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S.1 Stochastic Response Surface Method

We rewrite the stochastic response surface method proposed in Regis and Shoemaker (2007)

in the context of our problem in Algorithm S.1. To emphasis that the long-run average

operational cost C is a function of the reallocation and replacement thresholds (L,M) and

it is evaluated from simulations, we write it in Algorithm S.1 as Ĉ(L,M). Recall that for a

fixed combination of (L,M), the simulation is replicated for m times. The estimated cost is

then computed by Equation (12) (known degradation rate) or (13) (unknown degradation

rate) in the main text. If the stochastic kriging model is used as the response surface, we use

the two-stage estimation method in Ankenman et al. (2010) for fitting the nm simulation

outputs, where we assume a Gaussian correlation structure as with Zhang et al. (2016). If

the radial basis function (RBF) is used as the response surface, we use the method in Regis

and Shoemaker (2007) for the data fitting.

At step 4 of Algorithm S.1, we need to give a score to each candidate point in Ωn to select

which points being further evaluated from simulations. In this study, we follow the procedure

in Regis and Shoemaker (2007) to evaluate a candidate point from two criteria. First, we

compute smax
n = max{sn(L,M) : (L,M) ∈ Ωn} and smin

n = min{sn(L,M) : (L,M) ∈ Ωn}.
For each (L,M) ∈ Ωn, let

V (1)
n =


sn(L,M)−smin

n

smax
n −smin

n
, smax

n 6= smin
n

1, otherwise.

1



It estimates the function value of candidate points from the fitted response surface. A

smaller value of V
(1)
n implies that the candidate point may yield a smaller value of C(L,M).

Meanwhile, we compute ∆n(L,M) = mini=1,··· ,n ||(L,M) − (Li,Mi)|| for each candidate in

Ωn, where ||·|| denotes the Euclidean norm. The function ∆n(L,M) determines the minimum

distance from previously evaluated points, which we want to maximize in order to promote

the global search (Regis and Shoemaker, 2007). Let ∆max
n = max{∆n(L,M) : (L,M) ∈ Ωn}

and ∆min
n = min{∆n(L,M) : (L,M) ∈ Ωn}. For each (L,M) ∈ Ωn, also let

V (2)
n =


∆max

n −∆n(L,M)
∆max

n −∆min
n

, ∆max
n 6= ∆min

n

1, otherwise.

Then the scoreW(n) for each (L,M) ∈ Ωn is expressed as a weighted sum, which is given by

W(n) = wnV
(1)
n + (1− wn)V (2)

n , (S.1)

where wn is a weight whose value may be change at each iteration.

In Sections 6.1 and 6.2 of the main text, we set n0 = 10, k = 2, 000, nmax = 1, 010, and

α = 0.01 for both numerical examples. As with Regis and Shoemaker (2007), we use a weight

pattern of 〈0.2, 0.4, 0.6, 0.9, 0.95, 1〉 so that the value of wn is cycled within the six numbers.

In Section 6.1 of the main text, the initial evaluation points for both the stochastic kriging

and the RBF model are kept the same in each replication to stipulate the fair comparison.

In the Monte Carlo simulations, we replicate for m = 10 times for each fixed combination

of (L,M) and compute their mean to approximate the long-run average operational cost.

For all replications, the time horizon of the simulation is set as H = 1, 000. In Section 6.2

of the main text, we also conduct a numerical study assuming the degradation rate µ is

unknown. In this case, we realize B = 50 samples of µ based on its posterior distribution in

each replication of the simulations.

S.2 Supplementary Numerical Results

S.2.1 Supplementary Results for the Tire System

In Section 6.1 of the main text, we investigate the reallocation policy of the tire system of a

forward-wheel drive (FWD) automobile. We set the reallocation, the preventive maintenance

(PM), and the corrective maintenance (CM) costs as ca = 1, cp = 10, and cc = 100,

respectively. The degradation rates associated with the slots are set as µ1 = 2 and µ2 = 0.5 to

represent the inherent imbalanced workload. The correlation coefficient between degradation
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Algorithm S.1 The stochastic response surface method to find the optimal reallocation and
replacement thresholds.

Input: Degradation rate µ, covariance matrix Σ, inspection interval δ, failure threshold D;
initial number of evaluated points n0, number of candidates point k, maximum number of
evaluations nmax, proportion of candidate points to be evaluated from simulations α.

1. Select n0 combinations of maintenance thresholds, denoted as (Li,Mi), i = 1, · · · , n0.
The initial points are selected from the symmetric Latin hypercube design (Ye et al.,
2000).

2. Evaluate the long-run average operational cost Ĉ(Li,Mi) from Monte Carlo sim-
ulations. Set n := n0 and An := {(Li,Mi), i = 1, · · · , n}. Let (L?

n,M
?
n) =

arg min(L,M)∈An Ĉ(L,M) be the current optimal solution.

