\mathrm{NMR}$ spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 17.	43
Figure S47. Expansion of ${ }^{\text {1 }} \mathrm{H}$-NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 7}$.	44
Figure S48. APT spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 17.	44
Figure S49. High resolution $\mathrm{FAB}^{+}-\mathrm{MS}$ spectra of compound 18.	45
Figure S50. ${ }^{\text {² }} \mathrm{H}-\mathrm{NMR}$ spectrum ($400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$) of compound 18.	45
Figure S51. Expansion of ${ }^{1} \mathrm{H}$-NMR spectrum $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ of compound 18.	46
Figure S52. APT spectrum ($100 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$) of compound 18.	46
Figure S53. HMBC correlation spectrum of compound 18.	47
Figure S54. Selected HMBC correlations of compound 18 from $\delta_{\mathrm{H}} 6.5-9 \mathrm{ppm}$, and $\delta_{\mathrm{C}} 100-180 \mathrm{ppm}$.	48
Figure S55. High resolution FAB^{+}-MS spectra of compound 19.	49
Figure S56. ${ }^{\text {² }} \mathrm{H}-\mathrm{NMR}$ spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 19.	49
Figure S57. Expansion ${ }^{1} \mathrm{H}$-NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 19.	50
Figure S58. APT spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 19.	50
Figure S59. Expansion of APT spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 19.	51
Figure S60. HMBC correlation spectrum of compound 19.	52
Figure S61. Selected HMBC correlations of compound 19 from $\delta_{\mathrm{H}} 5-10 \mathrm{ppm}$, and $\delta_{\mathrm{C}} 120-170 \mathrm{ppm}$.	53
Figure S62. High resolution $\mathrm{FAB}^{+}-\mathrm{MS}$ spectra of compound 20.	54
Figure S63. ${ }^{\text {d }} \mathrm{H}$-NMR spectrum $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ of compound 20.	54
Figure S64. Expansion of ${ }^{\mathrm{T}} \mathrm{H}$-NMR spectrum $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ of compound $\mathbf{2 0}$.	55
Figure S65. APT spectrum ($100 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$) of compound 20.	55
Figure S66. HMBC correlation spectrum of compound 20.	56
Figure S67. Selected HMBC correlations of compound 20 from $\delta_{\mathrm{H}} 7-8.8 \mathrm{ppm}$, and $\delta_{\mathrm{C}} 90-180 \mathrm{ppm}$.	57
Figure S68. High resolution FAB^{+}-MS spectra of compound 21.	58
Figure S69. ${ }^{\text {² }} \mathrm{H}-\mathrm{NMR}$ spectrum ($400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$) of compound 21.	58
Figure S70. APT spectrum ($100 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$) of compound 21.	59
Figure S71. HMBC correlation spectrum of compound 21.	60
Figure S72. Selected HMBC correlations of compound $\mathbf{2 1}$ from $\delta_{\mathrm{H}} 6.5-9 \mathrm{ppm}$, and $\delta_{\mathrm{C}} 90-180 \mathrm{ppm}$.	61
Figure S73. High resolution FAB^{+}-MS spectra of compound 22	62
Figure S74. ${ }^{\text {H }} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ of compound 22.	62
Figure S75. Expansion of ${ }^{1} \mathrm{H}$-NMR spectrum $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ of compound $\mathbf{2 2}$.	63
Figure S76. APT spectrum ($100 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$) of compound 22.	63
Figure S77. HMBC correlation spectrum of compound 22.	64
Figure S78. Selected HMBC correlations of compound 22 from $\delta_{\mathrm{H}} 6-8.5 \mathrm{ppm}$, and $\delta_{\mathrm{C}} 90-180 \mathrm{ppm}$.	65
Figure S79. Western blot analysis of Akt1, Akt2, Akt3, PTP1B, Survivin, REDD1, p-STAT3, STAT3, pNF-кB, NF-кB, pS6, S6, β-actin, GAPDH and COX-2 proteins in the cytosolic extract of SAS cells treated with compound 19.	66
Figure S80. Molecular model of compound 19 binding with; A) PTP1B; B) COX-2 active sites, obtained by AutoDock Vina in PyRx 0.8.	66
Figure S81. Bar graph shows the effect of ricinine derivatives and standard chemotherapeutic agent 5FU on the proliferation of normal epithelial cells (L132 cells).	67
References	67

1. Experimental

1.1.General experimental methods

Melting points were determined on Stuart ${ }^{\circledR}$ melting point apparatus model SMP10 and are uncorrected. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra were obtained using CDCl_{3} or $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ solvents and TMS as an internal standard at 400 MHz for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and 100 MHz for ${ }^{13} \mathrm{C}-\mathrm{NMR}$ on BRUKER Avance III spectrometer (Bruker AG, Switzerland) or Jeol $500 \mathrm{MHz}^{\mathrm{TM}}$ spectrometer. Chemical shifts (δ) are reported in ppm relative to the solvent signal and coupling constants are given in Hz. Mass spectrometry, HR-TOF-MS data were determined using LC-MS-IT-TOF (Shimadzu, Tokyo, Japan). IR spectra were obtained using a Thermo Scientific Nicolet ${ }^{\mathrm{TM}} \mathrm{iS}^{\mathrm{TM}} 10$ FT-IR or BRUKER FT-IR (Alpha platinum-ATR) spectrometer. The progress of reactions and the purity of final products were monitored by thin layer chromatography (TLC) which was performed on precoated silica gel $60 \mathrm{GF}_{254}(20 \times 20 \mathrm{~cm}, 0.2 \mathrm{~mm}$ thick) on aluminum sheets (Merck, Germany). UV was applied to visualize the spots. Column chromatography was carried out on silica gel G 60-230 mesh (Merck, Germany). Organic solvents were distilled prior use. Chemical reagents were purchased from Sigma-Aldrich or Combi-Blocks and were used without purification.

