
Supplementary Material

Derivation of the First-Order Optimality Conditions (2.2-2.4)

To arrive at (2.2), we first obtain the gradient of the deviance with respect to U from the

steps below.
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By standard matrix derivative rules,
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Letting ✓̂ij = µj + [UUT (✓̃i � µ)]j, note that each element in the second term of the

gradient with bj is given by
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where b0(⇥̂) is a matrix with its ijth element b0j(✓̂ij) and Ul is the lth column of U. In matrix

notation,
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and the result in (2.2) follows.

The gradient of the deviance with respect to µ in (2.3) is derived as follows.
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Using standard vector di↵erentiation,
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where ej is a length d standard basis vector with 1 in the jth position and uj· is the jth row

of U.

Limiting Behavior of the Deviance of the Poisson Distribution with

the Deviation Held Constant

Lemma 1. Let x be an observation from a Poisson distribution with mean parameter �. If

the deviation � := (x� �) is held constant, the deviance D(x;�) monotonically decreases to

zero as either � or x increases to 1. That is, for fixed �

i. D(�+ �;�) decreases in �, and lim�!1 D(�+ �;�) = 0, and

ii. D(x; x��) decreases in x, and limx!1 D(x; x��) = 0.

Proof. The Poisson deviance is given by D(x;�) = 2{x log(x/�) � (x � �)}. When (x � �)

is fixed at �, the deviance is proportional to h(�|�) := (� + �) log [(�+ �) /�] ��. Due

to L’Hôpital’s rule,
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Figure 9: Numerical estimates of the limit of the average null deviance as a function of the

mean parameter for Poisson(�)

which proves that lim�!1 D(� + �;�) = 0. The derivative of h(�|�) with respect to �

equals log [(�+ �) /�]��/� = log (�/�+ 1)��/�, which is non-positive for all � (� ��)

and � because ez � 1 + z for all z. Hence, the deviance decreases monotonically in �. The

second statement with respect to x can be proved similarly.

Normalization Factor for the Poisson Distribution

For Poisson variables, ⌧j = �2
�
X̄j log(X̄j)�

1
n

P
i xij log(xij)

�
, which is not as familiar as

it was for Gaussian or Bernoulli variables. To see the relation between the normalization

factor and the Poisson mean parameter �, we obtained numerical estimates of the limit

of the average null deviance as n goes to 1 for the Poisson distribution, which equals

�2 [� log(�)� E(X log(X))]. Figure 9 shows this limit as a function of �. When the sample

size is large, ⌧j is expected to be smallest when � tends towards 0 and to flatten out when � is

greater than 1. This implies that variables with means smaller than 1 get the most weight and

that two variables with means much larger than 1 will get approximately the same weight. In
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contrast to the Bernoulli distribution, the normalization factor is not monotonically related

to the variance of a Poisson variable, which equals the mean.

Multi-Parameter Exponential Family Data

For discussion of generalized PCA formulation so far, we have implicitly assumed that data

are from a one-parameter exponential family distribution. To expound on multi-parameter

exponential family data, we consider categorical data. As an extension of a Bernoulli dis-

tribution, a multinomial distribution can be posited for a categorical variable with more

than two categories. Suppose that the categorical variable has K possible outcomes. This

categorical variable can be represented by K � 1 cell counts or proportion variables, where

each variable represents the count or proportion of times that category is taken.

The number of trials associated with each case may di↵er depending on the context.

In many scenarios, each case may involve only one trial. A scenario with multiple trials

naturally arises in modeling text data, where a case may be a document and the di↵erent

categories would be the words used in the document. Such data can be arranged into a

so-called document-term frequency matrix.

Suppose that (xi1, . . . , xiK) is the ith case with xij representing the proportion of the jth

category from ni multinomial trials with cell probabilities pij. The log-likelihood based on the

ith case is given by ni

PK�1
j=1 (xij✓ij)� ni log

⇣
1 +

PK�1
j=1 e✓ij

⌘
, where ✓ij = log(pij/piK) 2 R

and ni, the number of trials for the ith case, acts as a weight.

With the multi-parameter distribution, bj(·) is not a separate function for each of the

K � 1 categories. Instead, there is one b(·) function for the whole categorical variable,

b(✓i) = log

 
1 +

K�1X

l=1

e✓il

!
.

