Appendix to A note on cross-validation for Lasso under measurement errors

Abhirup Datta
Department of Biostatistics, Johns Hopkins University
and
Hui Zou
Department of Statistics, University of Minnesota

September 9, 2019

A Appendix: Proofs

For any matrix $M,\|M\|_{\text {max }}$ denotes the entrywise maximum norm, $\|M\|_{2}$ denote the matrix ℓ_{2} norm and $\rho_{\min }(M)$ denote its minimum eigenvalue. Finally let X_{j} and Z_{j} denote the $j^{\text {th }}$ columns of X and Z respectively.

Proof of Lemma 1. Recall that $X^{\top} X / n \rightarrow \Sigma$. Let $S_{1 n}=\left\{\omega: 1 /\left(2 \rho_{\max }(\Sigma)\right) \leq \rho_{\min }\left(Z^{\top} Z / n-\right.\right.$ $\left.\Gamma)^{-1} \leq 2 / \rho_{\min }(\Sigma)\right\}$. On $S_{1 n}, Z^{\top} Z / n-\Gamma$ is invertible and the CoCoLasso estimate in (2) can be disguised as a Lasso equation as

$$
\begin{equation*}
\hat{\beta}_{C}(\lambda)=\underset{\beta}{\arg \min }(2 n)^{-1}\|\tilde{y}-\tilde{Z} \beta\|_{2}^{2}+\lambda\|\beta\|_{1} \tag{1}
\end{equation*}
$$

where \tilde{Z} / n is the Cholesky factor of $Z^{\top} Z / n-\Gamma$ and \tilde{y} is the solution of $\tilde{Z}^{\top} \tilde{y}=Z^{\top} y$. The solution path is hence piecewise linear in λ (Tibshirani 2013, Lemma 8). If $R=R(\lambda)$ denote the active set (set of indices corresponding to the non-zero entries of $\hat{\beta}(\lambda)$), then the slope is given by $\left\|\left(\tilde{Z}^{\top} \tilde{Z} / n\right)_{R, R}^{-1}\right\|_{2}=\left\|\left(\left(\frac{1}{n} Z^{\top} Z-\Gamma\right)_{R, R}\right)^{-1}\right\|_{2}$. So, the maximal slope is bounded by

$$
\begin{equation*}
\sup _{R \subset\{1,2, \ldots, p\}}\left\|\left(\left(\frac{1}{n} Z^{\top} Z-\Gamma\right)_{R, R}\right)^{-1}\right\|_{2} \leq\left\|\left(\frac{1}{n} Z^{\top} Z-\Gamma\right)^{-1}\right\|_{2} \leq 2 / \rho_{\min }(\Sigma) \tag{2}
\end{equation*}
$$

From Lemma A2, $p\left(S_{i n}^{c}\right)=o\left(n^{-1}\right)$ which proves the Lipschitz continuity for the CocoLasso estimate $\hat{\beta}_{C, 0}(\lambda)$. Similar, result will hold if Z is replaced by Z_{-i} (i.e., the $i^{\text {th }}$ observation is removed). Since $n o\left(n^{-1}\right) \rightarrow 0$, the result holds uniformly for $\hat{\beta}_{C}^{(i)}(\lambda)$ over $i=0,1, \ldots, n$.

Proof of Lemma 2. If X was observed, $\hat{\beta}_{L}(\lambda)=0$ for all $\lambda \geq\left\|X^{\top} y / n\right\|_{\infty}$. Equivalently, $\hat{\beta}_{C}(\lambda)=0$ if $\lambda \geq\left\|\tilde{Z}^{\top} \tilde{y} / n\right\|_{\infty}=\left\|Z^{\top} y / n\right\|_{\infty}$. We can expand $Z^{\top} y=X^{\top} X \beta^{*}+X^{\top} w+$ $A^{\top} X \beta^{*}+A^{\top} w$. Using Lemma A1, $P\left(\left\|Z^{\top} y / n\right\|_{\infty} \geq\left\|\Sigma \beta^{*}\right\|_{\infty}+1\right)=o\left(n^{-1}\right)$ and hence

$$
\begin{equation*}
p\left(\left\|\beta_{C, 0}(\lambda)\right\|_{2} \geq 2\left(\left\|\Sigma \beta^{*}\right\|_{\infty}+1\right) / \rho_{\min }(\Sigma)\right)=o\left(n^{-1}\right) \tag{3}
\end{equation*}
$$