1.2.Virtual screening

1.2.1. Reverse docking

Reverse docking for the parent compound, ricinine, was done using PharmMapper web server (http://lilab.ecust.edu.cn/pharmmapper/) for its target identification.

1.2.2. Docking study of ricinine and its derivatives against PTP1B and COX-2 proteins

Structure based docking study was accomplished using PyRx 0.8 (http://pyrx.sourceforge.net/). AutoDock Vina (Trott and Olson 2010) was used as the docking software, installed on Dell desktop equipped with 2.20 GHz Intel ${ }^{\circledR}$ Core (TM) i5 processor running windows 8 operating
system. Ricinine and its analogues were drawn using ChemBio3D Ultra 12.0 and saved with SDF file extension. The energy forms of these structures were minimized with the help of uff force field, then they were transformed to pdbqt format. AutoDock Vina implemented in PyRx 0.8 was used as the molecular modeling software. PTP1B (PDB code: 1QXK) and COX-2 (PDB code: 5IKR) crystal structures obtained from RCSB-Protein Data Bank were used in this docking study. The ligands' docking site was located by forming a cube with the dimensions $25 \times 25 \times 25$ A covering the binding site of the standard ligand in the used PDB structure. The coordinates X, Y and Z from center grid box were $29.5479,30.7994$ and 19.6718 respectively for PTP1B and 38.9382, 2.9069 and 61.2034 respectively for COX-2. Docking files visualization was performed using PyMol molecular graphics system (www.pymol.org).

1.3.Biological assays

1.3.1. Materials

MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) was purchased from Sigma-Aldrich Chemicals, St. Louis, MO, USA. Dimethyl sulfoxide (DMSO) was purchased from Merck Life Science Pvt. Ltd., India. Dulbecco's modified eagle medium (DMEM), fetal bovine serum (FBS), and penicillin/streptomycin were purchased from Gibco. The SAS human oral squamous cell carcinoma cell line was obtained from Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram and normal lung cell L-132 were obtained from NCCS, Pune. The primary antibodies specific for Survivin, COX-2, Akt1, Akt2, Akt-3, PTP1B, β - actin and GAPDH were purchased from Cell Signaling Technology, USA and the primary antibodies for REDD1, S6, pS6, STAT3 and pSTAT3 were purchased from Abcam, UK.

2.3.2. Cytotoxic activity against oral cancer

The cytotoxic activity of ricinine (1) and its synthesized derivatives (2-24) against oral carcinoma was evaluated in a cell-based assay in comparison to 5- FU as a positive control using SAS cells and MTT colorimetric assay. SAS cells were harvested using 0.05% trypsin- 0.02% EDTA solution in DMEM-High glucose medium and seeded at a concentration of 2000 cells/100 $\mu \mathrm{L}$ per well in a flat-bottomed 96 -well polystyrene coated plate. After 24 hr . incubation at $37^{\circ} \mathrm{C}$ in a $5 \% \mathrm{CO}_{2}$ incubator, the compounds (1-24) were added to the cells at a concentration of 25 $\mu \mathrm{M}$ each in hexaplates. $10 \mu \mathrm{~L}$ of $5 \mathrm{mg} / \mathrm{mL}$ MTT reagent was added to each well at $0^{\text {th }}$ and $72^{\text {th }} \mathrm{hr}$. of drug treatment and the plates were incubated for 2 hr . Formazan crystals formed after 2 hr . in each well were dissolved in $100 \mu \mathrm{~L}$ of DMSO and the absorbance was read after 1 hr . in a microplate reader at 570 nm . Cells treated only with complete medium were used as control. The IC_{50} of the active compound was determined by plotting proliferation versus concentration.

2.3.3. Selectivity study

The effect of ricinine and its synthetic analogues on the proliferation of normal epithelial cells (L132 cells) was determined in comparison to the standard chemotherapeutic agent, 5-FU. L132 cells were seeded in 96 well culture plates at a density of 2000 cells $/ 100 \mu 1 /$ well and treated with 0,25 and $50 \mu \mathrm{M}$ of the compounds $\mathbf{1 - 2 4}$ and 5 -FU for 72 hr . The rate of proliferation was estimated by MTT assay.
2.3.4 Western blot analysis and differential expression of PTP1B and other proteins in compound 19 treated SAS cells

SAS cells were seeded in 6 -well plates at a concentration of 6×10^{5} cells $/ 2 \mathrm{~mL}$ and incubated for 24 hr . in a $37^{\circ} \mathrm{C} \mathrm{CO}_{2}$ incubator. After 24 hr ., the cells were treated with $0,5,10,25$ and $50 \mu \mathrm{M}$ of the compound 19. The whole cell lysates were prepared by treating with lysis buffer ($20 \mu \mathrm{M}$ HEPES buffer, 0.5 M EDTA, $1 \mathrm{M} \mathrm{NaCl}, 1 \mathrm{mg} / \mathrm{mL}$ leupeptin, $5 \mathrm{mg} / \mathrm{ml}$ aprotinin, 100 mM PMSF,

