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1.0 Supplementary literature review 

 

Table 1 summarizes the literature on sustainable supplier selection. Table 2 summarizes the 

recent studies on supplier selection that have considered risk in the problem. Although some 

studies consider risk in supplier selection, the concurrent consideration of sustainable supplier 

selection, risk, and inflation has not been investigated. 

 

Table 1 Summary of sustainable supplier selection literature 

Author year Economic Environmental social Order  allocation 

P.K. Humphreys et al. 2003 
√ √ × × 

Bai and Sarkis 2009 
√ √ √ × 

kozkan and Cifci 2010 
√ √ √ × 

Foerstl et al. 2010 
√ √ × × 

Leppelt  et al. 2011 
√ √ √ × 

Goebel  et al. 2012 
× √ √ × 

Azadnia et al. 2012 
√ √ √ × 

Amindoust  et al. 2012 
√ √ √ × 

Govindan et al. 2012 
√ √ √ × 

Igarashi et al. 2013 
√ √ × × 



Azadnia et al. 2013 
√ √ √ × 

Öztürk and Özçelik 2014 
√ √ √ × 

Azadnia et al. 2014 
√ √ √ √ 

Ifeyinwa et al.  2014 
√ √ √ × 

Sarkis et al.  2014 
√ √ √ × 

Ghadimi and Heavey 2014 
√ √ √ × 

Tavana et al. 2015 
√ √ √ × 

Kaur et al. 2016 
√ √ √ × 

Zimmer  et al. 2016 
√ √ √ × 

Orji and Wei 2015 
√ √ × × 

Awasthi 2015 
√ √ √ × 

Luthra  et al. 2017 
√ √ √ × 

Zhou et al. 2016 
√ √ × × 

Shalke et al. 2018 
√ √ √ × 

Fallahpour  et al. 2017 
√ √ √ × 

Kannan 2017 
√ √ √ √ 

Awasthi et al.  2018 
√ √ √ × 

Ghadimi et al.  2018 
√ √ √ √ 

Rashidi and Cullinane 2018 
√ √ √ × 

Arabsheybani et al.  2018 
√ √ √ √ 

Liu et al.  2018 
√ √ √ × 

Kannan 2018 
√ √ √ × 

Xu et al.  2019 
√ √ √ × 

Ghadimi et al.  2019 
√ √ √ × 



 Moheb-alizadeh and Handfield 2019 
√ √ √ × 

Pishchulov et al.  2019 
√ √ √ × 

Mohammed et al.  2019 
√ √ √ √ 

 