3. Use the a response surface model (e.g., stochastic kriging) to fit the simulation outputs,
where the fitted response surface is denoted as sn(L,M).

4. Uniformly generate k random candidate points Ωn = {(L(n)
i ,M

(n)
i ), i = 1, · · · , k}. Give

a score W(n)
i , i = 1, · · · , k, for each candidate point in Ωn by Equation (S.1).

5. Select dαke candidate points that have the lowest score W(n), 0 < α < 1. Run the
simulation to evaluate the long-run average operational cost C for these points. Update
n := n + dαke, the set of the evaluated points An, and the current optimal solution
(L?

n,M
?
n).

6. Stop the iteration if n > nmax. Otherwise, go back to Step 3.

Output: Optimal reallocation and replacement thresholds (L?,M?) := (L?
n,M

?
n).

Table S.1: The cost C(L,M) as a function of L and M (corresponding to Figure 3 in the
main text). Note that the reallocation is performed only when L < M .

L
M

1 3 5 7 9 11 13 15

1 9.608 4.502 2.893 2.185 1.790 1.541 2.103 9.000
3 – 4.941 3.263 2.060 1.628 1.413 1.912 8.931
5 – – 3.367 2.535 1.768 1.310 2.351 9.437
7 – – – 2.538 2.039 1.607 1.625 8.850
9 – – – – 2.037 1.700 2.187 10.289
11 – – – – – 1.700 3.225 12.597
13 – – – – – – 3.235 12.762
15 – – – – – – – 12.762
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Figure S.1: The sensitivity of the optimal reallocation and replacement thresholds (L?,M?)
to the reallocation cost ca, where µ1/µ2 = 4.

of the two tires is ρ = 0.6. Table S.1 summarizes the results corresponding to Figure 3 in

the main text.

We first examine the sensitivity of the optimal control limits (L?,M?) to the reallocation

cost ca and the degradation rate µ = [µ1, µ2]′. In the sensitivity analysis, the high and

the low levels of ca are set as 5 and 0.2, respectively. Meanwhile, we fix µ2 = 0.5 and set

µ1/µ2 as 8 and 1, respectively, for the high and the low levels. Table S.2 summarizes the

change of the optimal control limits (L?,M?) with ca and µ. We can see that when the

degradation rate associated with the component slot is equal to each other (i.e., µ1/µ2 = 1),

the reallocation threshold L is high. It implies that it is highly possible that we never

reallocate the components with balanced degradation. On the other hand, the PM control

limit M decreases in the ratio µ1/µ2 since the series structure of the system. Meanwhile,

it is intuitive to see that the reallocation threshold L increases in the reallocation cost ca.

However, the optimal PM control limit M only slightly decreases to the reallocation cost.

Note that the reallocation threshold L is close to the replacement threshold M when

ca = 5 and µ1/µ2 = 4, meaning that it is nearly impossible to perform the reallocation

before a system replacement. We further conduct a sensitivity analysis to examine the

change of L to ca with µ1/µ2 = 4 fixed. The result is shown in Figure S.1. Interestingly, the

reallocation threshold L keeps approximately constant when ca ranges from 1 to 4.5, implying

that the reallocation is necessary in these cases. Then value of L jumps quickly when ca = 5,

which may mean that there is a threshold such that the reallocation is unnecessary when

the reallocation cost is larger than this value.

As mentioned in Section 3.1 of the main text, the proposed maintenance policy for

the two-component system does not consider the preventive replacement at the component

level. It is because degradation of the two component cannot vary significantly upon re-

placement with reallocation. To illustrate this phenomenon, we can calculate the probability

P (min{z1, z2} > 0.8M |max{z1, z2} > M) based on the stationary distribution π(z1, z2) in
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Table S.2: The sensitivity of the optimal control limits (L?,M?) to the reallocation cost ca

and the ratio of the degradation rate µ1/µ2.

ca

µ1/µ2 1 4 8

0.2 (2.38, 13.26) (5.34, 11.77) (0, 10.44)
1 (12.75, 13.11) (5.34, 11.77) (4.88, 10.01)
5 (12.75, 13.13) (11.75, 11.75) (5.06, 10.13)
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Figure S.2: The increase (in %) of the long-run average operational cost with the passive
replacements only, when the correlation coefficient ρ changes. Here, ca = 1 and µ = [2, 0.5]′.