1M DTT, $0.1 \%(\mathrm{v} / \mathrm{v})$ Triton $\mathrm{X}-100$) at the end of 24 hr . treatment. The protein concentrations were determined using Bradford protein assay using bovine serum albumin as the standard. Equal amounts of protein were loaded onto a 12% sodium dodecyl sulfate (SDS) polyacrylamide gel; electrophoresis was carried out and the proteins were transferred to a nitrocellulose membrane. Successful transfer of protein to the membrane was confirmed by staining with Ponceau-S. The membrane was then blocked with 5\% non-fat dry milk in 1X TBST buffer for 2 hr . at room temperature. Following blocking, the blots were incubated overnight at $4^{\circ} \mathrm{C}$ with an appropriate dilution of the respective antibodies (Akt1, Akt2 and Akt3, PTP1B, Survivin, REDD1, pSTAT3, STAT3, pNF-кB, NF-кB, pS6, S6, β-actin and GAPDH). After around 16-20 hr., the blots were washed with 1 X TBST and incubated with HRP conjugated secondary antibodies for 2 hr . Finally, the blots were developed using an Optiblot ECL Detect Kit (Abcam) and ChemiDoc ${ }^{\text {TM }}$ XRS System (BioRad). The housekeeping genes GAPDH and β-actin were used as loading control. These results have been analyzed using Image Lab software.

1.4.Detailed experimental procedures of preparation, FT-IR, and ${ }^{1} \mathrm{H}$-NMR of ricinine

 derivatives (5-9):
4-(Allyloxy)-1-methyl-2-oxo-1,2-dihydropyridine-3-carbonitrile (5)

The starting compound, $\mathbf{3}$ (ricininic acid, 50 mg) was partially dissolved in 10 mL acetone then $43 \mu \mathrm{~L}$ of allyl bromide (1.5 equiv.) and 91 mg of $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2 equiv.) were added. The reaction mixture was refluxed with stirring at $80^{\circ} \mathrm{C}$ for 24 hr . The reaction was stopped by evaporation of acetone and addition of distilled water then extracted with (3x 10 mL) DCM. The DCM extract
was dried over anhydrous sodium sulfate and evaporated under vacuum to afford compound $\mathbf{5}$ as opaque rhombic crystals ($24.5 \mathrm{mg}, 38.7 \%$).
$\mathbf{R}_{\boldsymbol{f}}$ value of 0.61 using DCM- $\mathrm{MeOH}\left(9.5: 0.5, \mathrm{v} / \mathrm{v}\right.$) as developing system; m.p. $164^{\circ} \mathrm{C}$; FT-IR $v_{\max } 3094,2921,2851,2223,1650,1596,1130,1251 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42$ $(1 \mathrm{H}, \mathrm{d}, J=4.0 \mathrm{~Hz}, \mathrm{H}-6), 5.96(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-5), 5.89(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10), 5.36(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}, \mathrm{H}-$ 11_{b}), $5.28\left(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}, \mathrm{H}-11_{\mathrm{a}}\right), 4.66$ ($2 \mathrm{H}, \mathrm{br}$ s, H-9), 3.46 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-7$).

1-Methyl-4-((3-methylbut-2-en-1-yl)oxy)-2-oxo-1,2-dihydropyridine-3-carbonitrile (6)

The starting compound, $\mathbf{3}$ (ricininic acid, 30 mg), after its characterization, was partially dissolved in 7 mL acetone then $28 \mu \mathrm{~L}$ of prenyl bromide (1.2 equiv.) and 55 mg of $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2 equiv.) were added. The reaction mixture was refluxed with stirring at $80^{\circ} \mathrm{C}$ for 4 hrs . The reaction was stopped by evaporation of acetone and addition of distilled water then extracted with (3 x 5 mL) DCM. The DCM extract was dried over anhydrous sodium sulfate and evaporated under vacuum to afford compound $\mathbf{6}$ as pale yellow, very fine, needle like crystals ($27 \mathrm{mg}, 62 \%$).
$\mathbf{R}_{\boldsymbol{f}}$ value of 0.65 using DCM- $\mathrm{MeOH}\left(9.5: 0.5, \mathrm{v} / \mathrm{v}\right.$) as developing system; m.p. $115^{\circ} \mathrm{C}$; FT-IR $v_{\max } 3106,2914,2853,2226,1642,1589,1128,1263 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38$ ($1 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{H}-6$), $5.94(1 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{H}-5), 5.34(1 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{H}-10)$, and 4.64 ($2 \mathrm{H}, \mathrm{d}$, $J=5.2 \mathrm{~Hz}, \mathrm{H}-9), 3.45(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-7), 1.72$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-13$), 1.68 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-12$).

3-Cyano-1-methyl-2-oxo-1,2-dihydropyridin-4-yl benzenesulfonate (7)

Compound 3 (ricininic acid), 50 mg , was dissolved in 60 mL DCM then $51 \mu \mathrm{~L}$ (1.2 equiv.) of benzene sulfonylchloride and $93 \mu \mathrm{~L}$ (2 equiv.) of triethylamine were added. The reaction mixture was stirred overnight at room temperature, then it was evaporated under vacuum and purified by crystallization to afford compound 7 as white rhombic crystals ($55 \mathrm{mg}, 57 \%$).
$\mathbf{R}_{\boldsymbol{f}}$ value of 0.21 using EtOAc- PE (6:4, v/v) as developing system; m.p. $126^{\circ} \mathrm{C}$; FT-IR $v_{\max }$ 3048, 2225, 1649, 1595, 1538, 1366, $1190 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94$ (2H, d, $J=7.8 \mathrm{~Hz}, \mathrm{H}-10 / 14), 7.68(1 \mathrm{H}, \mathrm{dd}, J=7.6,7.3 \mathrm{~Hz}, \mathrm{H}-12), 7.54(2 \mathrm{H}, \mathrm{dd}, J=8.1,7.6 \mathrm{~Hz}, \mathrm{H}-11 / 13)$, 7.51 ($1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{H}-6), 6.52$ ($1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{H}-5$), 3.51 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-7$).

