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A Appendix: Proofs
For any matrix M , ‖M‖max denotes the entrywise maximum norm, ‖M‖2 denote the matrix `2

norm and ρmin(M) denote its minimum eigenvalue. Finally let Xj and Zj denote the jth columns
of X and Z respectively.

Proof of Lemma 1. Recall that X>X/n → Σ. Let S1n = {ω : 1/(2ρmax(Σ)) ≤ ρmin(Z>Z/n −
Γ)−1 ≤ 2/ρmin(Σ)}. On S1n, Z>Z/n− Γ is invertible and the CoCoLasso estimate in (2) can be
disguised as a Lasso equation as

β̂C(λ) = arg min
β

(2n)−1‖ỹ − Z̃β‖2
2 + λ‖β‖1. (1)

where Z̃/n is the Cholesky factor of Z>Z/n − Γ and ỹ is the solution of Z̃>ỹ = Z>y. The
solution path is hence piecewise linear in λ (Tibshirani 2013, Lemma 8). If R = R(λ) denote the
active set (set of indices corresponding to the non-zero entries of β̂(λ)), then the slope is given
by ‖(Z̃>Z̃/n)−1

R,R‖2 = ‖(( 1
n
Z>Z − Γ)R,R)−1‖2. So, the maximal slope is bounded by

sup
R⊂{1,2,...,p}

‖
(

(
1

n
Z>Z − Γ)R,R

)−1

‖2 ≤ ‖(
1

n
Z>Z − Γ)−1‖2 ≤ 2/ρmin(Σ) (2)

From Lemma A2, p(Scin) = o(n−1) which proves the Lipschitz continuity for the CocoLasso
estimate β̂C,0(λ). Similar, result will hold if Z is replaced by Z−i (i.e., the ith observation is
removed). Since no(n−1)→ 0, the result holds uniformly for β̂(i)

C (λ) over i = 0, 1, . . . , n.
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Proof of Lemma 2. If X was observed, β̂L(λ) = 0 for all λ ≥ ‖X>y/n‖∞. Equivalently,
β̂C(λ) = 0 if λ ≥ ‖Z̃>ỹ/n‖∞ = ‖Z>y/n‖∞. We can expand Z>y = X>Xβ∗ + X>w +
A>Xβ∗ + A>w. Using Lemma A1, P (‖Z>y/n‖∞ ≥ ‖Σβ∗‖∞ + 1) = o(n−1) and hence

p(‖βC,0(λ)‖2 ≥ 2(‖Σβ∗‖∞ + 1)/ρmin(Σ)) = o(n−1). (3)

Again, similar result will hold by replacing Z with Z−i which proves the lemma.

Before proving Lemma 3, we introduce some additional notation. Let β(λ) denote the min-
imizer of g(β) where g(β) = 1

2
(β − β∗)>Σ(β − β∗) + λ‖β‖1 + σ2. First note that as g(β) can

be viewed as a noiseless version of the Lasso loss function (1). Hence, ‖β(λ)‖2 is Lipshitz and
uniformly stochastically bounded in λ ∈ [0,Λ]. For any β, let R(β, ε) denote the closed `2-ball
of radius ε and centered around β. Since g(β) is strictly convex, there is a δ(ε, λ) > 0 such that
β /∈ R(β(λ), ε)⇒ g(β) > g(β(λ)) + δ(ε, λ). Clearly, δ(ε, λ) is decreasing in ε and goes to zero
as ε→ 0. We first prove the following result:

Lemma 1. For any fixed λ, and p(‖β̂C(λ)− β(λ)‖2 > ε) = o(n−1).

Proof. The CoCoLasso estimate β̂(n)
C (λ) is obtained by minimizing gn(β) = 1

2
(y>y/n−2y>Zβ/n+

β>(Z>Z/n− Γ)+β) + λ‖β‖1.

|gn(β)− g(β)| ≤ |β>((Z>Z/n− Γ)+ − Σ)β|/2 + |β∗>(X>X/n− Σ)β∗|/2+

|β>(Z>X/n− Σ)β∗|+ |β>Z>w/n|+ |w>X>β∗/n|+ |w>w/n|

Using Lemmas A1 and A2, we have p(|gn(β)− g(β)| > δ(ε, λ)/4) = o(n−1).
Let K be the compact hypercube in Rp, centered at zero and having edges of length L such

that L = 5(‖Σβ∗‖∞ + 1)/ρmin(Σ). Using the bound of Equation (3) one can see that this choice
of L ensures that K contains ∪λ∈[0,Λ]R(β(λ), ε) for small enough ε and contains {β̂C,0(λ) : λ ∈
[0,Λ]} with probability 1− o(n−1).

