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Appendix A. Energy change during collisions at the centre of the trap

We consider the extreme case in which collisions may only occur at the centre of the
trap, under the assumption that there is no excess micromotion due to external forces
(see, e.g., Ref. [1]). This may be achieved using the same procedure to calculate the
change in energy as described in Section 2.2 of the main text, with the exception that
there is now an additional constraint that the collision must occur at the centre of the
trap, rj(τ) = 0 for each j ∈ (x, y, z), where rj(τ) is defined as in Eq. (5) of the main
text. That is,

Aj(cosφj cej(τ)− sinφj sej(τ)) = 0. (A1)

For non-zero values of Aj , corresponding to an ion with a non-zero amplitude of motion
passing through the trap centre, solutions to Eq. (A1) can be found by requiring that,

tanφj =
cej(τ)

sej(τ)
. (A2)

Since tanφj is periodic, there are two possible solutions to this equation, which phys-
ically represent the fact that the velocity may correspond to motion in either the +j
or −j direction. The velocity is given by the derivative of Eq. (5) of the main text
with respect to τ , and substituting in the solutions given by Eq. (A2) we obtain,

vj(τ, rj = 0) = ± AjWj√
cej(τ)2 + sej(τ)2

. (A3)

Here, Wj = cej(τ)ṡej(τ)− ċej(τ)sej(τ) is the Wronskian, which is a time-independent
quantity [2]. For qj = 0, cej(τ), sej(τ) reduce to cosβjτ and sinβjτ respectively, such
that cej(τ)2 + sej(τ)2 = 1. In this case, the velocity at the centre of the trap is
independent of τ , as expected for a harmonic oscillator. However, for non-zero qj this
no longer holds. Indeed, by plotting the phase-space trajectory of the ion (Fig. A1), it
can be seen that the velocity of the ion at rj = 0 is not equal to the secular velocity
and takes a range of values.
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Figure A1. The phase-space trajectory of an ion in a radiofrequency trap with qj = 0.1, aj =

−0.000625/2,Ω = 20 × 2π MHz, an amplitude of Aj = 1 µm, and the phase set to φj = 0. (a) The tra-

jectory over one period of the secular motion comparing the exact solution to the Mathieu equation (solid line)
to the secular motion (dashed line). (b) The velocity of the ion close to the centre of the trap, r = 0, shown

for multiple periods of the secular motion to highlight the presence of micromotion at the centre of the trap.

We estimate the magnitude of this effect as follows. Using the Fourier series defini-
tions for cej(τ), sej(τ) and trigonometric identities, it can be shown that,

cej(τ)2 + sej(τ)2 =
∑
m,n

c2m,jc2n,j cos[2(m− n)τ ]. (A4)

As a result of the terms in this sum with m 6= n, this function is time dependent and
contains components with frequencies of integer multiples of Ω. Evaluating Eq. (A4)
for m,n ∈ (−1, 0, 1), and using the approximate values for the Mathieu coefficients
c0 = 1, c±2,j = −qj/4 [3], we find,

cej(τ)2 + sej(τ)2 ≈ 1− q cos(2τ). (A5)

The velocity is therefore approximated by,

vj(τ, rj = 0) ≈ ± AjWj√
1− qj cos(2τ)

, (A6)

and expanding this as a Taylor series to first order in qj around qj = 0 we obtain,

vj(τ, rj = 0) ≈ ±AjWj [1 +
qj
2

cos(2τ)]. (A7)

An approximate value for the Wronskian Wj can be found using the m = 0 terms of
the Fourier series expansions of cej(τ), sej(τ), which produces Wj ≈ c2

