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APPENDIX S1:  Orientation-average  for simple dipole-dipole 
interactions 
 
 According to the definition of , i.e.,  

 
       S1-1 
 
the substitution of Eqn. (18) into S1-1 reads, 

 
      S1-2 
 

where the prefactor  in S1-2 is simply , while 

the reminding term involves integrals of the form   with .  In 

particular, 

 

     S1-3 

  
and, 

 

   S1-4 
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     S1-5 

 

    S1-6 
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     S1-7 

 
so that, 

 
         S1-8 
 
 Likewise, by the same analysis,  with  as an outcome of 

the odd nature of the  function for the dipole-dipole interactions.  However, 

 

    S1-9 

 
where 

  

   S1-10 

 

    S1-11 

 

    S1-12 

 

    S1-13 
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     S1-14 

 
 Therefore, from S1-1 and the resulting integrals S1-2 to S1-14 we have that, 

 

        S1-15 

 

        S1-16 

 
and consequently, the second-order orientation-averaged dipole-dipole interaction potentials, 

Eqns. (16)-(17) become, 

 
     (19) 
 
    (20) 
 
 Likewise, for the permanent dipole-induced dipole interaction potential, i.e., 

  

     S1-17 

 
where , i.e.,  and , i.e., S1-17 becomes Eqn. (21).  By 

substitution of S1-17 into S1-1 we have that, 
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Ie = 16 cos4θ1 cos
4θ2 dω12∫

= 16 sinθ1 cos
4θ1 dθ10

π

∫ sinθ2 cos
4θ2 dθ20

π

∫ dϕ120

2π

∫
= 32 2 5( )2π

φ12
µµ⎡⎣ ⎤⎦

2
r( )

ω
= 2µ1

2µ2
2 3r12

6( )

φ12
µµ⎡⎣ ⎤⎦

4
r( )

ω
= 216µ1

4µ2
4 225r12

12( )
= 24µ1

4µ2
4 25r12

12( )

Φ12 r( ) = − β 3( )µ12µ22 r12
6 − 7β 3 450( )µ14µ24 r12

12  +!  

φ12 r( ) ω

canon
= − 2β 3( )µ12µ22 r12

6 − 14β 3 225( )µ14µ24 r12
12  +!  

φ12
µα r1, r2,ω1,ω 2( ) = − α1 µ2 ⋅ µ2( ) + 3 µ2 ⋅ r̂12( )2⎡

⎣
⎤
⎦{ +

                                 α 2 µ1 ⋅ µ1( ) + 3 µ1 ⋅ r̂12( )2⎡
⎣

⎤
⎦} 2r12

6

µ i ⋅ r̂12( ) = µi cosθi µi ≡ µ i r̂12 = r12 r12

 
φ12

µα⎡⎣ ⎤⎦
n
r( )

ω
= 8π( )−1 α1µ2

2F2 (ω12 )+α 2µ1
2F1(ω12 )( )n −2r12

6( )n dω12∫

 Fi (ω12 ) = 3cos
2θi +1



  5 

    S1-19 

 

    S1-20 

 

     S1-21 

 
and consequently, 

 
        S1-22 
 
and, 

 

    S1-23 

 
However, for the combined potential , i.e., 

 

    S1-24 

 
the averaged quantities  and  will in principle contain contributions from 
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where  and  so that, 

 

  S1-26 

 
Similarly, , i.e., there are no contributions from the cross dipole-dipole 

and dipole-induced dipole interactions to the first-order canonical and free-energy orientation-

averaged potentials, i.e., . 

 Consequently, by substituting S1-15, S1-16, S1-22, S1-23 into Eqns. (13) and (15) we 

obtain the following orientation-averaged approximated up to the second non-vanishing 

contribution in the series expansion for a fluid described in terms of dipole-dipole plus dipole-

induced dipole interactions, 

 

    (23) 

 
and,  

 

  (24) 

 
We note here that Cook and Rawlinson [1] derived earlier the first two terms of the free-energy 

orientation-averaged potential for simple dipole-dipole interactions, i.e., the counterpart of Eqn. 