As λ ∈ [0,Λ], g(β) is also Lipschitz in β on K with constant κ = ||Σ‖2L +
√
pΛ. We use

Lemma A3 (Equation 6) and conclude that for any ε > 0,

p(S) ≤ (8
√

2Lκ/δ(ε, λ) + 3)po(n−1) where S = {sup
β∈K
|gn(β)− g(β)| > δ(ε, λ)/4}.

On Sc, we have gn(β(λ)) < g(β(λ)) + δ(ε, λ)/4. Therefore on Sc, for β ∈ K \ R(β(λ), ε),
we have gn(β) > g(β)− δ(ε, λ)/4 > g(β(λ)) + 3δ(ε, λ)/4 > gn(β(λ)). Hence,

p(‖β̂C(λ)− β(λ)‖2 > ε) ≤ p(S) + p(β̂C(λ) ∈ Kc)

≤ (4
√

2Lκ/δ(ε, λ) + 3)po(n−1) + o(n−1).

Since δ(ε, 4) does not depend on n, the right hand side is o(n−1).
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Proof of Lemma 3. We emulate the proofs of Theorems 21.9 and 21.10 in Davidson (1994) with
a more careful tracking of the probability bounds throughout to ensure that the results hold uni-
formly for all the leave-one-out estimators β̂(i)

C (λ).
Let Qn(λ) = ‖β̂C(λ) − β(λ)‖2. Since, |Qn(λ) − Qn(λ′)| ≤ ‖β̂C(λ) − β̂C(λ′)‖2 + ‖β(λ) −

β(λ′)‖2, from Lemma 1, |Qn(λ) − Qn(λ′)| ≤ Cn|λ − λ′| with p(Sn) = o(n−1) for set Sn =
{|Cn| > 4/ρmin(Σ)}. For any ε > 0, let λ0 = 0, λ1, . . . , λm = Λ denote an increasing sequence
of points such that λi − λi−1 = µ ≤ ερmin(Σ)/8. On Sn for any λ ∈ [0,Λ], Qn(λ) ≤ ε/2 +
maxi=1,...,mQn(λi). Then, we have

p( sup
λ∈[0,Λ]

|Qn(λ)| > ε) ≤
m∑
i=1

p(Qn(λi) > ε/2) + p(Scn) =
m∑
i=1

o(n−1) + o(n−1) = o(n−1) .

The analogous result also holds if we replace β̂C(λ) with the clean Lasso estimate β̂L(λ) inQn(λ)
(a version of the clean Lasso result is provided in Theorem 1 of Knight & Fu (2000)). Hence,
using triangular inequality we have,

p( sup
λ∈[0,Λ]

‖β̂C(λ)− β̂L(λ)‖2 > ε)) = o(n−1) .

Summing over the n probabilities for all the leave-one-out estimates, Lemma 3 is proved.

Proof of Lemma 4. RX(λ) and R̃X(λ) are identical quadratic forms with the only difference be-
ing β̂L(λ) in RX(λ) gets replaced by β̂C(λ) in R̃X(λ). Hence, part (a) follows immediately from
Lemmas 2 and 3. Similarly, to prove part (b) we once use Lemmas 2 and 3 to show that the
difference of the quadratic forms β̂C(λ)>Γβ̂C(λ)− β̂L(λ)>Γβ̂L(λ) is op(1). For part (c), we ex-
pand yi − z>i β̂

(i)
C (λ) =

∑4
j=1 tij where ti1 = x>i (β∗ − β̂L(λ)), ti2 = wi, ti3 = −a>i β̂L(λ) and

ti4 = z>i (β̂L(λ)− β̂(i)
C (λ)). Let

Ln,X(λ) = n−1‖X(β∗ − β̂L(λ))‖2
2 . (4)