0βj . Using this
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approximation with c0 ≈ 1, and converting from τ to t, we find,

vj(t, rj = 0) ≈ ±Ajωj [1 +
qj
2

cos(Ωt)], (A8)

where the definition of the secular frequency ωj = βjΩ/2 has been employed to simplify
the result. This form of the result bears a resemblance to the adiabatic approximation
for the motion of the ion [1],

rj(t) = Aj cos(ωjt+ φj)[1−
qj
2

cos(Ωt)], (A9)

where the sign of the qj
2 term used here differs from that of Ref. [1] as a result of

the use of a different convention for the Mathieu equation. Taking the derivative of
Eq. (A9) with respect to t produces,

vj(t) = Aj cos(ωjt+ φj)[Ω
qj
2

sin(Ωt)]−Ajωj sin(ωjt+ φj)[1−
qj
2

cos(Ωt)]. (A10)

For the ion to be at the centre of the trap with |qj | < 2 it is required that cos(ωjt+φj) =
0, and therefore sin(ωjt+ φj) = ±1. Thus,

vj(t, rj = 0) = ∓Ajωj [1−
qj
2

cos(Ωt)], (A11)

which is equivalent to Eq. (A7) up to the sign of the qj
2 term. This discrepancy in

the sign is a consequence of the fact that ωjqj is approximately proportional to q2
j

[3], and terms of this order are not included in the adiabatic approximation. Using an
improved approximation for the motion of the ion including terms up to order q2

j as
in Ref. [4] produces a result in agreement with Eq. (A7).

The velocity of the ion at the centre of the trap is therefore approximately given
by the sum of the secular velocity and a term proportional to qj/2 cos(Ωt), i.e., a
micromotion term. For the trajectory shown in Fig. A1 with qj = 0.1, the secular
velocity is given by ≈ 4.3 m/s, and the actual velocity spans 4.1−4.5 m/s, in agreement
with this result. Thus, we conclude that an ion which is passing through the centre
of the trap exhibits a contribution to the velocity from the micromotion proportional
to the secular velocity of the ion. If the ion is perfectly cooled to the centre of the
trap, then Aj = 0 and this micromotion vanishes, as expected. However, for non-zero
values of Aj , the magnitude of this micromotion increases proportionally to the secular
velocity.

The post-collision energy is given as before by Eq. (11) of the main text, as this
expression is valid for collisions at an arbitrary point in the trap. However, in this case
the set of phases φj are determined by Eq. (A2), such that each fφj (φj) is sharply
peaked at the two possible values which we assume to occur with equal probability.
Assuming a thermal distribution for the components of the velocity of the buffer gas,
an isotropic random rotation matrix, and taking τ to follow a uniform distribution,
we find,

〈E′j〉 =
〈Ej〉

(1 + m̃)2
+κjkBTb+

∑
k∈(x,y,z)

m̃2c2
0,jW

2
kβ

2
j

3(1 + m̃)2c2
0,kW

2
j β

2
k

Mj [(cek(τ)2+sek(τ)2)−1]〈Ek〉,

(A12)
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where,

κj =
m̃

(1 + m̃)2

c2
0,jβ

2
j

W 2
j

, (A13)

and Mj is defined in Eq. (21) of the main text. As a further simplification, we as-
sume that the temperature of the buffer gas is negligible, and that each of the three
components of the mean energy before the collision are approximately equal in mag-
nitude, i.e., 〈Ex〉 = 〈Ey〉 = 〈Ez〉 = 1

3〈E〉. The ratio of the post-collision energy,
〈E′〉 =

∑
j〈E′j〉, to the pre-collision energy 〈E〉 is then given by,

〈E′〉
〈E〉

=
1

(1 + m̃)2
+

m̃2

9(1 + m̃)2

∑
j,k∈(x,y,z)

c2
0,jW

2
kβ

2
j

c2
0,kW

2
j β

2
k

Mj [(cek(τ)2 + sek(τ)2)−1]. (A14)

For non-zero temperatures, we may solve Eq. (A12) for the steady-state values of 〈Ej〉
by setting 〈E′j〉 = 〈Ej〉, and solving the resulting set of linear equations. For sufficiently
large values of m̃, no physically meaningful solution exists corresponding to values of
m̃ greater than the critical mass ratio.