The natural parameter from the saturated model, ✓̃ij, is similar to the Bernoulli case,

but now depends on both xij and xiK := 1�
PK�1

j=1 xij. As for other distributions, we must
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Table 3: The value of the jth partial derivative of b(✓) evaluated at the approximate satu-

rated natural parameters for di↵erent possible combinations of xij and xiK . N0 represents

the number of xij, j = 1, . . . , K � 1 that are 0. The last column gives the limit as m goes to

infinity.

xij xiK b0j(✓̃i) limm!1 b0j(✓̃i)

0 [0, 1] e�m/(1 +
PK�1

l=1 e✓̃il) 0

(0, 1) (0, 1) (xij/xiK)/(1/xiK +N0e�m) xij

(0, 1) 0 xijem/(1 + em +N0e�m) xij

1 0 em/(1 + em + (K � 2)e�m) 1

approximate 1 with a large number m, and specify

✓̃ij =

8
>>><

>>>:

�m if xij = 0

log(xij/xiK) if xij 2 (0, 1) and xiK 2 (0, 1)

m+ log(xij) if xij 2 (0, 1) and xiK = 0

m if xij = 1

. (6.1)

Lemma 2 shows that as m gets very large, these parameters will converge to the perfect

fit: @b(✓)
@✓

����
✓=✓̃i

�! xi.

Lemma 2. For the approximate saturated model parameters ✓̃ij defined in (6.1),

lim
m!1

@b(✓)

@✓

����
✓=✓̃i

= xi.

Proof. The jth partial derivative of b(✓) (j = 1, . . . , K�1) at ✓̃i is
@b(✓)
@✓j

����
✓=✓̃i

= exp(✓̃ij)

1+
PK�1

l=1 exp(✓̃il)
.

The values of this partial derivative evaluated at the approximate saturated model pa-

rameters from (6.1) and their limits are given in Table 3. As m goes to infinity, the partial

derivative converges to xij in all cases.

The limit in the first row is true because the denominator is always greater than 1,

regardless of the other values of xil. The second row relies on the fact that 1�xiK =
PK�1

l=1 xil
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and the third row relies on the fact that
PK�1

l=1 xil = 1 when xiK = 0. The fourth row is

straightforward.

Proof of the Minimizers of the Majorizing Function

Holding µ constant, we verify that
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Given U(t), minimizing M(⇥|⇥(t)) with respect to µ is equivalent to minimizing
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The minimizer µ can be found by di↵erentiating M(⇥|⇥(t)) with respect to µ and setting

the gradient equal to zero, which leads to
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The update rule produces µ that satisfies the equation at each step since I�U(t)(U(t))T is

a projection matrix and 1T
nV

(t)1n is a scalar.

Stability of Algorithm 1 with Random Initialization

To demonstrate the stability of Algorithm 1, we used 100 random initializations of U(1) and

compared their fitted deviances using k = 5 on a simulated dataset with P (X = 0) = 0.9,
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Figure 10: Average training deviance of solutions as a function of the number of iterations for

100 random initializations trained on a simulated dataset with P (X = 0) = 0.9, E(X|X >

0) = 3, n = 100, and d = 50 and fit with k = 5.

E(X|X > 0) = 3, n = 100, and d = 50 considered in Section 4. The results are shown

in Figure 10, along with the result using the eigen-decomposition for initialization. U was

randomly initialized by simulating independent standard normal elements in an n ⇥ k ma-

trix and performing a QR decomposition to orthonormalize the matrix. All 100 replications

converged to similar deviances, which explain between 89.58% and 89.82% of the null de-

viance. The random initializations are slightly worse than the eigen-decomposition based

initialization, which explains 89.84% of the null deviance, and they take more iterations to

converge.
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Figure 11: Comparison of di↵erent generalized PCA methods for recommending songs to

users with the play count data

Additional Million Song Dataset Analysis

To highlight additional ways in which this data can be analyzed by generalized PCA, we

have also binarized the subset of the MSD used for recommendations, converting all listen

counts greater than 0 to 1. With this, we applied logistic PCA to the data. Further, we

weighted the binary responses, giving higher weights to the larger counts. Figure 11 shows

the results of these analyses. Binarization and weighting both improve the AUC, indicating

that most important feedback in the data is whether or not the user listened to the song,

and of less importance is the number of times.
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