Hence |L̂n,Z(λ)− Ln,X(λ)− σ2 − β̂L(λ)>Γβ̂L(λ)‖2
2| is less than

|
(

1

n
w>w − σ2

)
|+ |β̂L(λ)>

(
1

n
A>A− Γ

)
β̂L(λ)|+ | 1

n
w>X(β∗ − β̂L(λ))|+ | 1

n
w>Aβ̂L(λ)|+

| 1
n
β̂L(λ)>A>X(β∗ − β̂L(λ))|+ max

i=1,...,n
t2i4 + 2

3∑
j=1

(
max
i=1,...,n

|tij|
)(

max
i=1,...,n

|ti4|
)

Since from Lemma 3, ti4 is op(1) and tij’s, for j ≤ 3, are Op(1) uniformly over i and λ, the last
two terms in the equation above are op(1). The other terms are op(1) using Lemma A1.

Proof of Theorem 1. Using triangular inequality, we have

|L̂n,Z(λ)− R̃Z(λ)| ≤|L̂n,Z(λ)− Ln,X(λ)− β̂L(λ)>Γβ̂L(λ)− σ2|+
|Ln,X(λ) + σ2 −RX(λ)|+ |RX(λ)− R̃X(λ)|+
|β̂L(λ)>Γβ̂L(λ)− β̂C(λ)>Γβ̂C(λ)|
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From Lemma 4, the first and third terms in the right hand side are op(1) uniformly in λ. Similarly,
using Lemmas 2 and that 1

2
nX ′X → Σ, the second terms is op(1) uniformly in λ. Finally,

Lemmas 2 and 3 ensure that the fourth term is uniformly op(1). Hence, part (a) is proved.
For part (b), note that

|RX(λ)− L̂n,Z(λ)| >|RX(λ)− σ2 − n−1‖X(β∗ − β̂L(λ))‖2
2 − β̂L(λ)>Γβ̂L(λ)|−

|L̂n,Z(λ)− σ2 − n−1‖X(β∗ − β̂L(λ))‖2
2 − β̂L(λ)>Γβ̂L(λ)|

>|β̂L(λ)>Γβ̂L(λ)| − |RX(λ)− σ2 − Ln,X(λ)|−
|L̂n,Z(λ)− σ2 − n−1‖X(β∗ − β̂L(λ))‖2

2 − β̂L(λ)>Γβ̂L(λ)|

The second term in the right hand side has already been shown to be uniformly op(1) in part (a).
Using Lemma 4, the third term in the right hand side is also op(1) uniformly in λ. So, we only
work with the first term t(λ) = β̂L(λ)>Γβ̂L(λ). Note that

t(0) = y>X(X>X)−1Γ(X>X)−1X>y = β∗>Γβ∗ + v>Γv ,

where v = (X>X)−1X>w = op(1). Hence, t(0) = β∗>Γβ∗ + op(1) and consequently,

sup
λ∈[0,Λ]

|RX(λ)− L̂n,Z(λ)| > β∗>Γβ∗ + op(1) .

So part (b) is proved for any ε0 < β∗>Γβ∗.

Proof of Theorem 2. Since, R̃X(λ) andRX(λ) are asymptotically equivalent uniformly in λ (Lemma
4 part (a)), it is enough to prove only one of the statements.

|R̃X(λ)− L̃n,Z(λ)| ≤ |R̃Z(λ)− L̂n,Z(λ)|+ 1

n

n∑
i=1

|β̂(i)
C (λ)>Γβ̂

(i)
C (λ)− β̂L(λ)>Γβ̂L(λ)|

≤|R̃Z(λ)− L̂n,Z(λ)|+ ‖Γ‖2 max
i=0,...,n

‖β̂(i)
C (λ)− β̂L(λ)‖2( max

i=0,...,n
‖β̂(i)

C (λ)‖2 + ‖β̂L(λ)‖2)

The first term is op(1) uniformly in λ from Theorem 1, while an immediate consequence of
Lemmas 2 and 3 is that the second term is also op(1) uniformly in λ, proving the result.