Table 2 Recent studies on supplier selection and order allocation with risk 

Author Single-objective Bi- objective Multi-objective Risk Inflation Fuzzy 

Approach 

Kannan et al .(2013) × × √ × × √ 

Sheikhalishahi and Torabi (2014) × × √ √ × √ 

Bakeshlou et al.(2014) × × √  × √ 

Azadnia et al.(2014) × × √ × × √ 

Sarkis et al.(2014) × × √ × × √ 

Gold et al.(2015) × × × √ × √ 

Nekooie et al. (2015) × × √ √ × × 

Zimmer et al (2015) × × × × ×  

Kaur et al.(2015) √ × × × × × 

Orji et al (2015) × × × × × √ 

Pramanik et al (2016) × × × × × √ 

Yazdani et al (2016) × × √ × × × 

Song et al.(2016) × × × √ × × 

Mavi et al.(2016) × × √ √ × √ 

Azadnia.( 2016) × × √ × √ × 

Hamdan et al.(2016) × × √ × × √ 

Wan et al.(2016) × × × √ × √ 
Shalke et al.(2016) × × √ × ×  

Zhou et al.(2016) × × √ × × √ 

Tamošaitienė et al.(2017) × × √ × × × 

Vahidi et al (2017) × √ × √ ×  

Yoon et al.(2017) × × √ √ × × 

Suprasongsin et al.(2017) × × √ √ × √ 

Zimmer et al.(2017) × × × √ × √ 

Khojasteh-Ghamari et al. (2017) √ × × √ × × 

Turk et al.(2017) × × √ √ × √ 

Awasthi et al (2017) × × × √ × √ 

Dupont et al.(2017) √ × × √ × × 

Liming Yao(2017) × × × × × √ 

Gupta et al .(2017) × × × × × √ 

Moheb-Alizadeh et al.(2017) × × √ × × √ 

Fallahpour et al.(2017) × × × × × √ 

Kannan (2017) × × × × × √ 

Wang et al.(2018) × × × √ × √ 

Taleizadeh et al .(2018) × × √ × × √ 

Cheraghalipour et al.(2018) × √ × √ × × 

Arabsheybani et al.(2018) × × √ √ × √ 

Paksoy et al.(2019) × × × √ × √ 

Habibi et al.(2019) × × √ × √ √ 

Moheb-Alizadeh et al.(2019) × × √ × × √ 

Alikhani et al. (2019) √ × × √ × √ 



 

 

 

2.0 Complexity and generalization of the developed model 

 

The model presented in this research is developed based on the previous literature. The model includes 

six different objective functions and some constraints. Table 3 shows the different components of the model. 

Mathematical models are typically investigated based on a literature review and developed based on 

specific needs of companies, researchers, practitioners, managers, and so on. A model can be applied to a 

specific case study and provide feasible and sensible results. However, generalization should be addressed 

in the development of the model. A model can be applied as a benchmark when it is able to work with 

different sets of data and different sizes of problem. To address the issue of generalization, the model is 

applied to a large scale case study to investigate its applicability and find the solution time. The results of 

the large scale case study are shown in the Section 6 of this supplementary material.  

 

Table 3 Quantitative and computational specifications of the model 

Number of decision variables 7  

Number of constraints 12 constraints including n 

14 constraints including j 

16 constraints including t 

4 constraints including q 

2 constraints including r 

1 constraint including b 

1 constraint including 


 

Number of binary variables 3 binary variables 

Operating system features Processor: Intel ® Core ™ i3 CPU 

Installed memory (RAM): 4.00 GB (3.87 GB 

usable) 

System Type: 64-bit Operating System 

CPU time The discussed model: less than 2 minutes 

The large-scale model: 23-27 minutes 

Software LINGO 11 software 

 

The model provides a feasible and optimal solution in a reasonable time (less than 2 minutes as shown 

in Table 3). To consider a model as a benchmark, it is necessary to check its generalization condition. Based 

on the outputs from the large-scale case study and the CPU time, the model also provides a feasible and 

optimal solution in a reasonable time (23-27 minutes). Figure 1 shows the CPU usage of the operating 

system in the process of solving both models (small- and large-scale). The results of the large scale 

application can be seen in the Section 6 of this supplementary material. 

  



      

 

Figure 1 CPU performances (small-scale (left) and large-scale (right)) 

 

3.0 Solution Approach 

 

This section discusses the solution approach of the proposed model and includes an 

introduction to fuzzy set theory, fundamental definitions and the solution approach of the proposed 

model. 

 

3.1 Fuzzy Set Theory 

Fuzzy set theory (Zadeh, 1965, 1973) is applied to model the decision making processes based 

on imprecise and vague information such as the judgment of decision makers. Qualitative features 

are represented by the means of linguistic variables. These features are expressed qualitatively by 

linguistic terms and quantitatively by fuzzy sets in the discourse universe and the membership 

function. Operations between linguistic variables involve the following concept.   

 

3.2 Fundamental definitions  

3.2.1 Fuzzy Set  



    A fuzzy set 𝐴̃ in X is defined by 

𝐴̃ = { 𝑥 . 𝜇
𝐴
ሺ𝑥 }ሻ  .      𝑥 ∈ 𝑋                                                                                                  

Where 𝜇𝐴ሺ𝑥ሻ ∶ 𝑋 → [ 0 . 1 ] is the membership function of 𝐴̃ and  A x  is the degree of 

pertinence of x in 𝐴̃. If  A x  equals 0, x does not belong to the fuzzy set 𝐴̃. If  A x  equals 1, 

x completely belongs to the fuzzy set A . However, unlike classical set theory, if  A x  has a 

value between 0 and 1, it partially belongs to the fuzzy set𝐴̃.  That is, the pertinence of x is true 

with a degree of membership given by  A x (Zadeh, 1965; Zimmermann, 1991).  