(23) for  and , their Eqn. 7.2 that reads, 
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APPENDIX S2: Computation of the second virial coefficient of a polar polarizable 
model fluid 
 
 We start with the definition of the second virial coefficient for an anisotropic molecular 

fluid, i.e.,  

 

     S2-1 

 
with  so that, 

 
       S2-2 

 
 From a computational viewpoint, the calculation of S2-1 requires the estimation of the 

canonical orientation average of the Boltzmann factor in S2-2, i.e., the radial dependent 

integrand in S2-1, which can be efficiently carried out by Monte Carlo integration over the 

orientational phase space at evenly distributed pair distances  in the  range.  

For all practical purposes, the orientation averages are calculated only within the finite range 

, where the  is the minimum distance at which , while 

 is chosen as the distance where  can be represented accurately by the 

previously derived orientation-averaged potentials for polar-polarizable models, e.g., Eqn. (25) 

in the main text.  Consequently, the contributions to the virial coefficient in the  

range are calculated analytically from S2-1 as follows, 

 

       S2-3 

 
for the van der Waals interactions, where  with  for Lennard-Jones and  

 with  for the exponential-6 potentials, respectively.  Similarly, after 

invoking the first term of Eqn. (23) we have that, 
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ω
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ω
→ 0
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ω
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B12 (T )LR
vdW = 2πℜNA kT( ) r2 σ r( )6 dr
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∞

∫
= − 2πℜNAσ

6 3kTrmax
3( )

ℜ = 4ε σ = 2−1 6 rmin
LJ

ℜ = εγ γ − 6( ) σ = rmin
Exp−6
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     S2-4 

 
for the dipole-dipole interactions.  In Figure S2-1 we illustrate the radial behavior of the actual 

integrand S2-2 and that for the corresponding first non-vanishing terms from its perturbation 

expansion for a polarizable dipolar model at . This comparison shows clearly that, for 

the representative polarizable Stockmayer model fluid characterized by , , 

, and , the contributions from the permanent dipole-induced dipole 

interactions to the integrand S2-2 converge faster, than those from the permanent dipole-

permanent dipole interactions, to the corresponding orientation-averaged potentials, i.e., 

 
      S2-5 

 
       S2-6 

 
 Now, for the actual computation of the orientational average , i.e., within 

the finite range  at  equidistant locations, we carry out a Monte Carlo 

integration through the evaluation of the Mayer function at each fixed pair distance for  

randomly chosen molecular orientations according to the quaternion-based uniform random 

rotation algorithm proposed by Shoemake. [2]  The calculations are also complemented by a 

simple analysis of the uncertainties of the Monte Carlo evaluation according to Lepage’s 

approach. [3]  For all practical purposes, we have used  resulting in 

, and  that translated in  with uncertainties 

smaller than 0.3 % according to the sampling discussed above.  Note however that we must be 

careful with the calculations at higher temperatures, i.e., . In fact, for  we 

need to set  in order to have . 
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∫
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ω
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ω
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ω
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ω
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T ≥1000K T = 3000K
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ω
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Figure S2-1: Comparison of the radial dependence of the orientational average for the second virial 
coefficient integrand given by S2-2 and the corresponding first non-vanishing perturbation expansion, i.e., 
first term in Eqn. (25), for polarizable dipolar molecules with  and  at 

.  

 

APPENDIX S3: Temperature dependence of relevant collision integrals of, and 
molecular simulation-based, self-diffusion coefficient of rarified steam 
 
 The perturbation-based Chapman-Enskog [4] solution of Boltzmann’s kinetic equation 

provides a route to the computation of transport properties of gases in terms of so-called reduced 

(by the hard sphere counterpart) collision integrals, i.e., , 

where  is the size parameter, 

 

      S3-1 

 

  µ = 1.855D   α = 1.444Å3

  T = 300K

Ω(l ,s )* ≡ Ωgas
(l ,s ) Ωhard sphere

(l ,s ) =Ωgas
(l ,s ) πσ 2

σ

Ω(l ,s )* = 2 s +1( )!T *(s+2)( ) e− g2 T *( )g(2s+3)Ql* dg
0

∞

∫
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an expression that denotes the average over the Boltzmann distribution of the collision cross 

section,  

 