Proof of Theorem 3. Combining Lemmas 3 and 4, we get L̃n,Z(λ) → 1
n
||X(β − β̂C(λ))||22 + σ2

uniformly over λ. Hence, we have

P (
1

n
||X(β − β̂C(λ̃))||22 − L̃n,Z(λ̃) > δ − σ2)→ 0 (5)

Let λ∗ denote the value of λ for which the risk function (4) is minimized. Then, Rn,X(λ∗) ≤
Rn,X(0). As β̂L(0) is the OLS estimate, Rn.X(0) → σ2 and so does Rn,X(λ∗). Using Theorem
2, we have L̃n,Z(λ∗)→ σ2 and hence P (L̃n,Z(λ̃) > σ2 + δ)→ 0, as λ̃ minimizes L̃n,Z(λ).
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Combining, this with (5), we have

P (
1

n
||X(β − β̂C(λ̃))||22) > 2δ) ≤ P (

1

n
||X(β − β̂C(λ̃))||22 − L̃n,Z(λ̃) > δ − σ2)

+ P (L̃n,Z(λ̃) > σ2 + δ)

→ 0

Since, X>X/n→ Σ > 0, this implies ||β̂C(λ̃)− β||2 → 0.

Proof of Proposition 1. Since τ > ‖β∗‖2/‖β∗‖∞, without loss of generality we can pick 1.001 >
c > 1 and ε0 > 0 such that τ > c‖β∗‖2/(‖β∗‖∞ − ε0). Let δ > 0 be such that 0 < 5δ < c − 1
and let c1 = c− 2δ. The choice of δ ensures that c1 > c1 − 3δ > 1.

Fix ε > 0. For an orthogonal design the ith component of the Lasso estimate is given by
β̂L(λ)[i] = sgn( 1

n
|x>i y|)( 1

n
|x>i y| − λ)+. As 1

n
‖X>y‖∞

p→ ‖β∗‖∞ in probability, given ε > 0
there exists n0 such that for all n ≥ n0, we have P (Fδ) ≥ 1 − ε/4 where Fδ = {‖β∗‖∞ +
δ‖β∗‖2/τ ≥ 1

n
‖X>y‖∞ ≥ ‖β∗‖∞ − δ‖β∗‖2/τ}.

Let λ0 = ‖β∗‖∞−c1‖β∗‖2/τ . The choice of c1 ensures that λ0 > 0. For any λ ≤ λ0, we now
have on Fδ, |β̂L(λ)[i]| ≥ (c1 − δ)‖β∗‖2/τ for some i, and hence ‖β̂L(λ)‖∞ ≥ (c1 − δ)‖β∗‖2/τ .

Also, onFδ, β̂L(λ∗) = 0 and Ln,X(λ∗) = ‖β∗‖2
2 where λ∗ = ‖β∗‖∞+δ‖β∗‖2/τ and Ln,X(λ)

is defined in (4). Now choose Gδ = { sup
λ∈[0,Λ]

|L̂n,Z(λ)− Ln,X(λ)− τ 2‖β̂L(λ)‖2
2| ≤ δ2‖β∗‖2

2}. By

Lemma 4, there exists n1 such that for n ≥ n1, P (Gδ) ≥ 1 − ε/4. Hence, on Fδ ∩ Gδ, for any
λ ≤ λ0,

L̂n,Z(λ)− L̂n,Z(λ∗) ≥Ln,X(λ) + τ 2‖β̂L(λ)‖2
2 − Ln,X(λ∗)− τ 2‖β̂L(λ∗)‖2

2−
− 2 sup

λ∈[0,Λ]

|L̂n,Z(λ)− Ln,X(λ)− τ 2‖β̂L(λ)‖2
2|

≥((c1 − δ)2 − 1− 2δ2)‖β∗‖2
2 > 0 ( as 3δ < c1 − 1)

Hence, onFδ∩Gδ, inf
λ≤λ0

L̂n,Z(λ) > L̂n,Z(λ∗) which implies λ̂Z > λ0. This means ‖β̂L(λ̂Z)‖∞ ≤

(c1 + δ)‖β∗‖2/τ). Letting, Hδ = { sup
λ∈[0,Λ]

‖β̂C(λ) − β̂L(λ)‖∞ ≤ δ‖β∗‖2/τ}, by Lemma 3, we

can choose n2 such that n ≥ n2 implies P (Hδ) ≥ 1− ε/4.
For large n, on Fδ∩Gδ∩Hδ, ‖β̂C(λ̂Z)‖∞ ≤ (c1 +2δ)‖β∗‖2/τ ≤ c‖β∗‖2/τ < 1.001‖β∗‖2/τ .