2.2.2 Fuzzy Numbers 

              A fuzzy number is a fuzzy set where the membership function of the conditions of 

normality  

sup 𝐴 ̃ [𝑥]𝑥∈𝑋  = 1                                                                                                                                    (25) 

and of convexity  

𝐴̃ [ 𝜆𝑥1 + ሺ1 − 𝜆ሻ𝑥2 ≥ min[𝐴ሺ𝑥1ሻ . 𝐴ሺ𝑥2ሻ ]]                                                                             (26) 

For all 1 2,x x X and all  0,1  . The triangular fuzzy number is commonly used in 

decision making due to its intuitive membership function,  A x , given by  
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Where l, m, and u are real numbers with l m u  (Figure 2a). Outside the interval ,l u , the 

pertinence degree is null, and m represents the point where the pertinence degree is maximum. 

Trapezoidal fuzzy numbers are also frequently applied in decision making processes, as illustrated 

in Figure 2b (Zimmermann, 1991; Kahraman, 2008).  

A fuzzy number can be defined in different forms considering the nature of the problem in 

hand. According to Markowski and Mannan (2008), any shape of membership function could be 

applied in reliability analysis of engineering systems. Among different shapes of membership 

functions, the triangular and trapezoidal shapes are widely used. Arithmetic operations on fuzzy 

numbers are performed following the fuzzy set theory rules and the extension principle (Zadeh,  



 

 

1975; Zimmermann, 2011). Shu, Cheng, and Chang (2006), Bowles and Pelaez (1995), Liang and 

Wang (1993), and Misra and Weber (1990) have described different arithmetic operations on fuzzy 

numbers based on the extension principle. 

 

The first step to solve the model is to convert it to an equivalent crisp one. Some of the 

parameters of the objective functions and constraints are fuzzy numbers. Therefore, the problem 

includes imprecise objectives and imprecise constraints, simultaneously. So, the problem is 

considered to be a possibilistic programming problem. The grade of possibility indicates the 

subjective or objective degree of the occurrence of an event. It is important to realize this 

distinction while modelling fuzziness/imprecision in mathematical programming problems.  

Possibilistic decision making models provide an important capability in handling practical decision 

making problems.  Madadi and Wong  (2014) suggested a solution procedure to solve this type of 

fuzzy multi-objective, multi-product and multi-period models. According to this study, two steps 

should be considered to solve the problem. Firstly, treating imprecise objective functions 

(optimality issue) and secondly treating imprecise constraints (feasibility issue). Supplier selection 

problems are application specific. That is, the appropriate constraints and the relative importance 

of the objectives vary with the problem setting. Therefore, it is not possible to model a single 

specific functional form to be appropriate for all potential scenarios. Triangular fuzzy numbers are 

considered in this research. Therefore, as these fuzzy numbers are included in objective functions, 

to treat the imprecise objective function, it is possible to express them using a triangular 

possibilistic distribution. In general, a multi-objective problem may be formulated as follows: 
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Where      1 2, , , ,..., ,pZ x y Z x y Z x y  are the objective functions to be optimized.   ,i if x y b

and   ,ig x y b are the set of system constraints. The proposed model of this research follows 

this formulation. Considering three different cases in the fuzzy environment, each iZ is divided 

into three forms to represent pessimistic, most likely, and optimistic values. 

To obtain
1

iZ , 
2

iZ  and
3

iZ , all fuzzy parameters in each objective function of iZ are set at 

their pessimistic, most likely, and optimistic values, respectively. Therefore, all 6 objective 

functions should be expressed in the form of
1 2 3( , , )i i i iZ Z Z Z . Equations 29 to 46 shows the 

pessimistic, most likely, and optimistic values of objective functions. Equation 29, 30 and 31 are 

pessimistic, most likely, and optimistic values of the first objective function. 