Again, similar result will hold by replacing Z with Z_{-i} which proves the lemma.
Before proving Lemma 3, we introduce some additional notation. Let $\beta(\lambda)$ denote the minimizer of $g(\beta)$ where $g(\beta)=\frac{1}{2}\left(\beta-\beta^{*}\right)^{\top} \Sigma\left(\beta-\beta^{*}\right)+\lambda\|\beta\|_{1}+\sigma^{2}$. First note that as $g(\beta)$ can be viewed as a noiseless version of the Lasso loss function (1). Hence, $\|\beta(\lambda)\|_{2}$ is Lipshitz and uniformly stochastically bounded in $\lambda \in[0, \Lambda]$. For any β, let $R(\beta, \epsilon)$ denote the closed ℓ_{2}-ball of radius ϵ and centered around β. Since $g(\beta)$ is strictly convex, there is a $\delta(\epsilon, \lambda)>0$ such that $\beta \notin R(\beta(\lambda), \epsilon) \Rightarrow g(\beta)>g(\beta(\lambda))+\delta(\epsilon, \lambda)$. Clearly, $\delta(\epsilon, \lambda)$ is decreasing in ϵ and goes to zero as $\epsilon \rightarrow 0$. We first prove the following result:

Lemma 1. For any fixed λ, and $p\left(\left\|\hat{\beta}_{C}(\lambda)-\beta(\lambda)\right\|_{2}>\epsilon\right)=o\left(n^{-1}\right)$.
Proof. The CoCoLasso estimate $\hat{\beta}_{C}^{(n)}(\lambda)$ is obtained by minimizing $g_{n}(\beta)=\frac{1}{2}\left(y^{\top} y / n-2 y^{\top} Z \beta / n+\right.$ $\left.\beta^{\top}\left(Z^{\top} Z / n-\Gamma\right)_{+} \beta\right)+\lambda\|\beta\|_{1}$.

$$
\begin{aligned}
\left|g_{n}(\beta)-g(\beta)\right| \leq & \left|\beta^{\top}\left(\left(Z^{\top} Z / n-\Gamma\right)_{+}-\Sigma\right) \beta\right| / 2+\left|\beta^{* \top}\left(X^{\top} X / n-\Sigma\right) \beta^{*}\right| / 2+ \\
& \left|\beta^{\top}\left(Z^{\top} X / n-\Sigma\right) \beta^{*}\right|+\left|\beta^{\top} Z^{\top} w / n\right|+\left|w^{\top} X^{\top} \beta^{*} / n\right|+\left|w^{\top} w / n\right|
\end{aligned}
$$

Using Lemmas A1 and A2, we have $p\left(\left|g_{n}(\beta)-g(\beta)\right|>\delta(\epsilon, \lambda) / 4\right)=o\left(n^{-1}\right)$.
Let K be the compact hypercube in \mathbb{R}^{p}, centered at zero and having edges of length L such that $L=5\left(\left\|\Sigma \beta^{*}\right\|_{\infty}+1\right) / \rho_{\min }(\Sigma)$. Using the bound of Equation (3) one can see that this choice of L ensures that K contains $\cup_{\lambda \in[0, \Lambda]} R(\beta(\lambda), \epsilon)$ for small enough ϵ and contains $\left\{\hat{\beta}_{C, 0}(\lambda): \lambda \in\right.$ $[0, \Lambda]\}$ with probability $1-o\left(n^{-1}\right)$.

As $\lambda \in[0, \Lambda], g(\beta)$ is also Lipschitz in β on K with constant $\kappa=\|\Sigma\|_{2} L+\sqrt{p} \Lambda$. We use Lemma A3 (Equation 6) and conclude that for any $\epsilon>0$,

$$
p(S) \leq(8 \sqrt{2} L \kappa / \delta(\epsilon, \lambda)+3)^{p} o\left(n^{-1}\right) \text { where } S=\left\{\sup _{\beta \in K}\left|g_{n}(\beta)-g(\beta)\right|>\delta(\epsilon, \lambda) / 4\right\}
$$

On S^{c}, we have $g_{n}(\beta(\lambda))<g(\beta(\lambda))+\delta(\epsilon, \lambda) / 4$. Therefore on S^{c}, for $\beta \in K \backslash R(\beta(\lambda), \epsilon)$, we have $g_{n}(\beta)>g(\beta)-\delta(\epsilon, \lambda) / 4>g(\beta(\lambda))+3 \delta(\epsilon, \lambda) / 4>g_{n}(\beta(\lambda))$. Hence,

$$
\begin{aligned}
p\left(\left\|\hat{\beta}_{C}(\lambda)-\beta(\lambda)\right\|_{2}>\epsilon\right) & \leq p(S)+p\left(\hat{\beta}_{C}(\lambda) \in K^{c}\right) \\
& \leq(4 \sqrt{2} L \kappa / \delta(\epsilon, \lambda)+3)^{p} o\left(n^{-1}\right)+o\left(n^{-1}\right)
\end{aligned}
$$

Since $\delta(\epsilon, 4)$ does not depend on n, the right hand side is $o\left(n^{-1}\right)$.