         S3-2 

 
as a function of the angle of deflection  (i.e., the angle between the asymptotes defined 

between the initial and the final direction of motion), 

 

      S3-3 

 
with the impact parameter , the distance of closest approach  given by the root of

 , the reduced mass , the relative velocity , and the pair 

interaction potential . Note that, from S3-1 follows immediately that, 

 

    S3-4 

 
    S3-5 
 

     S3-6 

 

   S3-7 

 

   S3-8 

 

Ql = 2π 1− cosl (χ )( )bdb
0

∞

∫

χ

χ = π − 2b 1− b2 r2 − 2φ(r) µg2( )−0.5 r−2 dr
ro

∞

∫

b ro

1− b2 ro
2 − 2φ(ro ) µg2( ) = 0 µ g

φ(r)

dΩ(l ,s )* dT * = −2 s + 2( ) s +1( )!T *(s+3)⎡⎣ ⎤⎦ e− g2 T *( )g(2s+3)Ql* dg
0

∞

∫ +

  2 s +1( )!T *(s+4)⎡⎣ ⎤⎦ e− g2 T *( )g(2s+5)Ql* dg
0

∞

∫
= s + 2( ) Ω(l ,s+1)* −Ω(l ,s )*( ) T *

d 2Ω(l ,s )* dT *2 = s + 2( ) s +1( ) Ω(l ,s+2)* − 2Ω(l ,s+1)* +Ω(l ,s )*( ) T *2

d 3Ω(l ,s )* dT *3 = s + 4( )! s! s + 3( )⎡⎣ ⎤⎦ Ω(l ,s+3)* − 3Ω(l ,s+2)* +(
                                                       3Ω(l ,s+1)* −Ω(l ,s )* ) T *3

d 4Ω(l ,s )* dT *4 = s + 5( )! s! s + 3( )⎡⎣ ⎤⎦ Ω(l ,s+4)* − 4Ω(l ,s+3)* + 6Ω(l ,s+2)* −(
                                                       4Ω(l ,s+1)* +Ω(l ,s )* ) T *4

d 5Ω(l ,s )* dT *5 = s + 6( )! s! s + 3( )⎡⎣ ⎤⎦ Ω(l ,s+5)* − 5Ω(l ,s+4)* +( 10Ω(l ,s+3)* −

                                                      10Ω(l ,s+2)* + 5Ω(l ,s+1)* −Ω(l ,s )* ) T *5
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   S3-9 

 
where  is the so-called Poschhammer symbol. [5] 

 Thus, for a given pair interaction potential, the solution of Eqns. S3-1 to S3-3 will 

ultimately provide the low-density transport properties of the system represented by the 

interaction potential. Obviously, Eqns. S3-1 to S3-3 have no analytical solution, consequently, 

the accurate determination of collision integrals requires overcoming some computational 

complications stemming from the “bad-behaved” nature of the involved functions. [6]  Recently 

Kim and Monroe [7] developed arbitrary-precision algorithms for the computation of the 

collision integrals of Lennard-Jones fluids and provided interpolation regressions accurate to at 

least four significant figures within the  range, i.e., 

 

      S3-10 

 
 The derivatives S3-4 to S3-6 become handy in at least a couple of scenarios, i.e., either as 

a means to estimate  with  from the already known  with 

, or in conjunction with the directly computed collision integrals to assess 

the accuracy of regressed interpolation expressions such as that given by Eqn. S3-10. In fact, 

Mason [8] has used the recursive relation S3-4 (or Eqn. 35) to compute  for the Lennard-

Jones fluid using the lower order collision integrals.  However, we are not aware of the 

derivation or use of higher order temperature derivatives, e.g., S3-5, for either the recursive 

computation of higher-order collision integrals, or for the assessment of accuracy of proposed 

interpolation functions.   

As an illustration of either scenario in column 6 of Table S3-1 we present the coefficients 

of the interpolation Eqn. S3-10 for according to Kim and Monroe [7] in comparison with 

the resulting coefficients after applying the recursive relation S3-4 (column 7 of Table S3-1).  