1-Methyl-2-oxo-4-(2-oxo-2-phenylethoxy)-1,2-dihydropyridine-3-carbonitrile (8)

Compound 3 (ricininic acid), 100 mg , was partially dissolved in 50 mL acetone then 159 mg of phenacyl bromide (1.2 equiv.) and 184 mg of $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2 equiv.) were added. The reaction mixture was refluxed with stirring at $50^{\circ} \mathrm{C}$ for 24 hr . The reaction was stopped by evaporation of acetone and addition of distilled water then extracted with (3x 10 mL) DCM. The DCM extract was dried over anhydrous sodium sulfate and evaporated under vacuum to afford compound $\mathbf{8}$ as granular white powder ($94.3 \mathrm{mg}, 52.8 \%$).
$\mathbf{R}_{\boldsymbol{f}}$ value of 0.58 using DCM- $\mathrm{MeOH}\left(9.5: 0.5, \mathrm{v} / \mathrm{v}\right.$) as developing system; m.p. $112^{\circ} \mathrm{C}$; FT-IR $v_{\max } 3064,3092,2918,2937,2217,1701,1639,1533,1138,1235 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}(400 \mathrm{MHz}$, (CD3)2SO) $\delta 8.03(3 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{H}-6 / 12 / 16), 7.76$ ($1 \mathrm{H}, \mathrm{dd}, J=7.3,7.4 \mathrm{~Hz}, \mathrm{H}-14$), 7.63 (2 H , dd, $J=7.6,7.6 \mathrm{~Hz}, \mathrm{H}-13 / 15), 6.41(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{H}-5), 6.01$ ($2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-9$), 3.48 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-7$).

3-Amino-2-benzoyl-5-methylfuro[3,2-c]pyridin-4(5H)-one (9)

To 70 mg of compound $\mathbf{8}$, after its characterization, about 3 mL poly-phosphoric acid (PPA) were added. The reaction mixture was heated at $110^{\circ} \mathrm{C}$ for 1.5 hrs . The work up was done in ice bath by addition of distilled water $(10 \mathrm{~mL})$ to the reaction mixture and neutralization with aqueous ammonia till pH 6 , then extraction with DCM ($3 \times 10 \mathrm{~mL}$). The obtained DCM extract was dried over anhydrous sodium sulfate and evaporated under vacuum to afford compound 9 as bright yellow flakes ($32 \mathrm{mg}, 45.7 \%$).
$\mathbf{R}_{\boldsymbol{f}}$ values of 0.78 using DCM- $\mathrm{MeOH}(9.5: 0.5, \mathrm{v} / \mathrm{v})$ as developing system and 0.30 using EtOAcPE ($6: 4, \mathrm{v} / \mathrm{v}$) as developing system, m.p. $242^{\circ} \mathrm{C}$; FT-IR $v_{\max } 3425,3304,3034,3058,2917$, 1672, 1567, 1298, $1117 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.13(2 \mathrm{H}, \mathrm{dd}, J=8,1.48 \mathrm{~Hz}, \mathrm{H}-$ $\left.3^{`} / 7^{`}\right), 7.49(2 \mathrm{H}$, overlapped, H-4`/6), $7.35(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{H}-6), 6.42(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{H}-7)$, $3.62\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{CH}_{3}\right)$.

1.5. Detailed experimental procedures of preparation, FT-IR, and ${ }^{1} H-N M R$ of ricinine derivatives $12-14,16,17$, and 19-22 (Thompson and Gaudino, 1984)

They were prepared from bromoricinine analogue (11), that was obtained from ricinine as reported by El-Naggar et al. (El-Naggar et al. 2019). To a solution of compound 11 ($100 \mathrm{mg}, 0.4$ $\mathrm{mM}, 1$ equiv.) in $\mathrm{MeOH}\left(60 \mathrm{~mL}\right.$), were added 114 mg of $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2 equiv.), 9 mg palladium acetate ($10 \mathrm{~mol} \%$), and 1.2 equivalent of boronic acid derivative. The reaction mixtures were
refluxed with stirring at $80^{\circ} \mathrm{C}$. scheme 2 . Work up was done by filtration of the reaction mixtures over silica gel and evaporation under vacuum. Purification was carried out over silica gel chromatography till purity reached $>95 \%$ as detected by TLC.
4-Methoxy-1-methyl-2-oxo-5-phenyl-1,2-dihydropyridine-3-carbonitrile (12)

It was purified over silica gel CC. and isocratic elution using DCM- MeOH (9.5:0.5, v/v). Colorless feather-like crystals ($15.6 \mathrm{mg}, 15.8 \%$ yield), m.p. $177^{\circ} \mathrm{C}, \mathbf{R}_{f}$ value of 0.41 using EtOAc- PE (6:4, v/v) as developing system. FT-IR $v_{\max } 3073,2937,2858,2220,1633,1520$, 1157 \& $1350 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40\left(3 \mathrm{H}, \mathrm{dd}, J=7.1,7.1 \mathrm{~Hz}, \mathrm{H}-3^{`} / 4 / 5^{`}\right), 7.37$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6$), 7.31 ($2 \mathrm{H}, \mathrm{dd}, J=5.9,2 \mathrm{~Hz}, \mathrm{H}-2 ` / 6^{\circ}$), 4.24 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-9$), 3.59 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-7$).