Proof of Lemma 3. We emulate the proofs of Theorems 21.9 and 21.10 in Davidson (1994) with a more careful tracking of the probability bounds throughout to ensure that the results hold uniformly for all the leave-one-out estimators $\hat{\beta}_{C}^{(i)}(\lambda)$.

Let $Q_{n}(\lambda)=\left\|\hat{\beta}_{C}(\lambda)-\beta(\lambda)\right\|_{2}$. Since, $\left|Q_{n}(\lambda)-Q_{n}\left(\lambda^{\prime}\right)\right| \leq\left\|\hat{\beta}_{C}(\lambda)-\hat{\beta}_{C}\left(\lambda^{\prime}\right)\right\|_{2}+\| \beta(\lambda)-$ $\beta\left(\lambda^{\prime}\right) \|_{2}$, from Lemma 1, $\left|Q_{n}(\lambda)-Q_{n}\left(\lambda^{\prime}\right)\right| \leq C_{n}\left|\lambda-\lambda^{\prime}\right|$ with $p\left(S_{n}\right)=o\left(n^{-1}\right)$ for set $S_{n}=$ $\left\{\left|C_{n}\right|>4 / \rho_{\min }(\Sigma)\right\}$. For any $\epsilon>0$, let $\lambda_{0}=0, \lambda_{1}, \ldots, \lambda_{m}=\Lambda$ denote an increasing sequence of points such that $\lambda_{i}-\lambda_{i-1}=\mu \leq \epsilon \rho_{\min }(\Sigma) / 8$. On S_{n} for any $\lambda \in[0, \Lambda], Q_{n}(\lambda) \leq \epsilon / 2+$ $\max _{i=1, \ldots, m} Q_{n}\left(\lambda_{i}\right)$. Then, we have

$$
p\left(\sup _{\lambda \in[0, \Lambda]}\left|Q_{n}(\lambda)\right|>\epsilon\right) \leq \sum_{i=1}^{m} p\left(Q_{n}\left(\lambda_{i}\right)>\epsilon / 2\right)+p\left(S_{n}^{c}\right)=\sum_{i=1}^{m} o\left(n^{-1}\right)+o\left(n^{-1}\right)=o\left(n^{-1}\right) .
$$

The analogous result also holds if we replace $\hat{\beta}_{C}(\lambda)$ with the clean Lasso estimate $\hat{\beta}_{L}(\lambda)$ in $Q_{n}(\lambda)$ (a version of the clean Lasso result is provided in Theorem 1 of Knight \& Fu (2000)). Hence, using triangular inequality we have,

$$
\left.p\left(\sup _{\lambda \in[0, \Lambda]}\left\|\hat{\beta}_{C}(\lambda)-\hat{\beta}_{L}(\lambda)\right\|_{2}>\epsilon\right)\right)=o\left(n^{-1}\right) .
$$

Summing over the n probabilities for all the leave-one-out estimates, Lemma 3 is proved.
Proof of Lemma 4. $R_{X}(\lambda)$ and $\widetilde{R}_{X}(\lambda)$ are identical quadratic forms with the only difference being $\hat{\beta}_{L}(\lambda)$ in $R_{X}(\lambda)$ gets replaced by $\hat{\beta}_{C}(\lambda)$ in $\widetilde{R}_{X}(\lambda)$. Hence, part (a) follows immediately from Lemmas 2 and 3. Similarly, to prove part (b) we once use Lemmas 2 and 3 to show that the difference of the quadratic forms $\hat{\beta}_{C}(\lambda)^{\top} \Gamma \hat{\beta}_{C}(\lambda)-\hat{\beta}_{L}(\lambda)^{\top} \Gamma \hat{\beta}_{L}(\lambda)$ is $o_{p}(1)$. For part (c), we expand $y_{i}-z_{i}^{\top} \hat{\beta}_{C}^{(i)}(\lambda)=\sum_{j=1}^{4} t_{i j}$ where $t_{i 1}=x_{i}^{\top}\left(\beta^{*}-\hat{\beta}_{L}(\lambda)\right), t_{i 2}=w_{i}, t_{i 3}=-a_{i}^{\top} \hat{\beta}_{L}(\lambda)$ and $t_{i 4}=z_{i}^{\top}\left(\hat{\beta}_{L}(\lambda)-\hat{\beta}_{C}^{(i)}(\lambda)\right)$. Let

$$
\begin{equation*}
L_{n, X}(\lambda)=n^{-1}\left\|X\left(\beta^{*}-\hat{\beta}_{L}(\lambda)\right)\right\|_{2}^{2} \tag{4}
\end{equation*}
$$