Appendix B. Secular phase distribution

The probability that a collision takes place at a given location r in a time interval ∆t
is proportional to the density ρ(r) of the buffer gas,

p(c|r) = kc∆tρ(r). (B1)

where the notation c|r indicates the probability of a collision (c) at a specific position
r and where kc is the collision rate constant. By employing Bayes’ theorem, this may
be converted to the probability for the ion to be at position r at the time of a collision
[5],

p(r|c) =
p(c|r)p(r)∫
p(c|r)p(r)dr

. (B2)

To proceed, we make the simplification that the density of the buffer gas changes
sufficiently slowly such that it depends only on the secular position of the ion, and
take the secular position to be given by rj = Aj cos(φj + ωjt) = Aj cos φ̃j . This
approximation is appropriate for a buffer gas which is not strongly localised, i.e., the
density of the buffer gas does not vary significantly over the length scale given by
the amplitude of the micromotion, that is, the density is approximately constant over
an interval of width rjqj centred at rj . For a given value of Aj , the probability for a
component of the secular position to take a specific value in the interval [−Aj , Aj ] is
[6],

p(rj) =
(
π
√
A2
j − r2

j

)−1

, (B3)
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and so, assuming that the position for each axis is independent,

p(r) =
∏

j∈(x,y,z)

p(rj) =
∏

j∈(x,y,z)

(
π
√
A2
j − r2

j

)−1

. (B4)

Typically, the neutral buffer gas is confined in a potential which is approximately
harmonic at the centre of the trap, such that the density of the buffer gas follows a
Gaussian density distribution,

ρ(r) = ρx(rx)ρy(ry)ρz(rz), (B5)

where,

ρj(rj) =
1√

2πσj
e
−

r2j

2σ2
j . (B6)

Substituting Eqs. (B1), (B4) and (22) (see main text) into Eq. (B2) and evaluating
the integral produces,

p(r|c) =
∏

j∈(x,y,z)

exp
(

1
2

(
A2
j−2r2j
2σ2
j

))
π
√
A2
j − r2

j I0

(
A2
j

4σ2
j

) , (B7)

where In(x) is the modified Bessel function of the first kind [3]. Employing a change
of variables rj = Aj cos φ̃j , we obtain the distribution for the instantaneous secular
phase for the motion along each axis at the time of a collision,

fφ̃j (φ̃j |c) =
1

2π

e
−
A2
j cos(2φ̃j)

4σ2
j

I0

(
A2
j

4σ2
j

) . (B8)

Appendix C. Analytical expression for 〈η1〉

In the main text, it is demonstrated that in the presence of a buffer gas confined in
a harmonic potential, the change in the secular energy of an ion as the result of a
collision is approximated by,

E′ ≈ (η0 − η1E)E + ε. (C1)

Here, we provide an expression for the expectation value of η1, i.e., the value averaged
over all the variables contributing to the outcome of a collision. This value is obtained
by substituting φj = φ̃j − βjτ into the expression for η as given in the Supplementary

Material of Ref. [7], then averaging the result over the distributions for φ̃j derived
in Appendix B. Applying Eq. (27) of the main text to this expression produces a
set of terms independent of the secular energy, i.e., η0, and a set of terms linearly
proportional to the energy, i.e., η1. Averaging the terms contributing to η1 over the
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remaining variables produces,

〈η1〉 =

∫ ∫ ∫
fτ (τ)fθρ(θρ)fφρ(φρ)

(m̃+ 1)2 kBTb

∑
j∈(x,y,z)

Fj(τ)P 2
j ω

2
j,b

c2
0,jW

2
j ω

2
j

dτdθρdφρ, (C2)

where the remaining average over τ is left unevaluated due to the complexity of inte-
grals involving the Mathieu functions, and the averages over φρ, θρ are left unevaluated
due to the lack of an accurate analytical form for the distributions of these two vari-
ables. In the above, Pj is defined as in the main text and is a function of θρ, φρ (see
text following Eq. (12)) and the function Fx(τ) is defined by,