5-(4-Acetylphenyl)-4-methoxy-1-methyl-2-oxo-1,2-dihydropyridine-3-carbonitrile (13)

It was purified over silica gel CC. and isocratic elution using PE- EtOAc (1:1, v/v). white powder ($37.8 \mathrm{mg}, 32.5 \%$), $\mathbf{R}_{\boldsymbol{f}}$ values of 0.17 using EtOAc- PE ($6: 4, \mathrm{v} / \mathrm{v}$) as developing system and 0.76 using DCM-MeOH ($9.5: 0.5, \mathrm{v} / \mathrm{v}$) as developing system. FT-IR $v_{\text {max }} 3047,2928$, 2967, 2222, 1647, 1602, 1521, 1188, $1275 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 8.16(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6)$, 7.99 ($2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{H}-3^{`} / 5^{`}$), 7.56 ($2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{H}-2 ` / 6$), 4.11 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-9$), 3.50 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-7$), 2.61 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-8^{`}$).

4-(5-Cyano-4-methoxy-1-methyl-6-oxo-1,6-dihydropyridin-3-yl)benzamide (14)

It was purified over MPLC using silica gel (4 g), and DCM- MeOH (gradient elution). Fractions (5 mL) were collected to afford compound $\mathbf{1 4}$ that was eluted with DCM- MeOH (8.5:1.5, v/v) as white powder ($20 \mathrm{mg}, 17 \%$ yield), \mathbf{R}_{f} values of 0.27 using DCM- $\mathrm{MeOH}(9.5: 0.5, \mathrm{v} / \mathrm{v}$) as developing system. FT-IR $v_{\text {max }} 3449,3152,3049,2927,2219,1697,1642,1522,1143 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-$ NMR (400 MHz, (CD $\left.)_{2} \mathrm{SO}\right) \delta 8.13(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2), 7.92\left(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{H}-2 ` / 6^{\circ}\right), 7.48$ (2H, d, $J=8 \mathrm{~Hz}, \mathrm{H}-3 ` / 5)^{`}$, 4.10 (3H, s, H-9), 3.50 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-7$).

5-(Benzo[d][1,3]dioxol-5-yl)-4-methoxy-1-methyl-2-oxo-1,2-dihydropyridine-3-carbonitrile

It was purified by crystallization. colorless prisms ($67.8,58 \%$), m.p. $252^{\circ} \mathrm{C}, \mathbf{R}_{f}$ value of 0.36 using EtOAc- PE (6:4, v/v) as developing system. FT-IR $v_{\text {max }} 3039,2862,2918,2213,1645$, 1527, 1235, $1137 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 6.85(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}$, H-7`), \(6.80(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}, \mathrm{H}-4 `), 6.73\left(1 \mathrm{H}, \mathrm{dd}, J=8,1.4 \mathrm{~Hz}, \mathrm{H}^{\prime} 6^{`}\right), 6.03\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-2^{`}\right), 4.26\) ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-9$), 3.58 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-7$).
4-methoxy-1-methyl-2-oxo-5-(4-phenoxyphenyl)-1,2-dihydropyridine-3-carbonitrile (17)

It was purified over silica gel (4 g) CC. and isocratic elution using 100% DCM. white Featherlike crystals ($60.8 \mathrm{mg}, 44.5 \%$ yield), m.p. $244^{\circ} \mathrm{C}$, $\mathbf{R}_{\boldsymbol{f}}$ value of 0.48 using EtOAc- $\mathrm{PE}(6: 4, \mathrm{v} / \mathrm{v}$) as developing system. FT-IR $v_{\max } 3048,2928,2881,2218,1648,1516,1231,1165 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38$ ($2 \mathrm{H}, \mathrm{dd}, J=7.5,7.8 \mathrm{~Hz}, \mathrm{H}-3$ " $/ 5$ `), 7.36 (\(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6\)), \(7.25(2 \mathrm{H}\), 7.03 (\(2 \mathrm{H}, \mathrm{d}, ~ J=8.3 \mathrm{~Hz}, \mathrm{H}^{-} / 5^{`}\)), 4.28 (3H, s, H-9), 3.59 (3H, s, H-7).

5-([1,1'-Biphenyl]-4-yl)-4-methoxy-1-methyl-2-oxo-1,2-dihydropyridine-3-carbonitrile (19)

It was purified over silica gel (3 g) CC. and isocratic elution using PE- EtOAc (1:1, v/v). Amorphous white powder ($60 \mathrm{mg}, 46.6 \%$ yield). \mathbf{R}_{f} value of 0.45 using EtOAc- PE ($6: 4, \mathrm{v} / \mathrm{v}$) as developing system. FT-IR $\nu_{\max } 3060$, 2859, 2928, 2215, 1637, 1522, 1163, $1288 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$-NMR (400 MHz, CDCl_{3}) $\delta 7.65\left(2 \mathrm{H}, \mathrm{d}, J=8.6, \mathrm{H}-3 ` / 5\right.$), $7.63\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8, \mathrm{H}-2 ` / 6{ }^{-}\right)$, 7.47 (2 H , dd, $J=7.3,7.3 \mathrm{~Hz}, \mathrm{H}-3$ `/5`), 7.39 (4H, overlapped, H-6/2`/6, 4`), 4.29 (3H, s, H-9), 3.61 ($3 \mathrm{H}, \mathrm{s}$, H-7).