Hence $\left|\widehat{L}_{n, Z}(\lambda)-L_{n, X}(\lambda)-\sigma^{2}-\hat{\beta}_{L}(\lambda)^{\top} \Gamma \hat{\beta}_{L}(\lambda) \|_{2}^{2}\right|$ is less than

$$
\begin{gathered}
\left|\left(\frac{1}{n} w^{\top} w-\sigma^{2}\right)\right|+\left|\hat{\beta}_{L}(\lambda)^{\top}\left(\frac{1}{n} A^{\top} A-\Gamma\right) \hat{\beta}_{L}(\lambda)\right|+\left|\frac{1}{n} w^{\top} X\left(\beta^{*}-\hat{\beta}_{L}(\lambda)\right)\right|+\left|\frac{1}{n} w^{\top} A \hat{\beta}_{L}(\lambda)\right|+ \\
\left|\frac{1}{n} \hat{\beta}_{L}(\lambda)^{\top} A^{\top} X\left(\beta^{*}-\hat{\beta}_{L}(\lambda)\right)\right|+\max _{i=1, \ldots, n} t_{i 4}^{2}+2 \sum_{j=1}^{3}\left(\max _{i=1, \ldots, n}\left|t_{i j}\right|\right)\left(\max _{i=1, \ldots, n}\left|t_{i 4}\right|\right)
\end{gathered}
$$

Since from Lemma 3, $t_{i 4}$ is $o_{p}(1)$ and $t_{i j}$'s, for $j \leq 3$, are $O_{p}(1)$ uniformly over i and λ, the last two terms in the equation above are $o_{p}(1)$. The other terms are $o_{p}(1)$ using Lemma A1.
Proof of Theorem 1. Using triangular inequality, we have

$$
\begin{aligned}
\left|\widehat{L}_{n, Z}(\lambda)-\widetilde{R}_{Z}(\lambda)\right| \leq & \left|\widehat{L}_{n, Z}(\lambda)-L_{n, X}(\lambda)-\hat{\beta}_{L}(\lambda)^{\top} \Gamma \hat{\beta}_{L}(\lambda)-\sigma^{2}\right|+ \\
& \left|L_{n, X}(\lambda)+\sigma^{2}-R_{X}(\lambda)\right|+\left|R_{X}(\lambda)-\widetilde{R}_{X}(\lambda)\right|+ \\
& \left|\hat{\beta}_{L}(\lambda)^{\top} \Gamma \hat{\beta}_{L}(\lambda)-\hat{\beta}_{C}(\lambda)^{\top} \Gamma \hat{\beta}_{C}(\lambda)\right|
\end{aligned}
$$

From Lemma 4, the first and third terms in the right hand side are $o_{p}(1)$ uniformly in λ. Similarly, using Lemmas 2 and that $\frac{1}{2} n X^{\prime} X \rightarrow \Sigma$, the second terms is $o_{p}(1)$ uniformly in λ. Finally, Lemmas 2 and 3 ensure that the fourth term is uniformly $o_{p}(1)$. Hence, part (a) is proved.
For part (b), note that

$$
\begin{aligned}
\left|R_{X}(\lambda)-\widehat{L}_{n, Z}(\lambda)\right|> & \left|R_{X}(\lambda)-\sigma^{2}-n^{-1}\left\|X\left(\beta^{*}-\hat{\beta}_{L}(\lambda)\right)\right\|_{2}^{2}-\hat{\beta}_{L}(\lambda)^{\top} \Gamma \hat{\beta}_{L}(\lambda)\right|- \\
& \left|\widehat{L}_{n, Z}(\lambda)-\sigma^{2}-n^{-1}\left\|X\left(\beta^{*}-\hat{\beta}_{L}(\lambda)\right)\right\|_{2}^{2}-\hat{\beta}_{L}(\lambda)^{\top} \Gamma \hat{\beta}_{L}(\lambda)\right| \\
> & \left|\hat{\beta}_{L}(\lambda)^{\top} \Gamma \hat{\beta}_{L}(\lambda)\right|-\left|R_{X}(\lambda)-\sigma^{2}-L_{n, X}(\lambda)\right|- \\
& \left|\widehat{L}_{n, Z}(\lambda)-\sigma^{2}-n^{-1}\left\|X\left(\beta^{*}-\hat{\beta}_{L}(\lambda)\right)\right\|_{2}^{2}-\hat{\beta}_{L}(\lambda)^{\top} \Gamma \hat{\beta}_{L}(\lambda)\right|
\end{aligned}
$$