The reader can easily check that, despite the contrasting coefficients, the two representations 

provide essentially the same numerical outcome, a testament to the higher accuracy, than that of 

previous tabulations, [9] of the recent tabulation. [7]   

d 6Ω(l ,s )* dT *6 = s + 7( )! s! s + 3( )⎡⎣ ⎤⎦ Ω(l ,s+6)* − 6Ω(l ,s+5)* +( 15Ω(l ,s+4)* −

                                     20Ω(l ,s+3)* +15Ω(l ,s+2)* − 6Ω(l ,s+1)* +Ω(l ,s )* ) T *6

s + n( )! s!= s( )n ≡ Γ s + n +1( ) Γ s +1( )

0.3≤ T*≤ 400

Ω(l ,s )* T *( ) = a(l ,s ) + bi
(l ,s ) T *( )− i + ci(l ,s ) lnT *( )i⎡

⎣
⎤
⎦i=1

6

∑

Ω(l ,s+n)*
 n = 1,!,m( ) Ω(l ,s+t )*

 t = n −1,!,0( ) Ω(l ,s )*

Ω(1,7)*

s −

Ω(2,3)*
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Table S3-1: Regression coefficients for Eqn. S3-10 for some relevant collision integrals within 
the  range  

 
# resulting coefficients from the condition described by Eqn. (40)  

In contrast Figure S3-1, where we display the comparison between  according to 

the coefficients of column 4 of Table S3-1 and that resulting from Eqn. (41), indicates that even 

though the individual interpolating functions described by S3-6 are significantly more accurate 

than previous ones, the uncertainties embodied in the curvature of the functions, i.e., represented 

by their temperature derivatives, introduce uncertainties that give rise to significant inaccuracies 

(up to 9% within the low reduced temperature regime in the illustrated case). 

0.3≤ T * ≤ 400

a1

b1

b2

b3

b4

b5

100b6

c1

c2

c3

c4

100c5

1000c6
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�− 0.577227270
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�−0.117984422

� 0.006591796
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Figure S3-1:  Comparison of the temperature dependence of the reduced collision integrals 

 according to the interpolation equation S3-10 [7] and the derived relation (41), including 
the resulting percent error.   

  

As we have anticipated in the main manuscript, the accuracy of the resulting effective 

Lennard-Jones model in representing fluid properties depends strongly on the property type, i.e., 

either thermodynamic or transport, used in the regression. This is the manifestation of the fact 

that these two types of quantities are governed by contrasting portions of the interaction 

potential: (a) the attractive portion (long radial distance) for the second virial coefficient and, (b) 

the repulsive portion (very short radial distance) for the collision integrals defining the transport 

properties. This feature becomes obvious when we compare the outcomes for the predicted 

 reduced temperature kT ε( )

Ω(1,3)*
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temperature dependences from the individual fits which shows up at the opposite sides of the 

temperature range, in contrast to the corresponding representations from simultaneous 

optimizations as clearly illustrated in Figure S3.2 for the zero-density shear viscosity, and Figure 

S3.3 for the second virial coefficient. 

 
Figure S3-2:  Comparison of the temperature dependence of the resulting the zero-density shear 
viscosity for the effective Lennard-Jones model according to the regression of the zero-density 
shear viscosity, [10]  from the ab initio data, [11]  and the simultaneous optimization of 
both properties. 
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Figure S3-3:  Comparison of the temperature dependence of the resulting 2nd virial coefficient for 
the effective Lennard-Jones model according to the regression of  from the ab initio data, 
[11]  the zero-density shear viscosity, [10] and the simultaneous optimization of both properties. 
 

