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1 Further descriptions on the datasets

In this section we describe further some summary statistics in for the datasets in this study.

1.1 First dataset

The first dataset is described in Lovell et al. (2003) and are available from

http://kinemage.biochem.duke.edu/databases/top500.php.

The dataset contains a selection of 500 proteins from the Protein Data Bank (PDB) are catalogued.
The 500 proteins were selected because of their high quality, low homology and high resolution (1.8
Å or better) (Lovell et al., 2003). The summary statistics are presented in Table S1. Note that, in
angular data, the minimum and maximum points (−180◦, 180◦) are arbitrary because the data are
wrapped around a circle: both are the same. However, we present in the table the minimum and
maximum values that we observe in the data to show that some amino acids’ dihedral angles do not
occupy the whole range of domain. Based on the values of mean and median for φ and ψ, some amino
acids indicate that they are not concentrated symmetrically. This indication is illustrated in Figure 1
in the main manuscript.

1.2 Second dataset

The second dataset is also from the Protein Data Bank (PDB). We select all proteins from PDB that
have less than 1.5Å in resolution, and published (uploaded to the repository) from 2015 to May 2019
(inclusive). In this dataset, we have 1,259 proteins and none of them are overlapping with the first
dataset. The summary statistics are presented in Table S2. The table indicates that the summary
statistics for amino acids in the second dataset are similar to those in Table S1. This is interesting
since the proteins are different in both datasets. In a way, this can be considered as a validation dataset
in terms of results. Further description of this dataset, and the results of analysis on this dataset, are
available in Section 4 of this supplementary material.
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2 Dependencies between adjacent amino acids in a protein

Our proposed method to construct the dissimilarity matrix between amino acids involves a test of
distribution equality of dihedral angles. When two amino acids are tested, then we include dihedral
angles of each amino acid across proteins. For example, consider the amino acids GLY and PRO in the
first dataset (illustrated in the bottom panel of Figure 1 in the main manuscript). When we are testing
GLY and PRO in a two-sample setting, we include the dihedral angles of GLY across all proteins in one
sample, and those of PRO in the other sample. It is possible that, within the amino acids GLY, there
are two pairs of dihedral angles that are adjacent in a protein. I.e. in a protein, there is a sequence
. . . − GLY − GLY − . . .. Similarly, for the PRO sample, it is possible that it contains dihedral angles
that are adjacent; i.e. there is a sequence . . .− PRO− PRO− . . . in a protein.

Adjacent amino acids are expected to have some sort of dependencies or correlation of dihedral
angles. This is because, once an amino acid occupy a position in a three-dimensional structure of a
protein, then the next amino acid can only occupy a certain position in the structure of protein. This
is true regardless of the type of amino acids that are adjacent and is still true in our context when we
focus on the same type of amino acids when performing a test. However, the correlation of adjacent
amino acids are relatively weak as shown in Figure S1. The figure shows the distribution of correlations
between (1) φ’s of adjacent same-type amino acids in a protein (2) ψ’s, of adjacent same-type amino
acids in a protein, (3) φ and ψ of adjacent same-type amino acid in a protein and (4) φ and ψ of the
same-type amino acid in a protein.

cor(φi, φi+1) cor(ψi, ψi+1) cor(φi, ψi+1) cor(φi, ψi) cor(φi+1, ψi)

-0
.1
0

-0
.0
5

0.
00

0.
05

0.
10

Correlation for φ and ψ which belong to each amino acid

C
or
re
la
tio
n

Figure S1: Correlations between (1) φ’s of adjacent same-type amino acids in a protein (2) ψ’s, of
adjacent same-type amino acids in a protein, (3) φ and ψ of adjacent same-type amino acid in a
protein and (4) φ and ψ of the same-type amino acid in a protein.