The second term in the right hand side has already been shown to be uniformly $o_{p}(1)$ in part (a). Using Lemma 4 , the third term in the right hand side is also $o_{p}(1)$ uniformly in λ. So, we only work with the first term $t(\lambda)=\hat{\beta}_{L}(\lambda)^{\top} \Gamma \hat{\beta}_{L}(\lambda)$. Note that

$$
t(0)=y^{\top} X\left(X^{\top} X\right)^{-1} \Gamma\left(X^{\top} X\right)^{-1} X^{\top} y=\beta^{* \top} \Gamma \beta^{*}+v^{\top} \Gamma v,
$$

where $v=\left(X^{\top} X\right)^{-1} X^{\top} w=o_{p}(1)$. Hence, $t(0)=\beta^{* \top} \Gamma \beta^{*}+o_{p}(1)$ and consequently,

$$
\sup _{\lambda \in[0, \Lambda]}\left|R_{X}(\lambda)-\widehat{L}_{n, Z}(\lambda)\right|>\beta^{* \top} \Gamma \beta^{*}+o_{p}(1) .
$$

So part (b) is proved for any $\epsilon_{0}<\beta^{* \top} \Gamma \beta^{*}$.
Proof of Theorem 2. Since, $\widetilde{R}_{X}(\lambda)$ and $R_{X}(\lambda)$ are asymptotically equivalent uniformly in λ (Lemma 4 part (a)), it is enough to prove only one of the statements.

$$
\begin{aligned}
\left|\widetilde{R}_{X}(\lambda)-\widetilde{L}_{n, Z}(\lambda)\right| & \leq\left|\widetilde{R}_{Z}(\lambda)-\widehat{L}_{n, Z}(\lambda)\right|+\frac{1}{n} \sum_{i=1}^{n}\left|\hat{\beta}_{C}^{(i)}(\lambda)^{\top} \Gamma \hat{\beta}_{C}^{(i)}(\lambda)-\hat{\beta}_{L}(\lambda)^{\top} \Gamma \hat{\beta}_{L}(\lambda)\right| \\
& \leq\left|\widetilde{R}_{Z}(\lambda)-\widehat{L}_{n, Z}(\lambda)\right|+\|\Gamma\|_{2} \max _{i=0, \ldots, n}\left\|\hat{\beta}_{C}^{(i)}(\lambda)-\hat{\beta}_{L}(\lambda)\right\|_{2}\left(\max _{i=0, \ldots, n}\left\|\hat{\beta}_{C}^{(i)}(\lambda)\right\|_{2}+\left\|\hat{\beta}_{L}(\lambda)\right\|_{2}\right)
\end{aligned}
$$

The first term is $o_{p}(1)$ uniformly in λ from Theorem 1 , while an immediate consequence of Lemmas 2 and 3 is that the second term is also $o_{p}(1)$ uniformly in λ, proving the result.

Proof of Theorem 3. Combining Lemmas 3 and 4, we get $\widetilde{L}_{n, Z}(\lambda) \rightarrow \frac{1}{n}\left\|X\left(\beta-\hat{\beta}_{C}(\lambda)\right)\right\|_{2}^{2}+\sigma^{2}$ uniformly over λ. Hence, we have

$$
\begin{equation*}
P\left(\frac{1}{n}\left\|X\left(\beta-\hat{\beta}_{C}(\widetilde{\lambda})\right)\right\|_{2}^{2}-\widetilde{L}_{n, Z}(\widetilde{\lambda})>\delta-\sigma^{2}\right) \rightarrow 0 \tag{5}
\end{equation*}
$$

Let λ^{*} denote the value of λ for which the risk function (4) is minimized. Then, $R_{n, X}\left(\lambda^{*}\right) \leq$ $R_{n, X}(0)$. As $\hat{\beta}_{L}(0)$ is the OLS estimate, $R_{n . X}(0) \rightarrow \sigma^{2}$ and so does $R_{n, X}\left(\lambda^{*}\right)$. Using Theorem 2, we have $\widetilde{L}_{n, Z}\left(\lambda^{*}\right) \rightarrow \sigma^{2}$ and hence $P\left(\widetilde{L}_{n, Z}(\widetilde{\lambda})>\sigma^{2}+\delta\right) \rightarrow 0$, as $\widetilde{\lambda}$ minimizes $\widetilde{L}_{n, Z}(\lambda)$.

