
Supplemental data to Efficient hyper-parameter determination for
regularised linear BRDF parameter retrieval

1. Solution of the Tikhonov Smoothing Equation

To solve the Tikhonov smoothing equation (KTK + λ2BTB)f = KTρ , subject
to ‖ε‖ = nδ2 , we apply the Generalised Singular Value Decomposition (GSVD)
to the matrix pair (K,B) , where it is assumed K ∈ Rm×n and B ∈ Rp×n .
The Generalised Singular Value Decomposition has been defined elsewhere (Bai
1992; Hansen 1992; Hansen and O’Leary 1993; Hansen 1996; Golub and
Van Loan 2014) and implemented in LAPACK (Anderson et al. 1999). The
GSVD decompositions are used to calculate f , ‖Bf‖ and ‖ε‖ .

The GSVD computes the simultaneous decompositions K = UΣ[0 R]QT and
B = VM[0 R]QT, where R ∈ Rr×r is upper triangular and non-singular
and U, Q, V are all orthogonal matrices of appropriate dimensions, Σ is
a m × r matrix with the property that ΣTΣ = diag(α2

1, ..., α
2
r) with αi

between zero and unity and M is a p × r matrix with the property the
MTM = diag(β2

1 , ..., β
2
r) with βi between zero and unity. The ratios αi/βi

are the generalised singular values of the matrix pair (K,B) . Some of these
singular values may equal zero or infinity. The GSVD has the added property
that ΣTΣ + MTM = Ir , the r × r identity matrix.

For all cases studied here K has full row rank equal to m with m << n , B
is a singular square matrix (p = n) with rank(B) = n − 3 and the composite

matrix

(
K
B

)
has full column rank r = n . The matrix R is then n × n and

nonsingular. We may therefore define the nonsingular square matrix X = QR−1

with the properties that KX = UΣ , BX = VM , and XTKTKX = ΣTΣ ,
XTBTBX = MTM . The matrices Σ and M may be written

Σ =

(
I3 0 0
0 C 0

)
, M =

0 S 0
0 0 In−m

0 0 0

 ,

where C = diag(cii) and S = diag(sii) with C2 + S2 = Im−3 and cii = α3+i

and sii = β3+i for i = 1, ...,m− 3 .

1.1. Determining the solution f

To solve the equation (KTK+λ2BTB)f = KTρ for a given value of λ , we apply
the transformation X to our equation and define a change of basis f = Xg, to
give

XT(KTK + λ2BTB)Xg = XTKTρ .

1

With the identities defined previously we then have the diagonalised equation

ΣTΣ + λ2MTMg = ΣTUTρ .

Equating components on the right and left hand sides gives

gi = UT
i ρ, i = 1, 2, 3,

gi = (αi/(α
2
i + λ2β2

i))(UT
i ρ), i = 4, . . . ,m,

gi = 0, i = m+ 1, . . . , n,

where Ui denotes the ith column of U . The solution is then given by f = Xg .

1.2. Calculating ‖Bf‖

Using the change of basis f = Xg we find that ‖Bf‖ = ‖BXg‖ = ‖Mg‖. The
components of this vector are then given by

(Mg)i = (αiβi/(α
2
i + λ2β2

i))(UT
i ρ), i = 1, . . . ,m− 3,

(Mg)i = 0, i = m− 2, . . . , n.

and the norm follows directly.

1.3. Calculating the residual norm

By the properties of the GSVD and with the change of basis f = Xg , we have
ε = ρ−Kf = ρ−UΣg , and it follows that ‖ε‖ = ‖UTε‖ = ‖UTρ −Σg‖ by
the orthogonality of U . The non-zero components of UTρ −Σg are given by
(1− (α2

i /(α
2
i +λ2β2

i)))(UT
i ρ), i = 3, . . . ,m , and the norm again follows directly.

Appendix A. Pseudocode

This pseudocode outlines 4 key procedures for this study:

• Computation of the solution norm ‖Bf‖.
Inputs need to include the matrices K, B, ρ, and λ.
• Computation of the residual norm ‖ε‖.
Same inputs as above.
• Computation of the solution f .
Same inputs as above.
• Determination of λ that satisfies ‖ε‖ =

√
nδ.

Inputs need to include K, B, ρ, the length v of an initial Λ vector with
lower and upper bounds, delta, a tolerance (tol) and maximum number of
iterations (maxIter).