With a range of approximately between -0.04 to 0.04, Figure S1 indicates that the correlation
between adjacent amino acids in the test are really week to have practical importance. Relative to the
number of dihedral angles involves in the test that ranges from 1,624 to 9,427 (in the first dataset –
Table S1), the number of adjacent amino acid (of the same type) is relative low. As an illustration,
there are 12 pairs of dihedral angles (of GLY) that are adjacent in a protein, which represents a very
small fraction of the total 8749 dihedral angles in the first dataset. Similarly for PRO, there are 6
pairs of dihedral angles that are adjacent in a protein, representing a small fraction of the total 5052
dihedral angles.
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To check that these adjacent amino acids do not cause a problem, we have performed the analysis
where we remove the dihedral angles of one of the adjacent amino acids. As expected, we end up with
the same p-values of the test, hence the same dissimilarity matrix. As a result, the resulted clusters
are also the same. Hence these dependencies are not a problem in our analysis.

As a note, the correlation between dihedral angles that we consider in this investigation is based
on the Fisher-Lee (FL) circular coefficient (Fisher and Lee, 1983). Suppose that (φ1, ψ1) and (φ2, ψ2)
are independently distributed as (Φ,Ψ). Then the Fisher-Lee (FL) circular correlation coefficient is
defined by

ρFL(Φ,Ψ) =
E[sin(φ1 − φ2) sin(ψ1 − ψ2)]√
E[sin2(φ1 − φ2)]E[sin2(ψ1 − ψ2)]

, where ρFL ∈ [−1, 1]

3 Physicochemical properties of amino acids

Stanfel (1996) describe the physicochemical properties of amino acids that they use to construct dissim-
ilarity matrix for clustering amino acids. The dissimilarity matrix is given in Table S3 below. The table
shows the physicochemical properties of amino acids that they consider to construct the dissimilarity
matrix.

Amino Acids Volume Area Polarity Charge Shape

1 ASN 126 160 -4.8 0 5.1

2 ILE 164 175 3.1 0 1.45

3 PHE 193 210 3.7 -1 12

4 GLU 142 190 -8.2 0 5.2

5 MET 167 185 3.4 0 3.3

6 LEU 164 170 2.8 1 1.4

7 ARG 195 225 -12.3 -1 8.6

8 ASP 118 150 -9.2 0 5

9 GLY 64 75 1.0 1 1

10 LYS 170 200 -8.8 0 8.5

11 TYR 197 230 -0.7 0 12.05

12 THR 121 140 1.2 1 2.1

13 HIS 159 195 -3.0 0 7

14 SER 95 115 0.6 0 2

15 PRO 124 145 -0.2 0 1.25

16 ALA 90 115 1.6 0 1.1

17 VAL 139 155 2.6 0 1.3

18 GLN 142 180 -4.1 0 5.3

19 TRP 231 255 1.9 0 12.15

20 CYS 113 135 2.0 0 3

Table S3: Physicochemical properties of amino acids as described in Stanfel (1996). The column
‘volume’ refers to the volume of amino acids in Å3 as described in Gerstein et al. (1994). The column
‘area’ corresponds to the amino acids area in Å2 as described by Chothia (1984). The column ‘polarity’
is in kcal/mol as described by Engelman et al. (1986). The column of ‘charge’ is measured just by
-1, 0, 1 for negatively charged, uncharged, and positively charged, respectively. The column ‘shape’
corresponds to the shape of amino acids, by their contructive atoms involved as described by Stryer
(1988).

The physicochemical properties in the table are only indirectly related to the three-dimensional
structure of protein. We argue that, when our interest is the three-dimensional structure of protein,
then measures that are directly related to the structure would be more relevant for the clustering of
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amino acids. Lovell et al. (2003) has described that the distribution of dihedral angles in protein are
directly related to the protein structure. In a Ramachandran plot that describes the joint distribution
of φ and ψ of dihedral angles, the occupation of certain regions of the plot are directly associated with
the shape of secondary structure: α-helix, β-sheet, or others.