Fx(τ) =

m̃3c2
0,yW

2
xβ

2
y

24c2
0,xW

2
y β

2
x

[
csy(τ)

[
2ċex(τ)ṡex(τ) sin (2τβx) +

(
ċex(τ)2 − ṡex(τ)2

)
cos (2τβx)

] ]
+
m̃3c2

0,zW
2
xβ

2
z

24c2
0,xW

2
z β

2
x

[
csz(τ)

[
2ċex(τ)ṡex(τ) sin (2τβx) +

(
ċex(τ)2 − ṡex(τ)2

)
cos (2τβx)

] ]
+
m̃3

12

[
csx(τ)ċex(τ)ṡex(τ) sin (2τβx)

]
+
m̃2

4
Wx

[
(sex(τ)ṡex(τ)− cex(τ)ċex(τ)) sin (2τβx)

+ (ċex(τ)sex(τ) + cex(τ)ṡex(τ)) cos (2τβx)

]
+
m̃3

12

[
3cex(τ)sex(τ)

(
ċex(τ)2 + ṡex(τ)2

)
sin (2τβx)

+
(
ċex(τ)2

(
2cex(τ)2 − sex(τ)2

)
+ ṡex(τ)2

(
cex(τ)2 − 2sex(τ)2

))
cos (2τβx)

]
(C3)

where csj(τ) = cej(τ)2 +sej(τ)2. The functions Fy(τ) and Fz(τ) have the same general
form and are found by switching a pair of indices, e.g, Fy(τ) is found by replacing x
with y and vice versa.

Appendix D. Moments of superstatistical distributions

For a general energy distribution which can be expressed as a superposition of thermal
states, i.e.,

fE(E) =

∫
Ek

(kBT )k+1Γ(k + 1)
fT (T )e

− E

kBT dT, (D1)

the moments are given by,

〈En〉 =

∫
EnfE(E)dE =

∫ ∫
En

Ek

(kBT )k+1Γ(k + 1)
fT (T )e

− E

kBT dTdE. (D2)
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Exchanging the order of integration to first integrate over E produces,

〈En〉 = knB
Γ(k + n+ 1)

Γ(k + 1)

∫
fT (T )TndT, (D3)

for k + n > −1 and where the terms independent of T have been moved outside the
integral. The integral itself is the definition of the expectation value of Tn, i.e., 〈Tn〉
[5]. Thus,

〈En〉 = knB
Γ(k + n+ 1)

Γ(k + 1)
〈Tn〉. (D4)

Appendix E. The Bessel-Tsallis distribution

When the buffer gas follows a Gaussian density distribution, the change in the mean
energy with each collision can be approximated by,

〈E′〉 = 〈η0〉〈E〉 − 〈η1〉〈E2〉+ 〈ε〉, (E1)

and using Eq. (D4) we obtain,

〈T ′〉 = 〈η0〉〈T 〉 − 4kB〈η1〉〈T 2〉+
〈ε〉
3kB

. (E2)

We assume that the multiplicative term η is the most significant source of noise, and so
in the recurrence relation of the random variable T the other variables can be treated
as constants. We have shown previously that multiplication of the energy by a random
value is equivalent to multiplying the temperature by the same random value, that is,
E′ = ηE is equivalent to T ′ = ηT [8]. Neglecting the fluctuations in both the additive
term and η1, a suitable recurrence relation for the random variable T is,

T ′ = η0T − 4kB〈η1〉T 2 + κTb, (E3)

where κTb = 〈ε〉/(3kB) and κ is defined as in Eq. (33) of the main text. We solve
this recurrence relation using the method in Ref. [9] by converting it to a Langevin
equation for the variable x = lnT . We first consider the case where 〈η1〉 = 0, κTb = 0
to establish a suitable representation for the noise term η0. Since T ′ = η0T , it follows
that,

lnT ′ = ln η0 + lnT. (E4)