 

APPENDIX S4: Derivation of the low-density configurational integrals for a 
molecular fluid according to the isochoric-isothermal and isobaric-isothermal 
ensembles 
 
 The factorization of the classical canonical partition function, i.e., , 

provides the following expressions for a rigid non-linear molecular fluid, 
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    S4-1 

 
where  is the axis principal moment of inertia, ,  is the 

canonical configurational integral, while the subscripts  signify translation, 

rotational and configurational contributions, respectively.  After invoking pairwise additivity for 

 we have that, 

 

                                  S4-2       

                                                                                                                                             
and thus, 

 

      S4-3 

 
where  denotes the Mayer function. [12] 

 Note that the product in the last line of S4-3 can be expanded into a summation as 

follows, 

 
       S4-4 

 
involving  identical terms in each single summation, therefore, according to 

E4 the configurational integral can be recast as follows, 

 

 

Qtransl = 2π kTm h2( )3N

Qrot = π
N 2 8π 2kTIx h2( )N 2

8π 2kTIy h2( )N 2
8π 2kTIz h2( )N 2

Qconf = Z ΩNN!

Iα α − Ω = dω∫  
Z = e−βU rNω N( ) dr N dω N∫

transl, rot, conf( )

 
U r Nω N( )

 
U r Nω N( ) = φij rij ,ω iω j( )

j

N

∑
i< j

N−1

∑

 

exp −βU r Nω N( )⎡⎣ ⎤⎦ = exp −β φij rij ,ω iω j( )
j

N

∑
i< j

N−1

∑⎡

⎣
⎢

⎤

⎦
⎥

= exp −βφij rij ,ω iω j( )⎡⎣ ⎤⎦
1≤i< j≤N
∏

= 1+Fij( )
i< j
∏

 
Fij = exp −βφij rij ,ω iω j( )⎡⎣ ⎤⎦ −1

  
1+Fij( )

i< j
∏ = 1+ Fij

1≤i< j≤N
∑ + FijFkl

k<l
∑

i< j
∑ +!

0.5N N −1( ) ≈ 0.5N 2
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    S4-5 

 
For a low-density system we need to consider the first two terms of S4-5 since the second 

integral becomes negligible due to its quadratic density dependence, i.e.,   

 

    S4-6 

 
and consequently, from E1 the low density canonical configurational partition function reads, 

 
       S4-7 

 
so that the  defines the residual Helmholtz free energy, i.e., 

 
         S4-8 
 
Since , then, 

 

        S4-9 

 
which provides the equation of state (EoS) for the low-density regime as, 

 
         S4-10 
 
i.e., the first-order density-truncated virial-EoS. 

 Now, for the isothermal-isobaric configurational contribution we have that, 

 

       S4-11 

 

  

Z = dr N dω N + Fij dr
N dω N∫

1≤i< j≤N
∑ + FijFkl dr

N dω N∫
k<l
∑ +!

i< j
∑∫

=ΩN V N + 0.5N 2V N−1 Fij ω
drij + 0.5N

2V N−1 FijFkl ω
drij +∫∫( ) +!⎡

⎣
⎤
⎦

 

lim
N ,V→∞
N V→small

Z NVT( ) =ΩN V N + 0.5N 2V N−1 Fij ω
drij∫⎡

⎣
⎤
⎦

=ΩNV N 1+ 2πNρ e−φ12 (r ,ω ) kT −1
ω
r2 dr∫⎡

⎣
⎤
⎦

lim
N ,V→∞
N V→small

Qconf = V N N!( ) 1− NρB T( )⎡⎣ ⎤⎦

 
Q NVT( ) QIG NVT( ) = Z V N( )

 
Fres (NVT ) = −kT ln Z V N( )

Pres ρT( ) = P ρT( )− PIG ρT( ) = − ∂Fres ρT( ) ∂V⎡⎣ ⎤⎦NT

 

Pres ρT( ) = kT ∂ln Z V N( ) ∂V⎡⎣ ⎤⎦NT
= ρ2B T( )

P = kT ρ 1+ ρB T( )⎡⎣ ⎤⎦

Qconf NPT( )

 
Qconf NPT( ) = C N!( ) e−βPVZ NVT( )dV

0

∞

∫
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where  is given by E5 and  involves alternative forms, [13] a fact that does not alter 

the outcome of our analysis.  Thus, 

	 		 	 S4-12	

	
where we have mapped the above integral onto the one defining the gamma function, [14] i.e., 

, and invoked the identity . 