Combining, this with (5), we have

$$
\begin{aligned}
\left.P\left(\frac{1}{n}\left\|X\left(\beta-\hat{\beta}_{C}(\widetilde{\lambda})\right)\right\|_{2}^{2}\right)>2 \delta\right) & \leq P\left(\frac{1}{n}\left\|X\left(\beta-\hat{\beta}_{C}(\widetilde{\lambda})\right)\right\|_{2}^{2}-\widetilde{L}_{n, Z}(\widetilde{\lambda})>\delta-\sigma^{2}\right) \\
& +P\left(\widetilde{L}_{n, Z}(\widetilde{\lambda})>\sigma^{2}+\delta\right) \\
& \rightarrow 0
\end{aligned}
$$

Since, $X^{\top} X / n \rightarrow \Sigma>0$, this implies $\left\|\hat{\beta}_{C}(\widetilde{\lambda})-\beta\right\|_{2} \rightarrow 0$.
Proof of Proposition 1. Since $\tau>\left\|\beta^{*}\right\|_{2} /\left\|\beta^{*}\right\|_{\infty}$, without loss of generality we can pick $1.001>$ $c>1$ and $\epsilon_{0}>0$ such that $\tau>c\left\|\beta^{*}\right\|_{2} /\left(\left\|\beta^{*}\right\|_{\infty}-\epsilon_{0}\right)$. Let $\delta>0$ be such that $0<5 \delta<c-1$ and let $c_{1}=c-2 \delta$. The choice of δ ensures that $c_{1}>c_{1}-3 \delta>1$.

Fix $\epsilon>0$. For an orthogonal design the $i^{\text {th }}$ component of the Lasso estimate is given by $\hat{\beta}_{L}(\lambda)[i]=\operatorname{sgn}\left(\frac{1}{n}\left|x_{i}^{\top} y\right|\right)\left(\frac{1}{n}\left|x_{i}^{\top} y\right|-\lambda\right)_{+}$. As $\frac{1}{n}\left\|X^{\top} y\right\|_{\infty} \xrightarrow{p}\left\|\beta^{*}\right\|_{\infty}$ in probability, given $\epsilon>0$ there exists n_{0} such that for all $n \geq n_{0}$, we have $P\left(\mathcal{F}_{\delta}\right) \geq 1-\epsilon / 4$ where $\mathcal{F}_{\delta}=\left\{\left\|\beta^{*}\right\|_{\infty}+\right.$ $\left.\delta\left\|\beta^{*}\right\|_{2} / \tau \geq \frac{1}{n}\left\|X^{\top} y\right\|_{\infty} \geq\left\|\beta^{*}\right\|_{\infty}-\delta\left\|\beta^{*}\right\|_{2} / \tau\right\}$.

Let $\lambda_{0}=\left\|\beta^{*}\right\|_{\infty}-c_{1}\left\|\beta^{*}\right\|_{2} / \tau$. The choice of c_{1} ensures that $\lambda_{0}>0$. For any $\lambda \leq \lambda_{0}$, we now have on $\mathcal{F}_{\delta},\left|\hat{\beta}_{L}(\lambda)[i]\right| \geq\left(c_{1}-\delta\right)\left\|\beta^{*}\right\|_{2} / \tau$ for some i, and hence $\left\|\hat{\beta}_{L}(\lambda)\right\|_{\infty} \geq\left(c_{1}-\delta\right)\left\|\beta^{*}\right\|_{2} / \tau$.

Also, on $\mathcal{F}_{\delta}, \hat{\beta}_{L}\left(\lambda^{*}\right)=0$ and $L_{n, X}\left(\lambda^{*}\right)=\left\|\beta^{*}\right\|_{2}^{2}$ where $\lambda^{*}=\left\|\beta^{*}\right\| \infty+\delta\left\|\beta^{*}\right\|_{2} / \tau$ and $L_{n, X}(\lambda)$ is defined in (4). Now choose $\mathcal{G}_{\delta}=\left\{\sup _{\lambda \in[0, \Lambda]}\left|\widehat{L}_{n, Z}(\lambda)-L_{n, X}(\lambda)-\tau^{2}\left\|\hat{\beta}_{L}(\lambda)\right\|_{2}^{2}\right| \leq \delta^{2}\left\|\beta^{*}\right\|_{2}^{2}\right\}$. By Lemma 4, there exists n_{1} such that for $n \geq n_{1}, P\left(\mathcal{G}_{\delta}\right) \geq 1-\epsilon / 4$. Hence, on $\mathcal{F}_{\delta} \cap \mathcal{G}_{\delta}$, for any $\lambda \leq \lambda_{0}$,