1 1 1 1
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Using the same approach which is explained above, Equations 32, 33 and 34 show the 

pessimistic, most likely, and optimistic values of the second objective function. 
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Similarly, Equation 35, 36 and 37 are pessimistic, most likely, and optimistic values of the 

third objective function. 

 

1 1
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Following the same steps, Equation 38, 39 and 40 are pessimistic, most likely, and optimistic 

values of the fourth objective function. 

1 1
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2 2
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The fifth objective function can be converted to pessimistic, most likely, and optimistic values. 

Equation 41, 42 and 43 show the fifth objective function in these three conditions.  

 

1
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2
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3

5 .njt rnt

n j t r

Z X R          (43) 

Lastly, Equation 44, 45 and 46 are pessimistic, most likely, and optimistic values of the sixth 

objective function. 
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2 2 2 2 2 2 2
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3 3 3 3 3 3 3
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 (46) 

 

The second step is to treat imprecise constraints. This section addresses the issue of solution 

feasibility. To deal with this issue, Madadi and Wong (2014) applied the approach of Jimenez et 

al. (2007), where all fuzzy constraints are converted to their equivalent crisp ones as follows.  
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Where,   is the feasibility degree of the constraints.  This value is assigned by the decision 

maker considering the acceptable risk of violating the constraints in the solution (Wang and Fang, 

2001; Lotfi and Torabi, 2011). This study considers 0.8 for the parameter 𝛼. 𝛾 represents the 

decision maker’s optimism. This value can vary between zero and one (Yaghin, Torabi, and Ghomi 

2012). This research assigns a value of 0.3 to parameter 𝛾. 

 



4.0 Initial Results 

 

The proposed mathematical model is formulated in a fuzzy environment. A fuzzy goal 

programming approach is applied to solve the crisp model. According to this approach, the multi-

objective model should be converted to an equivalent single-objective one. The max-min operator 

of Bellman and Zadeh (1970) is applied to convert the model to a single objective formulation. 

The multi-objective crisp model is shown as follows. Equation 64 gives the objective function of 

the crisp model. Equations 65-82, 11, 12, 14, 18 and 19-23 are the constraints of the final multi-

objective crisp model. 
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  Equations 11, 12, 14 ,18 

  Equations 19-23 

Positive and negative ideal solutions of the objective function 𝑍𝑖 are required to solve the 

model. Therefore, to obtain the negative ideal solution of an objective function, one of the 

following equations should be applied: 

 

 max ( *;i jNIS

i i jZ z v           (83) 

In case of having a minimization objective 

 min ( *;i jNIS

i i jZ z v           (84) 

 In case of having a maximization approach objective 

 

PIS

iZ  and 
NIS

iZ indices are applied to show the positive and negative ideal solutions of 

objective function 𝑍𝑖. The proposed methodology of Abd. El-Wahed and Lee (2006) is applied in 

this research. According to this study, the 
PIS

iZ is achieved by solving the model based on a single 

objective of 𝑍𝑖 and ignoring other objective functions. In addition, *jv is the positive ideal solution 

of objective function iZ . The proposed model is coded and solved in LINGO 11 software. Table 4 

shows the payoff table applied to obtain the positive and negative ideal solutions of the case study.  

 



Table 4 Positive and negative ideal solutions (Payoff Table) 

NIS PIS Objective Function 

0.75E+11 0.5499079E+11 Ev(Z1) 

1412650 6588708 Ev(Z2) 

2174141 4727752 Ev(Z3) 

1465661 5347366 Ev(Z4) 

0.1890264E+08 0 Z5 

0.6320292E+12 0.6048987E+12 Ev(Z6) 

 

By applying the PISs and NISs shown in Table 4, the membership functions are formulated 

in Equations 85-90. 
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(90) 

In addition to Equations 85-90, the membership functions of all objective functions are shown in 