However, one might consider to take into account the above physicochemical properties in the
construction of dissimilarity matrix for clustering amino acids, alongside the information from the
distribution of dihedral angles. To do this, we can construct a composite dissimilarity matrix that is the
result of weighting each dissimilarity matrix from the physicochemical and dihedral angle information.
They are normalised first by taking the ratio to make the maximum value to be one.

Using the notation from the main manuscript, this can be done as follows. Let Md be a 20 × 20
distance matrix between amino acids based on dihedral angle information. The entries of the matrix,
denoted md

kk′ are defined as the negative log or p-value of the test described in Sections 3.2 and 3.3
in the main manuscript. Let Mp be a 20 × 20 distance matrix between amino acids, whose entries,
denoted mp

kk′ , are defined as the Euclidean distance between amino acids from the physicochemical
measurements in Table S3. We assume that the entries of the matrices have been divided by the
maximum to get a maximum value of one. Let a be a weight, 0 ≤ a ≤ 1. The composite distance
matrix, denoted as M c of size 20× 20 with entries mc

kk′ is calculated as

mc
kk′ = amp

kk′ + (1− a)md
kk′ . (1)

Based on this new composite matrix, we can investigate the clustering of amino acids as the weight a
varies. The results of this investigation is shown in Figure S2.

Figure S2 indicates that the resulting clusters share some common and different (distinct) charac-
teristics of each cluster based on the proposed method and physicochemical properties, depending on
the weight. For example, Figure S2 indicates that GLY is its own cluster, whether the clustering is
based on the proposed distance matrix or based on the physicochemical properties. However, ARG,
for example, shows to be a separate cluster in the figure a = 1 (based on physicochemical properties)
and its position starts to join other amino acids to form a bigger cluster as a decreases to zero (based
on dihedral angle information). These types of indication can be inferred with other amino acids. It
is therefore reasonable to expect the results in the main manuscript that there are some agreement
between clustering based on dihedral angle information and that based on physicochemical properties
as shown in the main manuscript (Section 4.4).

4 Results of analysis on the second dataset

In this section, we present our analysis with the second dataset. As we have discussed earlier in
Section 1 of this supplementary material, the second dataset does not have any observation in the first
dataset, and hence can be utilised to validate the results that we obtained from the first dataset. A
comparison between the two datasets are illustrated in Figure S3. The figure shows the distribution of
some amino acids across the different proteins in the first dataset (left column) and the second dataset
(right column).

The figure indicates that the distributions of amino acids, as a comparison between the first and
second dataset, are quite similar. There are some minor differences, but overall we consider them to
be similar. This is a promising preliminary result because there is an indication, albeit in only some
amino acids and the fact that there is no overlapping protein, that the second dataset may be able to
confirm our previous results.

We performed the BAPT method to estimate the distance matrix of the amino acids in the second
dataset. To simplify this distance matrix, we summarise it in Figure S4. An edge that connect a pair
of amino acids indicate that the associated p-value of the test for the pair is greater than 0.05. The
figure indicates that the natural clustering of amino acids in the second dataset is equal to that in the
first dataset (Figure 4 in the main manuscript). For example, GLY and PRO are in their own cluster.
There are some slight differences in the edges that connected the amino acids within a cluster. Some
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Figure S2: The results of hierarchical clustering using average linkage based on a composite distance
matrix (Equation 1) for different weights (a) from 1 (top left panel) to zero (bottom right panel). The
composite distance matrix is constructed from distance matrix based in our proposed method (weight
1− a) and that based on the physicochemical properties (weight a) in Table S3.

pairs of amino acids that are not significant at the 5% level in the first dataset are now significant in
the second dataset. For example, in the first dataset, LYS is idenfified to have the same population
distribution with GLU, ALA, and GLN (Figure 4 in the main manuscript). However, in the second
dataset as shown in Figure S4, LYS is now identified to have diffrent population distribution from
GLU, ALA, and GLN.
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Figure S3: Comparison between the first dataset (left column) and the second dataset (right column)
in terms of the distribution of amino acids across proteins in their respective dataset: LYS and GLU
(top row), CYS and ILE (middle row), and LEU and GLN (bottom row).