$$
\begin{aligned}
\widehat{L}_{n, Z}(\lambda)-\widehat{L}_{n, Z}\left(\lambda^{*}\right) \geq & L_{n, X}(\lambda)+\tau^{2}\left\|\hat{\beta}_{L}(\lambda)\right\|_{2}^{2}-L_{n, X}\left(\lambda^{*}\right)-\tau^{2}\left\|\hat{\beta}_{L}\left(\lambda^{*}\right)\right\|_{2}^{2}- \\
& -2 \sup _{\lambda \in[0, \Lambda]}\left|\widehat{L}_{n, Z}(\lambda)-L_{n, X}(\lambda)-\tau^{2}\left\|\hat{\beta}_{L}(\lambda)\right\|_{2}^{2}\right| \\
\geq & \left(\left(c_{1}-\delta\right)^{2}-1-2 \delta^{2}\right)\left\|\beta^{*}\right\|_{2}^{2}>0 \quad\left(\text { as } 3 \delta<c_{1}-1\right)
\end{aligned}
$$

Hence, on $\mathcal{F}_{\delta} \cap \mathcal{G}_{\delta}, \inf _{\lambda \leq \lambda_{0}} \widehat{L}_{n, Z}(\lambda)>\widehat{L}_{n, Z}\left(\lambda^{*}\right)$ which implies $\widehat{\lambda}_{Z}>\lambda_{0}$. This means $\left\|\hat{\beta}_{L}\left(\widehat{\lambda}_{Z}\right)\right\|_{\infty} \leq$ $\left.\left(c_{1}+\delta\right)\left\|\beta^{*}\right\|_{2} / \tau\right)$. Letting, $\mathcal{H}_{\delta}=\left\{\sup _{\lambda \in[0, \Lambda]}\left\|\hat{\beta}_{C}(\lambda)-\hat{\beta}_{L}(\lambda)\right\|_{\infty} \leq \delta\left\|\beta^{*}\right\|_{2} / \tau\right\}$, by Lemma 3, we can choose n_{2} such that $n \geq n_{2}$ implies $P\left(\mathcal{H}_{\delta}\right) \geq 1-\epsilon / 4$.

For large n, on $\mathcal{F}_{\delta} \cap \mathcal{G}_{\delta} \cap \mathcal{H}_{\delta},\left\|\hat{\beta}_{C}\left(\widehat{\lambda}_{Z}\right)\right\|_{\infty} \leq\left(c_{1}+2 \delta\right)\left\|\beta^{*}\right\|_{2} / \tau \leq c\left\|\beta^{*}\right\|_{2} / \tau<1.001\left\|\beta^{*}\right\|_{2} / \tau$. This proves part (a). Now, also observing that $c\left\|\beta^{*}\right\|_{2} / \tau \leq\left\|\beta^{*}\right\|_{\infty}-\epsilon_{0}$, we have for large n,

$$
P\left(\left\|\hat{\beta}_{C}\left(\hat{\lambda}_{Z}\right)-\beta^{*}\right\|_{\infty} \geq\left\|\beta^{*}\right\|_{\infty}-\left\|\hat{\beta}_{C}\left(\hat{\lambda}_{Z}\right)\right\|_{\infty} \geq \epsilon_{0}\right) \geq 1-\epsilon
$$

This proves the inconsistency result of Part (b).

B Appendix: Sub-Gaussian random variables

Lemma A1. If X denote a $n \times p_{1}$ fixed matrix with $\left\|x_{i}\right\|_{2} \leq C_{x}, A$ and B respectively denote independent $n \times p_{2}$ and $n \times p_{3}$ random matrices whose rows are iid sub-Gaussian with zero
means and covariance M_{A} and M_{B}. Then for any $\epsilon>0$ and fixed $p_{i}, i=1,2,3$, we have $p\left(\left\|A^{\top} A / n-M_{A}\right\|_{\max }>\epsilon\right), p\left(\left\|A^{\top} B / n\right\|_{\max }>\epsilon\right)$ and $p\left(\left\|A^{\top} X / n\right\|_{\max }>\epsilon\right)$ are all $o\left(n^{-1}\right)$.