We approximate the finite difference by a differential, dx
dt = lnT ′ − lnT , and separate

ln η0 into its mean value µ = 〈ln η0〉 and a fluctuating term, ζ̂(t), such that,

dx

dt
= µ+ ζ̂(t). (E5)

This has converted the multiplicative stochastic process in terms of T and η into an
additive stochastic process in terms of x and ln η. By itself, Eq. (E5) does not produce
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a stable steady-state distribution for x [9], and it does not include the effects of the
temperature of the buffer gas or the reduction in η due to localisation. To find a
representation for these terms, we use a different approximation for the derivative,
dx
dt ≈

T ′−T
T following Ref. [9]. Using this approximation with Eq. (E3) produces,

dx

dt
≈ 〈η0〉+ η̂(t)− 1− 4kB〈η1〉ex + κTbe

−x, (E6)

where we have separated η0 into its mean 〈η0〉 and a fluctuating term η̂(t) as before.
Notice that since we have used a less accurate approximation for dx

dt , this equation is
defined in terms of η0−1 rather than ln η0. However, 〈η0〉−1 ≈ µ and the variances of

η̂(t) and ζ̂(t) are approximately equal [9], such that Eq. (E6) is approximately equiva-
lent to Eq. (E5) in the limit where Tb = 0 and 〈η1〉 = 0. Moreover, this approximation
provides a representation for the effects of both a non-zero buffer gas temperature and
the non-uniform density of the buffer gas. We therefore augment Eq. (E5) with the
terms proportional to Tb and 〈η1〉 of Eq. (E6) to produce,

dx

dt
= µ+ ζ̂(t) + κTbe

−x − 4〈η1〉kBex. (E7)

We make the approximation that ζ̂(t) can be modelled as following a Gaussian distri-
bution, i.e., it represents the fluctuations in x averaged over multiple collisions [10].
This follows from the fact that the fluctuations in x are additive, and the sum of in-
dependent random variables approaches a Gaussian distribution by the central limit
theorem [10]. This approximation enables the derivation of an analytically tractable
Fokker-Planck equation for the probability distribution fx(x) [9],

σ2

2

d2

dx2
fx(x)− d

dx

[
(µ+ κTbe

−x − 4〈η1〉kBex)fx(x)
]

= 0, (E8)

where σ2 is the variance of ζ̂(t). If 〈η1〉 = 0, then this equation reduces to the one
obtained in Ref. [8], and a steady-state solution exists if µ < 0 and Tb 6= 0. Conversely,
if Tb = 0, then a solution exists only if 〈η1〉 is non-zero and µ > 0. These conditions
correspond to the overall drift of x towards a lower or an upper bound [9]. We proceed
assuming that both Tb, 〈η1〉 are non-zero, such that both upper and lower bounds exist,
and the existence of a steady-state does not depend on the sign of µ. Subject to the
boundary conditions that fx(x)→ 0 for x→ ±∞, the steady-state distribution for T
is,

f
(L)
T (T ) =

2ν−1
(
b
ν

)− ν
2 T−ν−1

(
k2
B

E`

)
− ν

2 e
− ν

bkBT
− kBT

4E`

Kν

(√
ν
bE`

) , (E9)

where Ky(z) is the modified Bessel function of the second kind with order y and
argument z, and the superscript (L) is used to indicate that this is the distribution
obtained in the presence of a localised buffer gas. The parameters are defined in terms
of the coefficients of Eq. (E8) as,

b =
−µ

kBκTb
, (E10)
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ν =
−2µ

σ2
, (E11)

E` =
σ2

32〈η1〉
, (E12)

and the distribution is normalisable if E` > 0 and b/ν > 0. These definitions for the

parameters are accurate in the limit in which ζ̂(t) can be approximated as following a
Gaussian distribution, but do not take into account corrections due to the exact form
of the distribution of ln η0 [8, 9].