4-Methoxy-1-methyl-2-oxo-5-(thiophen-3-yl)-1,2-dihydropyridine-3-carbonitrile (20)

It was purified over silica gel (3 g) CC. and isocratic elution using PE-EtOAc (1:1, v/v). Amorphous white powder (13.8 mg , 13.6 \% yield) with $\mathbf{R}_{\boldsymbol{f}}$ values of 0.39 using EtOAc- PE ($6: 4$, v/v) as developing system. FT-IR $v_{\max } 3101,2932,2219,1634,1523,1155,1204 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (400 MHz, ($\left.\left.\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) ~ \delta 8.27(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 7.67\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2{ }^{`}\right), 7.66$ (1 H , overlapped d, $\left.J=4.9 \mathrm{~Hz}, \mathrm{H}-5^{`}\right), 7.34\left(1 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}, \mathrm{H}-4^{`}\right), 4.21(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-9), 3.53(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-7)$.

5-(Furan-3-yl)-4-methoxy-1-methyl-2-oxo-1,2-dihydropyridine-3-carbonitrile (21)

It was purified over MPLC using silica gel (4 g) CC. and isocratic elution using petr. etherEtOAc (1:1, v/v). Amorphous white powder ($10 \mathrm{mg}, 10.5 \%$ yield), $\mathbf{R}_{\boldsymbol{f}}$ values of 0.32 using EtOAc- PE (6:4, v/v) as developing system. FT-IR $v_{\max } 3015,3078,2962,2215,1642,1607$, 1364, $1180 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 8.35(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 7.99\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-2^{`}\right)$, 7.77 ($1 \mathrm{H}, \mathrm{br}$ s, H-5`), 6.90 (1 H, br s, H-4`), 4.36 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-9$), 3.54 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-7$).

5-(1H-indol-5-yl)-4-methoxy-1-methyl-2-oxo-1,2-dihydropyridine-3-carbonitrile (22)

It was purified over silica gel (3 g) CC. and isocratic elution using PE-EtOAc (1:1, v/v). Amorphous white powder ($30 \mathrm{mg}, 26 \%$ yield) with \mathbf{R}_{f} values of 0.32 using EtOAc- PE ($6: 4$, v / v) as developing system. FT-IR $v_{\text {max }} 3233,3061,2958,2217,1642,1603,1528,1147,1196$ $\mathrm{cm}^{-1} ;{ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 11.15(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1 `-\mathrm{NH}), 8.04(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 7.55(1 \mathrm{H}, \mathrm{s}$, H-5`), 7.43 (\(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{H}-7 `\)), 7.39 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-2 `$), 7.09 ($1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{H}-6$), 6.46 ($1 \mathrm{H}, \mathrm{br}$ s, H-3`), 3.94 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-9$), 3.50 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-7$).

4-Methoxy-5-(4-methoxyphenyl)-1-methyl-2-oxo-1,2-dihydropyridine-3-carbonitrile (15)

To a solution of bromoricinine (11), ($50 \mathrm{mg}, 0.2 \mathrm{mM}, 1$ equiv.) in $\mathrm{MeOH}(30 \mathrm{~mL}), 56 \mathrm{mg}$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2 equiv.), 4.5 mg palladium acetate ($10 \mathrm{~mol} \%$), and 31 mg of 4-methoxyphenylboronic acid (1 equiv.) were added. The reaction mixture was refluxed with stirring at $80^{\circ} \mathrm{C}$ for 16 hrs . Work up was done by its evaporation under vacuum, addition of water (10 mL) and fractionation with EtOAc ($3 \times 10 \mathrm{~mL}$) as shown in scheme 2 . The EtOAc extract was dried over anhydrous sodium sulfate and evaporated under vacuum.
It was purified by column chromatography using 1.5 g silica gel and isocratic elution with 100% DCM. Needle-like crystals ($45.3 \mathrm{mg}, 81.5 \%$ yield) with $\mathbf{R}_{\boldsymbol{f}}$ value of 0.32 using EtOAc- PE ($6: 4$, v/v) as developing system; m.p. $200^{\circ} \mathrm{C}$; FT-IR $v_{\max } 3049,2927,2857,1649,1517,2221,1246$, $1120 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 7.19\left(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{H}-2 ` / 6{ }^{\circ}\right)$, 6.91 ($\left.1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{H}-3^{`} / 5^{`}\right), 4.21(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-9), 3.82$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-7 `$), 3.54 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-7$).

4-(5-Cyano-4-methoxy-1-methyl-6-oxo-1,6-dihydropyridin-3-yl)phenyl benzenesulfonate (18)

To a solution of bromoricinine (11) ($50 \mathrm{mg}, 0.2 \mathrm{mM}$, 1 equiv.) in MeOH (30 mL) 56 mg of $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2 equiv.), 4.5 mg palladium acetate ($10 \mathrm{~mol} \%$), and 34 mg of 4-hydroxyphenylboronic acid (1.2 equiv.) were added. The reaction mixture was refluxed with stirring at $80^{\circ} \mathrm{C}$ for 5 hrs . When the reaction was complete, the reaction mixture was filtered over silica gel and evaporated under vacuum. The crude reaction residue was dissolved in 30 mL of DCM , then $31 \mu \mathrm{~L}$ of benzene sulfonylchloride (1.2 equiv.) and $41 \mu \mathrm{~L}$ of triethylamine (2 equiv.) were added. The reaction mixture was stirred at room temperature for 18 hr ., then it was evaporated under vacuum.