Figure 3 to 8. 
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Figure 3 Membership function for Objective Function 1 
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Figure 4 Membership function for Objective Function 2 
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Figure 5 Membership function for Objective Function 3 
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Figure 6 Membership function for Objective Function 4 
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Figure 7 Membership function for Objective Function 5 
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Figure 8 Membership function for Objective Function 6 

 

5.0 Sensitivity Analysis 

This section discusses the sensitivity analysis of the proposed mathematical model. It 

investigates how the output uncertainty of a proposed mathematical model can be allocated to 

different uncertainties in model inputs. Figure 9 displays the model variation with regard to pairs 

of objective functions in the absence of other objective functions. The top left figure displays the 

sensitivity analysis of the first objective function with regard to the second objective function. 

According to this figure, the value of the first objective function is increased when the second 

objective function is omitted from the model. Figure 10 displays a different analysis. This figure 

shows the sensitivity analysis of the first objective function ignoring other objective functions, and 



shows that the value of the first objective function is decreased when other objective functions are 

omitted from the model. 

 

  

  

Figure 9 Sensitivity analysis of objective functions with regard to the second objective function 
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Figure 10 Sensitivity analysis of the first objective ignoring other objective functions 

In addition to sensitivity analysis conducted on objective functions, Figures 11 and 12 display 

the sensitivity analysis for parameters 𝛼 and 𝛾.   is the feasibility degree of the constraints. This 

value is assigned by the decision maker considering the acceptable risk of violating the constraints 

imposed. This study considers the value of 0.8 for parameter 𝛼. 𝛾 is the decision maker’s optimism. 

This value can be varied between zero and one. This research assigns a value of 0.3 to 𝛾. The result 

change when the decision maker assigns different values of these two parameters. Different values 

of first objective functions are investigated with different values of 𝛼 and 𝛾 parameters. This 

sensitivity analysis is shown in Figure 11. The sensitivity analysis of ϕ with different gamma values 

is shown in Figure 12.  

 

According to Figure 9, the value of the first objective function (cost minimization) is increased 

in the absence of other objective functions. This is mainly due to the fact that some constraints of 

the model are removed by omitting the objective function. Therefore, the solution process takes 

place in a different feasible area. Managers, practitioners and researchers who are interested in 

seeing the effect of different objective functions on cost, can apply this method and investigate the 

significance of each objective function. An important implication of the sensitivity analysis is that 

removing some objective functions can affect the results, and managers may be interested in 

investigating different scenarios when dealing with mathematical models. The sensitivity analysis 

in this research helps them to check the variation of the results in the presence or absence of 

different objective functions. Finally, there are some parameters which are set by the decision 

makers. Different values of these parameters can affect the results and should be carefully 

investigated.  
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Figure 11 Sensitivity analysis of first objective function with different alpha and gamma values 

 

 

Figure 12 Sensitivity analysis of ϕ with different gamma values 

 

6.0  Generalizing the model to a large scale problem 

As is it important for any mathematical model to be generalized, the model developed in this 

research was extended a large scale. The model found a feasible solution. The following shows 

the results of the large scale application. As with the main application, the large scale application 

found a feasible solution. This satisfies the generalization concerns. In other words, the model can 

be generalized to apply to any sustainable supplier selection and order allocation problem. As the 
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main output of the model is order allocation quantities, the other results are omitted from this 

section to save space. 