From the distance matrix, we can now create dendogram under the single, average, and complete
linkage, and the Ward method. The relevant dendograms are presented in Figure S5. The figure
indicates that the resulting dendograms in the second dataset are very close to those in the first
dataset (Figure 5 in the main manuscript). This is as expected since the result of the tests in the
second dataset in Figure S4 shows the same natural clustering as the first dataset (Figure 4 in the
main manuscript).

This result is able to confirm that the clustering we previously have seen in the first dataset is not
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Figure S4: The result of appling the BAPT method to estimate the distance matrix between amino acids
in the second dataset. An edge that connect a pair of amino acids indicate that the associated p-value
of the test for the pair is greater than 0.05.

coincidence. The second dataset that does not contain any protein from the first dataset also suggests
the same clustering of amino acids.

5 A note on type-I error in the simulation study

One of the most important aspects in the simulation study (Section 3.4 in the main manuscript) is the
ability of the BPAT test to properly control type-I error. Figure 2 in the main manuscript has shown
that the test is able to control properly type-I error when H0 is true, for different configurations of
n1 and n2. To show this in more detail, the numerical figures for the type-I error control achieved in
the simulation are presented in Table S4. The figures in the table indicate that the test has a proper
control of type-I error. All of the proportions of falsely rejected null hypotheses (out of 1000 replicates)
are well within 1.96 standard errors of 0.05.

n1 n2 Prop. St.Error

1000 1000 0.055 0.0072

500 1000 0.051 0.0069

200 1000 0.060 0.0075

100 1000 0.053 0.0071

1000 1000 0.055 0.0072

500 1000 0.057 0.0073

200 1000 0.060 0.0069

100 1000 0.054 0.0071

Table S4: Proportion of p-values (out of 1000 replications) that are less than or equal to 0.05 in the
simulation study under H0 at different values of n1. The first four rows are from the simulation study
when we varied the mean and the last four rows are from that when we varied the variance.

9



G
LY

P
R
O

H
IS

V
A
L

C
Y
S

P
H
E

T
R
P

T
H
R

T
Y
R

IL
E

S
E
R

A
S
N

G
LU

A
S
P

A
LA

G
LN LE

U

A
R
G

M
E
T

LY
S

0
1

2
3

4
5

6
7

Single Linkage Method

Amino acids

H
ei
gh
t

G
LY

A
S
N

G
LU

A
LA

G
LN

A
S
P

LE
U

A
R
G

M
E
T

LY
S

P
R
O

V
A
L

C
Y
S

T
Y
R

T
H
R

P
H
E

T
R
P

H
IS

IL
E

S
E
R

0
1

2
3

4
5

6
7

Average Linkage Method

Amino acids

H
ei
gh
t

V
A
L

C
Y
S

P
R
O

G
LY

A
S
P

LE
U

A
R
G

M
E
T

LY
S

G
LU

A
LA

G
LN

T
Y
R

T
H
R

P
H
E

T
R
P

A
S
N

H
IS

IL
E

S
E
R

0
1

2
3

4
5

6
7

Complete Linkage Method

Amino acids

H
ei
gh
t

H
IS

IL
E

S
E
R

T
Y
R

T
H
R

P
H
E

T
R
P

V
A
L

C
Y
S

P
R
O

A
S
N

G
LY

G
LU

A
LA

G
LN

A
S
P

LE
U

A
R
G

M
E
T

LY
S

0
5

10
15

20
25

30

Ward1 Method

Amino acids

H
ei
gh
t

Figure S5: Dendogram of hierarchical clustering of amino acids under single, average, and complete
linkage, and Ward’s clustering based on the dissimilarity matrix from p-values of test of equality of
dihedral angle distributions between pairs of amino acids in the second dataset.
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