This proves part (a). Now, also observing that c‖β∗‖2/τ ≤ ‖β∗‖∞ − ε0, we have for large n,

P (‖β̂C(λ̂Z)− β∗‖∞ ≥ ‖β∗‖∞ − ‖β̂C(λ̂Z)‖∞ ≥ ε0) ≥ 1− ε

This proves the inconsistency result of Part (b).

B Appendix: Sub-Gaussian random variables
Lemma A1. If X denote a n × p1 fixed matrix with ‖xi‖2 ≤ Cx, A and B respectively denote
independent n × p2 and n × p3 random matrices whose rows are iid sub-Gaussian with zero
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means and covariance MA and MB. Then for any ε > 0 and fixed pi, i = 1, 2, 3, we have
p(‖A>A/n−MA‖max > ε), p(‖A>B/n‖max > ε) and p(‖A>X/n‖max > ε) are all o(n−1).

The proof follows directly from Lemma B.1 of Datta & Zou (2017). Note that, since p is
fixed the result in Lemma A1 remains true if we replace the max norm with the `2 norm.

Lemma A2. Let M = (Z>Z/n− Γ), then p(ρmin(M) ≤ ρmin(Σ)/2), p(ρmax(M) ≥ 2ρmax(Σ))
and p(‖M+ − Σ‖max > ε) are o(n−1).

Proof. We expandM = Σ+B whereB = (X>X/n−Σ)+A>X/n+X>A/n+(A>A/n−Γ).
Then we have

ρmin(M) = inf
{u:‖u‖2=1}

u>Mu ≥ ρmin(Σ)− sup
{u:‖u‖2=1}

|u>Bu| ≥ ρmin(Σ)−√p‖B‖max

Since from Lemma A1, P (‖B‖max > ε) = o(n−1), for large enough n we have with probability
1− o(n−1),

√
p‖B‖max ≤ ρmin(Σ)/2 and hence ρmin(M) ≥ ρmin(Σ)−√p‖B‖max ≥ ρmin(Σ)/2

and the first result is proved. Similarly we can write ρmax(M) ≤ ρmax(Σ) +
√
p‖B‖max and

prove p(ρmax(M) ≥ 2ρmax(Σ)) = o(n−1). Also, as p(‖M+ − Σ‖max > ε) ≤ p(‖M − Σ‖max >
ε) + p(ρmin(M) ≤ ρmin(Σ)/2), the third result follows immediately.

Lemma A3. Let a sequence of random convex functions gn(β) satisfy p(|gn(β) − g(β)| > ε) =
o(n−1) for any ε > 0, pointwise for every β. Also, let K ⊂ Rp be any hypercube with edges
of length L and assume that g(β) is Lipschitz continuous on K with Lipschitz constant κ. Then
p(supβ∈K |gn(β)− g(β)| > ε) = o(n−1).

Proof. This lemma is simply a more detailed version of the Convexity Lemma in Pollard (1991).
The proof is identical with the only additional task being tracking the tail probabilities carefully
throughout. We break K up into small hypercubes with edge length ε/(

√
2κ). We cover the

boundary of K with an additional layer of such small hypercubes. Due to Lipschitz continuity,
within each of these smaller boxes, g(β) differs at most by ε. Let V denote the set of vertices
of all these small boxes. Now, from the proof of the Convexity Lemma in Pollard (1991) we see
that

−(p+ 1)(Mn + ε) ≤ sup
β∈K
|gn(β)− g(β| ≤ (Mn + ε)

where Mn = supβ∈V |gn(β)− g(β|. Since, V has (
√

2Lκ/ε+ 3)p points,

p(Mn > ε) ≤ (
√

2Lκ/ε+ 3)po(n−1) (6)

and the result follows.
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