Table 5 Order allocation results from the large scale problem 

X( 1, 1, 1) 93200.00 X( 3, 1, 1) 1490400 X( 5, 1, 1) 0 X( 7, 1, 1) 975200 

X( 1, 1, 2) 0 X( 3, 1, 2) 0 X( 5, 1, 2) 0 X( 7, 1, 2) 0 
X( 1, 1, 3) 0 X( 3, 1, 3) 0 X( 5, 1, 3) 0 X( 7, 1, 3) 1033800 

X( 1, 1, 4) 0 X( 3, 1, 4) 0 X( 5, 1, 4) 0 X( 7, 1, 4) 0 
X( 1, 2, 1) 0 X( 3, 2, 1) 0 X( 5, 2, 1) 809600 X( 7, 2, 1) 0 
X( 1, 2, 2) 0 X( 3, 2, 2) 0 X( 5, 2, 2) 2101000 X( 7, 2, 2) 0 
X( 1, 2, 3) 0 X( 3, 2, 3) 0 X( 5, 2, 3) 0 X( 7, 2, 3) 0 
X( 1, 2, 4) 0 X( 3, 2, 4) 0 X( 5, 2, 4) 0 X( 7, 2, 4) 0 
X( 1, 3, 1) 0 X( 3, 3, 1) 0 X( 5, 3, 1) 0 X( 7, 3, 1) 0 
X( 1, 3, 2) 0 X( 3, 3, 2) 0 X( 5, 3, 2) 0 X( 7, 3, 2) 0 
X( 1, 3, 3) 0 X( 3, 3, 3) 0 X( 5, 3, 3) 0 X( 7, 3, 3) 0 
X( 1, 3, 4) 0 X( 3, 3, 4) 0 X( 5, 3, 4) 0 X( 7, 3, 4) 0 
X( 1, 4, 1) 2190200 X( 3, 4, 1) 0 X( 5, 4, 1) 0 X( 7, 4, 1) 0 
X( 1, 4, 2) 0 X( 3, 4, 2) 0 X( 5, 4, 2) 0 X( 7, 4, 2) 0 
X( 1, 4, 3) 0 X( 3, 4, 3) 322600 X( 5, 4, 3) 0 X( 7, 4, 3) 0 
X( 1, 4, 4) 0 X( 3, 4, 4) 0 X( 5, 4, 4) 0 X( 7, 4, 4) 0 
X( 2, 1, 1) 74400.00 X( 4, 1, 1) 0 X( 6, 1, 1) 0 X( 8, 1, 1) 0 
X( 2, 1, 2) 0 X( 4, 1, 2) 0 X( 6, 1, 2) 351400 X( 8, 1, 2) 0 
X( 2, 1, 3) 0 X( 4, 1, 3) 0 X( 6, 1, 3) 0 X( 8, 1, 3) 0 
X( 2, 1, 4) 0 X( 4, 1, 4) 0 X( 6, 1, 4) 0 X( 8, 1, 4) 0 
X( 2, 2, 1) 0 X( 4, 2, 1) 478400 X( 6, 2, 1) 0 X( 8, 2, 1) 0 
X( 2, 2, 2) 0 X( 4, 2, 2) 0 X( 6, 2, 2) 0 X( 8, 2, 2) 0 
X( 2, 2, 3) 0 X( 4, 2, 3) 147913.7 X( 6, 2, 3) 0 X( 8, 2, 3) 92000 

X( 2, 2, 4) 0 X( 4, 2, 4) 0 X( 6, 2, 4) 0 X( 8, 2, 4) 174400 

X( 2, 3, 1) 0 X( 4, 3, 1) 0 X( 6, 3, 1) 128800 X( 8, 3, 1) 0 
X( 2, 3, 2) 0 X( 4, 3, 2) 0 X( 6, 3, 2) 0 X( 8, 3, 2) 0 
X( 2, 3, 3) 0 X( 4, 3, 3) 0 X( 6, 3, 3) 0 X( 8, 3, 3) 0 
X( 2, 3, 4) 0 X( 4, 3, 4) 0 X( 6, 3, 4) 0 X( 8, 3, 4) 0 
X( 2, 4, 1) 1748400 X( 4, 4, 1) 0 X( 6, 4, 1) 0 X( 8, 4, 1) 929200 

X( 2, 4, 2) 0 X( 4, 4, 2) 0 X( 6, 4, 2) 0 X( 8, 4, 2) 0 
X( 2, 4, 3) 0 X( 4, 4, 3) 853486.3 X( 6, 4, 3) 0 X( 8, 4, 3) 0 
X( 2, 4, 4) 0 X( 4, 4, 4) 0 X( 6, 4, 4) 0 X( 8, 4, 4) 0 
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