 From S4-12 and the relation , where  denotes 

an isobaric-isothermal ensemble average, we immediately have again the low-density equation of 

state, 

 
          S4-13 
 
resulting in , i.e., the first order pressure-truncated virial expansion. Note that 

both S4-10 and S4-13 truncated expressions are obviously describing the same low-density 

regime given by the compressibility factor , i.e., either  from S4-10 or 

 from S4-13, according to the first-order truncation of the series expansion 

 for small .  

 Moreover, by recalling the expression for the residual Gibbs free energy, i.e.,   

 

      S4-14 

 
as well as its isobaric temperature derivatives, , 

, and , we get the following equations 

from S4-12 and S4-14, 

 

 Z NVT( )  C

 

lim
N ,V→∞
N V→small

Qconf NPT( ) = C N!( ) e−βPVV N 1− NρB T( )⎡⎣ ⎤⎦dV0

∞

∫

= C N!( ) N! βP( )N+1 − N 2B N −1( )! βP( )N⎡⎣ ⎤⎦
= 1− NβPB( ) βP( )N

Γ z( ) = t z−1e− t dt
0

∞

∫ Γ z( ) = z −1( )!

V NPT =V = −kT ∂lnQconf ∂P( )TN  ! NPT

V = kTN P−1 + βB( )  

P = kT ρ 1+ βPB( )

z = P ρkT z = 1+ ρB

z = 1− ρB( )−1

 1− x( )−1 ≅ 1+ x +! x ≡ ρB

Gres (NPT ) = −kT ln Qconf NPT( ) Qconf
IG NPT( )⎡⎣ ⎤⎦

= −kT ln 1− NβPB( ) ≅ NPB

H res NTP( ) = −kT 2 ∂βGres ∂T⎡⎣ ⎤⎦NP

Sres NTP( ) = − ∂Gres ∂T( )NP CP
res NPT( ) = ∂H res ∂T( )NP
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         S4-15 
 
          S4-16 
 
         S4-17 
 
where  and .   

 
APPENDIX S5: Determination of the thermodynamic residual properties at fixed 
temperature and pressure from the IAPWS95 formulation 
  
 Here we present the thermodynamic relations that allow us to extract the isothermal-

isobaric residual properties of steam from the IAPWS95-EoS. [15]  For that purpose we point at 

Table 6.3 of Wagner and Pruss’ publication where the relevant thermodynamic properties are 

written in dimensionless form as functions of the density and temperature.  In particular we have 

that, 

 
        S5-1 
 
        S5-2 
 
        S5-3 
 
         S5-4 
 
where  is the reduced Helmholtz free energy , the superscripts  

and  denote ideal gas and residual components, respectively, while the subscripts  and  are 

the dimensionless state variables  and  in the notation of Wagner and Pruss 

[15], so that  with  and . Thus, from S5-1 and S5-4 we have that 

the compressibility factor is given by, 

 
          S5-5  
 
Now, we invoke the definition of the isochoric-isothermal residual quantity , i.e.,  

 

H res NTP( ) = NP B −TBT( )

Sres NTP( ) = −NPBT

CP
res NPT( ) = −NPTBTT

BT ≡ dB dT BTT = dBT dT

g ρ,T( ) RT = 1+φ o +φ r +δφδ
r

h ρ,T( ) RT = 1+τ φτ
o +φτ

r( ) +δφδ
r

s ρ,T( ) RT = τ φτ
o +φτ

r( )− φ o +φ r( )

f ρ,T( ) RT = φ o +φ r

φ δ ,τ( ) ≡ f ρ,T( ) RT f ρ,T( ) o

r δ τ

δ = ρ ρc τ = Tc T

φα
β ≡ ∂φβ ∂α β = o,r α = δ ,τ

z δ ,τ( ) = 1+δφδ
r

 P
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        S5-6 
 
so that, from S5-1 to S5-5 we immediately have that, 
 

        S5-7 

 
         S5-8 
 
        S5-9 
  
Moreover, from the relations between the isochoric-isothermal and the isobaric-isothermal 

residual thermodynamic quantities, [16] i.e.,  

 
       S5-10 
 
        S5-11 
 
         S5-12 
 
         S5-13 
 
we immediately have that, 
 
       S5-14 

 
         S5-15  
 
       S5-16 

 

    S5-17  
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