For all of these algorithms we assume the outputs of the GSVD as defined by
its implementation in LAPACK (Anderson et al. 1999). For the benefit of com-

2

pletion we also include the code for the case m ≥ r (not detailed above, but can
also be derived from GSVD properties as defined in Anderson et al. (1999)).

Algorithm 1 Compute ‖Bf‖
1: procedure ComputeSolutionNorm(K, B, ρ, λ)
2: compute GSVD(K,B)

3: filter ← α

α2 + λ2β2

4: if m ≥ r then
5: for i from 1 to l do
6: (Bf)i ← (filter · βi) · (UT

i ρ)

7: else
8: for i from 1 to m do
9: (Bf)i ← (filter · βi) · (UT

i ρ)

10: return ‖Bf‖

Algorithm 2 Compute ‖ε‖
1: procedure ComputeResidualNorm(K, B, ρ, λ)
2: compute GSVD(K,B)

3: filter ← α

α2 + λ2β2

4: if m ≥ r then
5: for i from 1 to r do
6: εi ← (1− filter · αi) · (UT

i ρ)

7: for i from r+1 to m do
8: εi ← ·(UT

i ρ)

9: else
10: for i from 1 to m do
11: εi ← (1− filter · α) · (UT

i ρ)

12: return ‖ε‖

3

Algorithm 3 Compute BRDF kernel weights f given λ

1: procedure ComputeBRDF(K, B, ρ, λ)
2: compute GSVD(K,B)

3: filter ← α

α2 + λ2β2

4: if n > r then

5: R←
(

In−r 0n−r,r

0r,n−r R

)
6: X← QR−1

7: if m ≥ r then
8: for i from (n− r + 1) to n do
9: idx← i− (n− r)

10: gi ← filteridx · (UT
idxρ)

11: else
12: for i from (n− r + 1) to (n− r +m) do
13: idx← i− (n− r)
14: gi ← filteridx · (UT

idxρ)

15: f ← Xg
16: return f

Algorithm 4 Compute λ that matches ‖ε‖ =
√
nδ

1: procedure Bisection(K, B, ρ, v, lower, upper, δ, tol, maxIter)
2: Λ← create logarithmic sequence(lower,upper) of length v
3: Λ← pad 0 to Λ
4: for i from 1 to v + 1 do
5: lambdaNormi ← ComputeResidualNorm(K, B, ρ, Λi)

6: n ← length of ρ
7: negIndex ← which indices lambdaNorm < σ
8: posIndex ← which indices lambdaNorm > σ
9: if is empty negIndex or posIndex then return -1

10: else
11: l← length of negIndex
12: a← negIndexl

13: b← posIndex1

14: iter ← 1
15: while iter ≤ maxIter do
16: c← (a+ b)/2
17: aNorm ← ComputeResidualNorm(K, B, ρ, a)
18: bNorm ← ComputeResidualNorm(K, B, ρ, b)
19: cNorm ← ComputeResidualNorm(K, B, ρ, c)
20: if (cNorm-

√
n δ) = 0 or (b− a)/2 < tol then return c

21: iter ← iter+1
22: if sign(cNorm)=sign(aNorm) then
23: a← c
24: else b← c

4

Algorithm 5 Define a BRDF solution f

1: procedure SolveBRDF(K, B, ρ, v, lower, upper, δ, tol, maxIter)
2: λ←Bisection(K, B, ρ, v, lower, upper, δ, tol, maxIter)
3: f ← ComputeSolution(K, B, ρ, λ)

References

Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, et al.
1999. LAPACK Users’ Guide. 3rd ed. Philadelphia, PA: Society for Industrial and Applied
Mathematics.

Bai, Zhaojun. 1992. “The CSD, GSVD, Their Applications and Computations.” In IMA
Preprints Series, Vol. 958, 3–5. University of Minnesota.

Golub, Gene H., and C. Van Loan. 2014. Matrix Computations. 4th ed. Johns Hopkins Uni-
versity Press.

Hansen, P. 1992. “Analysis of Discrete Ill-Posed Problems by Means of the L-Curve.” SIAM
Review 34 (4): 561–580.

Hansen, P., and D. O’Leary. 1993. “The Use of the L-Curve in the Regularization of Discrete
Ill-Posed Problems.” SIAM Journal on Scientific Computing 14 (6): 1487–1503.

Hansen, Per Christian. 1996. Rank-Deficient and Discrete Ill-Posed Problems: Numerical As-
pects of Linear Inversion. SIAM Books, Philadelphia, PA.

5