It was purified over silica gel (3 g) CC. and isocratic elution using PE- EtOAc (1:1, v/v). white powder ($20 \mathrm{mg}, 24.5 \%$ yield) with \mathbf{R}_{f} value of 0.63 using DCM- $\mathrm{MeOH}(9.5: 0.5$, v/v) as developing system. FT-IR $v_{\max } 3034,2957,2228,1650,1521,1371,1182,1156 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$-NMR $\left.\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 8.07(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2), 7.90(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), \mathrm{H}-2 ` / 6^{-}\right), 7.83(1 \mathrm{H}, \mathrm{dd}$, $J=7.6,7.6 \mathrm{~Hz}, \mathrm{H}-4 `), 7.68$ ($\left.2 \mathrm{H}, \mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}, \mathrm{H}-3^{`} / 5^{`}\right), 7.40\left(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{H}-3^{`} / 5^{`}\right)$, 7.09 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}, \mathrm{H}-2 ` 6{ }^{`}$), 4.06 (3H, s, H-9), 3.46 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-7$).

2. Spectra (mass \& NMR) of new compounds

Figure S1. High resolution $\mathrm{FAB}^{+}-\mathrm{MS}$ spectra of compound 5, showing $[\mathrm{M}+\mathrm{H}]^{+}$ion peak at $m / z 191.0820$ (calcd.. for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2}, 191.0821$).

Figure S2. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 5.

Figure S3. Expansion of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 5 .

Figure S4. APT spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 5.

Figure S5. High resolution $\mathrm{FAB}^{+}-\mathrm{MS}$ spectra of compound 6, showing $[\mathrm{M}+\mathrm{H}]^{+}$ion peak at $\mathrm{m} / \mathrm{z} 219.1135$ (calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}$, 219.1134).

Figure S6. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 6 .

Figure S7. APT spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 6 .

Figure S8. High resolution $\mathrm{FAB}^{+}-\mathrm{MS}$ spectra of compound 7, showing $[\mathrm{M}+\mathrm{H}]^{+}$ion peak at m / z 291.0442 (calcd. for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}, 291.0440$).

Figure S9. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 7.

Figure S10. Expansion of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 7.

Figure S11. APT spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 7 .

Figure S12. HMBC correlation spectrum of compound 7.

Figure S13. Selected HMBC correlation spectrum of compound 7 from $\delta_{H} 6-8 \mathrm{ppm}$, and from δ_{C} $100-170 \mathrm{ppm}$.

Figure S14. High resolution $\mathrm{FAB}^{+}-\mathrm{MS}$ spectra of compound $\mathbf{8}$, showing $[\mathrm{M}+\mathrm{H}]^{+}$ion peak at m / z 269.0924 (calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{3}, 269.0926$).

Figure S15. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ of compound 8 .

Figure S16. Expansion of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ of compound $\mathbf{8}$.

Figure S17. APT spectrum $\left(100 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ of compound 8 .

Figure S18. HMBC correlation spectrum of compound 8.

Figure S19. Selected HMBC correlation spectrum of compound $\mathbf{8}$ from $\delta_{\mathrm{H}} 5-8.5 \mathrm{ppm}$, and from $\delta_{\mathrm{C}} 70-190 \mathrm{ppm}$.

Figure S20. High resolution $\mathrm{FAB}^{+}-\mathrm{MS}$ spectra of compound $\mathbf{9}$, showing $[\mathrm{M}+\mathrm{H}]^{+}$ion peak at $\mathrm{m} / \mathrm{z} 269.0926$ (calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{3}, 269.0926$).

Figure S21. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 9 .

Figure S22. Expansion of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 9 .

Figure S23. APT spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 9 .

Figure S24. Expansion of APT spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 9.

Figure S25. HMBC correlation spectrum of compound 9 .

Figure S26. Selected HMBC correlation spectrum of compound 9 from $\delta_{H} 5.5-8.5 \mathrm{ppm}$, and from $\delta_{C} 90-190 \mathrm{ppm}$.

Figure S27. High resolution $\mathrm{FAB}^{+}-\mathrm{MS}$ spectra of compound 12, showing $[\mathrm{M}+\mathrm{H}]^{+}$ion peak at $m / z 241.0975$ (calcd. for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}, 241.0977$).

Figure S28. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 12.

Figure S29. Expansion of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 2}$.

Figure S30. APT spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 12.

Figure S31. High resolution $\mathrm{FAB}^{+}-\mathrm{MS}$ spectra of compound 13, showing $[\mathrm{M}+\mathrm{H}]^{+}$ion peak at $\mathrm{m} / \mathrm{z} 283.1084$ (calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3}, 283.1083$).

Figure S32. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ of compound 13.

Figure S33. Expansion of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ of compound 13.

Figure S34. APT spectrum $\left(100 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ of compound 13.

Figure S35. High resolution $\mathrm{FAB}^{+}-\mathrm{MS}$ spectra of compound 14, showing $[\mathrm{M}+\mathrm{H}]^{+}$ion peak at $m / z 284.1034$ (calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{3}, 284.1035$).

Figure S36. ${ }^{1} \mathrm{H}$-NMR spectrum $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ of compound 14.

Figure S37. APT spectrum $\left(100 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ of compound 14.

Figure S38. High resolution $\mathrm{FAB}^{+}-\mathrm{MS}$ spectra of compound $\mathbf{1 5}$, showing $[\mathrm{M}+\mathrm{H}]^{+}$ion peak at $m / z 271.1082$ (calcd. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3}, 271.1083$).

Figure S39. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) of compound 15.

Figure S40. Expansion of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 15.

Figure S41. APT spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 15.

Figure S42. High resolution $\mathrm{FAB}^{+}-\mathrm{MS}$ spectra of compound 16, showing $[\mathrm{M}+\mathrm{H}]^{+}$ion peak at $m / z 285.0875$ (calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{4}, 285.0875$).

Figure S43. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 16.

Figure S44. APT spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 16.