The proof follows directly from Lemma B. 1 of Datta \& Zou (2017). Note that, since p is fixed the result in Lemma A1 remains true if we replace the max norm with the ℓ_{2} norm.
Lemma A2. Let $M=\left(Z^{\top} Z / n-\Gamma\right)$, then $p\left(\rho_{\min }(M) \leq \rho_{\min }(\Sigma) / 2\right), p\left(\rho_{\max }(M) \geq 2 \rho_{\max }(\Sigma)\right)$ and $p\left(\left\|M_{+}-\Sigma\right\|_{\max }>\epsilon\right)$ are $o\left(n^{-1}\right)$.
Proof. We expand $M=\Sigma+B$ where $B=\left(X^{\top} X / n-\Sigma\right)+A^{\top} X / n+X^{\top} A / n+\left(A^{\top} A / n-\Gamma\right)$. Then we have

$$
\rho_{\min }(M)=\inf _{\left\{u:\|u\|_{2}=1\right\}} u^{\top} M u \geq \rho_{\min }(\Sigma)-\sup _{\left\{u:\|u\|_{2}=1\right\}}\left|u^{\top} B u\right| \geq \rho_{\min }(\Sigma)-\sqrt{p}\|B\|_{\max }
$$

Since from Lemma A1, $P\left(\|B\|_{\max }>\epsilon\right)=o\left(n^{-1}\right)$, for large enough n we have with probability $1-o\left(n^{-1}\right), \sqrt{p}\|B\|_{\max } \leq \rho_{\min }(\Sigma) / 2$ and hence $\rho_{\min }(M) \geq \rho_{\min }(\Sigma)-\sqrt{p}\|B\|_{\max } \geq \rho_{\min }(\Sigma) / 2$ and the first result is proved. Similarly we can write $\rho_{\max }(M) \leq \rho_{\max }(\Sigma)+\sqrt{p}\|B\|_{\max }$ and prove $p\left(\rho_{\max }(M) \geq 2 \rho_{\max }(\Sigma)\right)=o\left(n^{-1}\right)$. Also, as $p\left(\left\|M_{+}-\Sigma\right\|_{\max }>\epsilon\right) \leq p\left(\|M-\Sigma\|_{\max }>\right.$ $\epsilon)+p\left(\rho_{\min }(M) \leq \rho_{\min }(\Sigma) / 2\right)$, the third result follows immediately.

Lemma A3. Let a sequence of random convex functions $g_{n}(\beta)$ satisfy $p\left(\left|g_{n}(\beta)-g(\beta)\right|>\epsilon\right)=$ $o\left(n^{-1}\right)$ for any $\epsilon>0$, pointwise for every β. Also, let $K \subset \mathbb{R}^{p}$ be any hypercube with edges of length L and assume that $g(\beta)$ is Lipschitz continuous on K with Lipschitz constant κ. Then $p\left(\sup _{\beta \in K}\left|g_{n}(\beta)-g(\beta)\right|>\epsilon\right)=o\left(n^{-1}\right)$.

Proof. This lemma is simply a more detailed version of the Convexity Lemma in Pollard (1991). The proof is identical with the only additional task being tracking the tail probabilities carefully throughout. We break K up into small hypercubes with edge length $\epsilon /(\sqrt{2} \kappa)$. We cover the boundary of K with an additional layer of such small hypercubes. Due to Lipschitz continuity, within each of these smaller boxes, $g(\beta)$ differs at most by ϵ. Let V denote the set of vertices of all these small boxes. Now, from the proof of the Convexity Lemma in Pollard (1991) we see that

$$
-(p+1)\left(M_{n}+\epsilon\right) \leq \sup _{\beta \in K} \mid g_{n}(\beta)-g\left(\beta \mid \leq\left(M_{n}+\epsilon\right)\right.
$$

where $M_{n}=\sup _{\beta \in V} \mid g_{n}(\beta)-g\left(\beta \mid\right.$. Since, V has $(\sqrt{2} L \kappa / \epsilon+3)^{p}$ points,

$$
\begin{equation*}
p\left(M_{n}>\epsilon\right) \leq(\sqrt{2} L \kappa / \epsilon+3)^{p} o\left(n^{-1}\right) \tag{6}
\end{equation*}
$$

and the result follows.

References

Datta, A. \& Zou, H. (2017), 'Cocolasso for high-dimensional error-in-variables regression', Annals of Statistics 45(6), 2400-2426.
URL: https://doi.org/10.1214/16-AOS1527

Davidson, J. (1994), Stochastic Limit Theory: An Introduction for Econometricians, Oxford University Press.
URL: http://EconPapers.repec.org/RePEc:oxp:obooks:9780198774037
Knight, K. \& Fu, W. (2000), ‘Asymptotics for lasso-type estimators’, Ann. Statist. 28(5), 13561378.

URL: http://dx.doi.org/10.1214/aos/1015957397
Pollard, D. (1991), 'Asymptotics for least absolute deviation regression estimators', Econometric Theory 7, 186-199.

Tibshirani, R. J. (2013), 'The lasso problem and uniqueness', Electron. J. Statist. 7, 1456-1490. URL: http://dx.doi.org/10.1214/13-EJS815