Equation (4) of the main text, which is 0.9166 in this numerical study. In practice, it is

not recommended to replace the component frequently due to the high setup cost for re-

placement. Numerical comparisons provided in Section 6.1 of the main text and later in this

section will further support this argument

Specifically, we have compared the proposed policy with two maintenance policies with

passive replacements only in Section 6.1 of the main text. The result shows that the proposed

method gives the lowest maintenance cost when ca = 1, µ1/µ2 = 4, and ρ = 0.6. Here, we

change the parameter setting and further conduct a comprehensive comparison between these

policies. First, we change the value of ρ from 0, 0.2, · · · , to 1, and compare the increase of

the long-run average operational cost without the reallocation. Figure S.2 shows that when

the degradation is imbalanced and the reallocation cost is lower than the setup cost for

replacement, the proposed method outperforms the pure replacement policies for different

values of ρ. We then change the values of ca and µ1/µ2. Table S.3 shows the corresponding

results of comparison. We can see that when balanced degradation rates (µ1 = µ2) exist, the
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policy using component-level replacement has the highest maintenance cost. This is because

under this policy, the frequency of replacement would be quite high when the degradation of

the two components are balanced. Generally, the proposed outperforms the pure replacement

policies when the reallocation cost ca is relatively low. Recall that we set the setup cost for

replacement as cs = 3 in the main text. When ca = 5 > cs, we may not need to use the

reallocation to balance the component degradation. Nevertheless, ca is usually smaller than

cs in reality as discussed in Section 6.1 of the main text.

Table S.3: The increase/decrease (in %) of the optimal long-run average operational cost
with replacements only compared with the one from the reallocation strategy, when the
reallocation cost ca and the ratio of degradation rates µ1/µ2 change.

ca

µ1/µ2 1 4 8

0.2 (1.81, 19.08)* (44.43, 14.51) (50.72, 7.17)
1 (1.55, 18.78) (34.85, 6.95) (50.42, 6.92)
5 (0.25, 18.17) (1.04,−20.51) (3.78,−26.21)

* Each entry in the parenthesis denotes the corresponding change of
cost from the system-level and the component-level replacement poli-
cies introduced in Section 6.1 of the main text, respectively.

Finally, we verify the conclusion in Section 6.1 that the optimal control limit essentially

manages the component degradation with the number of reallocation actions as less as pos-

sible under different parameter settings. Similarly, we examined this conclusion by changing

the values of ρ, ca, and µ1/µ2. We record the number of reallocation before the system

replacement and compute the ratio of replications where only one reallocation action is per-

formed to balance the component degradation. When ρ changes from {0, 0.2, · · · , 1}, the

corresponding ratios are 99.65%, 99.86%, 99.89%, 99.93%, 99.98%, and 99.99%, respectively.

The results are insensitive to the change of ρ, again indicating the proposed model is robust

to the bivariate normal assumption in the two-component case. When ca and µ1/µ2 change,

the results are shown in Table S.4. It is reasonable to see that when the degradation rates

are balanced (µ1 = µ2), we never perform the reallocation before the system replacement.

On the other hand, when µ1/µ2 = 8 and ca = 0.2, the ratio is also low for replications

where only one reallocation action is performed. This is because when the degradation rates

are extremely imbalanced and the reallocation cost is very low, it does not cost too much

to perform two or more reallocation actions before the replacement. Meanwhile, when the

reallocation cost is very high (ca = 5), we may also never perform the reallocation. For

all the rest parameter settings, the previous conclusion holds that the reallocation strategy

manages to balance the degradation with the reallocation actions as less as possible.
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Table S.4: The ratio (in %) of simulation replications where we only perform one reallocation
action before the system replacement, when ca and µ1/µ2 change.

ca

µ1/µ2 1 4 8

0.2 24.53* 99.96 0.38**

1 0* 99.93 98.93
5 0* 0* 99.06

* No reallocations most time.
** More than one reallocations most time.
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Figure S.3: The box plot of the estimated optimal long-run average operational cost Ĉ under
different maintenance policies. (a) σi/µi = 1/6 and (b) σi/µi = 1/9.

S.2.2 Supplementary Results for the Battery System

In Section 6.2 of the main text, we investigate the reallocation policy of the battery system

of a fleet of N = 5 hybrid-electric vehicles. First, we assume the degradation rate µ =

[µ1, · · · , µ5]′ associated with each vehicle is known. The ratio of the degradation volatility

to the degradation rate σi/µi is fixed for i = 1, · · · , 5 and the results for σi/µi = 1/6 is

provided in the main text. Here, we provide the results when σi/µi equals 1/3 and 1/9,

respectively. Figures S.3 shows the corresponding box plot of the estimated optimal long-

run average operational cost Ĉ under the four different maintenance policies, where the

reallocation policy uses two versions of φ(·) shown in (10) and (11), respectively, in the main

text. We can also see that the proposed reallocation strategy with φ(·) specified in (10) of the

main text outperforms the policies with passive replacements only under different parameter

settings.

We then investigate the performance of the model when the true degradation rate asso-

ciated with each hybrid-electric vehicle deviates from the nominal value. In the main text,

we have presented the results when λi/ωi = 1/3 for all i = 1, ., .., 5. Here, the results when
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Figure S.4: The box plot of the total cost incurred during the simulation time horizon with
and without considering the uncertainty in the degradation rates. (a) λi/ωi = 1/6; (b)
λi/ωi = 1/9.

λi/ωi equals 1/6 and 1/9 are both provided in Figure S.4.
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