Figure S45. High resolution $\mathrm{FAB}^{+}-\mathrm{MS}$ spectra of compound 17, showing $[\mathrm{M}+\mathrm{H}]^{+}$ion peak at $\mathrm{m} / \mathrm{z} 333.1240$ (calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}, 333.1239$).

Figure S46. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 17.

Figure S47. Expansion of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 17.

Figure S48. APT spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 17.

Figure S49. High resolution $\mathrm{FAB}^{+}-\mathrm{MS}$ spectra of compound 18, showing $[\mathrm{M}+\mathrm{H}]^{+}$ion peak at $m / z 397.0858$ (calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}, 397.0858$).

Figure S50. ${ }^{1} \mathrm{H}$-NMR spectrum $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ of compound 18.

Figure S51. Expansion of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ of compound 18.

Figure S52. APT spectrum $\left(100 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ of compound 18 .

Figure S53. HMBC correlation spectrum of compound 18.

Figure S54. Selected HMBC correlation spectrum of compound 18 from $\delta_{H} 6.5-9 \mathrm{ppm}$, and from $\delta_{\mathrm{C}} 100-180 \mathrm{ppm}$.

Figure S55. High resolution $\mathrm{FAB}^{+}-\mathrm{MS}$ spectra of compound 19, showing $[\mathrm{M}+\mathrm{H}]^{+}$ion peak at $m / z 317.1290$ (calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}, 317.1290$).

Figure S56. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 19.

Figure S57. Expansion ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 19.

Figure S58. APT spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 19.

Figure S59. Expansion of APT spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 19.

Figure S60. HMBC correlation spectrum of compound 19.

Figure S61. Selected HMBC correlation spectrum of compound 19 from $\delta_{H} 5-10 \mathrm{ppm}$, and from $\delta_{\mathrm{C}} 120-170 \mathrm{ppm}$.

Figure S62. High resolution $\mathrm{FAB}^{+}-\mathrm{MS}$ spectra of compound 20, showing $[\mathrm{M}+\mathrm{H}]^{+}$ion peak at $\mathrm{m} / \mathrm{z} 247.0541$ (calcd. for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}, 247.0541$).

Figure S63. ${ }^{1} \mathrm{H}$-NMR spectrum $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ of compound 20.

Figure S64. Expansion of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ of compound 20.

Figure S65. APT spectrum ($100 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$) of compound 20.

Figure S66. HMBC correlation spectrum of compound 20.

Figure S67. Selected HMBC correlation spectrum of compound 20 from $\delta_{\mathrm{H}} 7-8.8 \mathrm{ppm}$, and from $\delta_{\mathrm{C}} 90-180 \mathrm{ppm}$.

Figure S68. High resolution $\mathrm{FAB}^{+}-\mathrm{MS}$ spectra of compound 21, showing $[\mathrm{M}+\mathrm{H}]^{+}$ion peak at $m / z 231.0773$ (calcd. for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{3}, 231.0770$).

Figure S69. ${ }^{1} \mathrm{H}$-NMR spectrum $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ of compound 21.

Figure S70. APT spectrum ($100 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$) of compound 21.

Figure S71. HMBC correlation spectrum of compound 21.

Figure S72. Selected HMBC correlation spectrum of compound 21 from $\delta_{\mathrm{H}} 6.5-9 \mathrm{ppm}$, and from $\delta_{\mathrm{C}} 90-180 \mathrm{ppm}$.

Figure S73. High resolution $\mathrm{FAB}^{+}-\mathrm{MS}$ spectra of compound 22, showing $[\mathrm{M}+\mathrm{H}]^{+}$ion peak at $m / z 280.1086$ (calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{2}, 280.1086$).

Figure S74. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ of compound 22.

Figure S75. Expansion of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ of compound 22.

Figure S76. APT spectrum $\left(100 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ of compound 22.

Figure S77. HMBC correlation spectrum of compound 22.

Figure S78. Selected HMBC correlation spectrum of compound 22 from $\delta_{H} 6-8.5 \mathrm{ppm}$, and from $\delta_{\mathrm{C}} 90-180 \mathrm{ppm}$.

Figure S79. Western blot analysis of Akt1, Akt2, Akt3, PTP1B, Survivin, REDD1, p-STAT3, STAT3, $\mathrm{pNF}-\kappa \mathrm{B}, \mathrm{NF}-\kappa \mathrm{B}, \mathrm{pS} 6, \mathrm{~S} 6, \beta$-actin, GAPDH and COX-2 proteins in the cytosolic extract of SAS cells treated with compound 19. The blots for β-actin and GAPDH are representative images of all β-actin and GAPDH blots.

Figure S80. Molecular model of compound 19 binding with; A) PTP1B; B) COX-2 active sites, obtained by AutoDock Vina in PyRx 0.8.

Figure S81. Bar graph shows the effect of ricinine derivatives and standard chemotherapeutic agent 5-FU on the proliferation of normal epithelial cells (L132 cells). L132 cells were seeded in 96 well culture plates at a density of 2000 cells $/ 100 \mu \mathrm{l} /$ well and treated with 0,25 and $50 \mu \mathrm{M}$ of compounds 1-24 and 5FU for 72 hr . The rate of proliferation was estimated by MTT assay. Values are presented as mean \pm SE of the experiment performed in sextuplicate $(*=P<0.05$ vs. control $(0 \mu \mathrm{M})$.

References

El-Naggar MH, Elgaml A, Abdel Bar FM, Badria FA. 2019. Antimicrobial and antiquorum-sensing activity of Ricinus communis extracts and ricinine derivatives. Natural product research. Jun;33:1556-1562. Epub 2018/01/16.
Trott O, Olson AJ. 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem.31:455-461.