The energy distribution is defined as a superposition of thermal distributions,

fE(E) =

∫
fE(E|T ) =

Ek

(kBT )k+1Γ(k + 1)
e
− E

kBT fT (T )dT. (E13)

Evaluating Eq. (E13) using Eq. (E9) produces,

f
(BT )
E (E) =

Ek
(
bE
ν + 1

)− 1

2
(k+ν+1)

(
b
νE`

)
k+1

2 Kk+ν+1

(√
E
E`

+ ν
bE`

)
2k+1Γ(k + 1)Kν

(√
ν
bE`

) . (E14)

The moments of this distribution are difficult to evaluate directly due to the complexity
of integrals involving the Bessel function. However, the moments of Eq. (E9) may be
easily calculated by evaluating

∫
TnfT (T )dT , and applying Eq. (D4) produces,

〈En〉 =
2nΓ(k + n+ 1)

(
b
νE`

)
−n

2Kν−n

(√
ν
bE`

)
Γ(k + 1)Kν

(√
ν
bE`

) . (E15)

The mean energy 〈E〉 evaluated using this expression is defined as long as E` > 0 and
b/ν > 0.

Appendix F. Parameter estimation

Although the values of µ, σ, 〈η1〉 required to calculate ν, b, E` are in theory defined in
terms of the mass ratio and trapping parameters, in practice these cannot be accurately
evaluated a priori due to the fact that the distributions of ln η0, φρ and θρ are not known
analytically. Instead, the required values can be obtained from numerical simulations
by sampling the distribution of η. To do so, a series of collisions is simulated to produce
a value of E under the same conditions as for the simulations used to obtain the energy
distribution. For the final collision, the buffer gas temperature is set to Tb = 0 K, such
that the change in energy is given by E′ = ηE. Dividing the post-collision energy by
the pre-collision energy provides a value for η, and repeating this process (typically
for 1’000’000 iterations) produces a set of values of E, η. From these, the coefficients
for the linear expansion η = η0 − η1E are obtained by least-squares linear regression,
and we take 〈η1〉 to be equal to the value of η1 extracted by this method. If the
density of the buffer gas is set to a uniform distribution for the final collision in
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addition to setting the temperature equal to zero, the η1 term is eliminated, and we
have η = η0. The values of µ = 〈ln η0〉 and σ2 = 〈(ln η0)2〉 − µ2 are then calculated
from the values of η0 obtained in this manner. This method is in general found to
produce acceptable results except for the particular case of m̃ = 1, ωr,b = 100 Hz, for
which the ion’s energy in the steady-state remains small enough that η1 cannot be
accurately estimated from collisions. Consequently, for that mass ratio η1 is obtained
by setting the initial temperature of the ion to T = 1 K and performing a single
collision, rather than allowing the ion to reach the steady-state first. This leads to a
slightly different value of η1 than would be obtained in the steady-state, but in practice
for this mass ratio the energy of the ion in the steady-state remains sufficiently low
that the effect of localisation is unimportant, i.e., E << E`, and so the error in η1 does
not significantly affect the shape of the distribution. Indeed, the steady-state energy
distribution is found to essentially follow Tsallis statistics over the range of energies
sampled in numerical simulations.

Alternatively, the distribution may be fit to numerical data through maximum-
likelihood estimation. Analytical expressions for the maximum-likelihood estimates of
the parameters b, ν, E` have not yet been obtained due to the complexity of derivatives
of the Bessel function with respect to ν. Thus, the estimation is performed numeri-
cally with respect to the parameters b̃ = b/ν, ν, E`. The use of b̃ ensures that this
parameter is strictly positive, reducing the range of values to optimise over and elim-
inating the constraint that b must have the same sign as ν. The parameters of the
exponential-Tsallis distribution and the standard Tsallis distribution are also found
through numerical maximum likelihood estimation.
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