Supporting information for

Condensation of 2-Methylindole with Acetophenones: an Unexpected Formation of 2-Arylanilines

Wayland E. Noland*, Alexei V. Novikov, Christopher D. Brown

Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA

E-mail: nolan001@umn.edu*

Table of Contents

Experimental	S3
¹ H NMR spectrum for 9	S16
¹³ C NMR spectrum for 9	S17
¹³ C NMR spectrum for 9 in CDCl ₃	S18
¹ H NMR spectrum for 13a in CDCl ₃	S19
¹³ C NMR spectrum for 13a at 340K	S20
¹ H NMR spectrum for 13b	S21
¹³ C NMR spectrum for 13b	S22
¹ H NMR spectrum for 13c	S23
¹³ C NMR spectrum for 13c	S24
¹ H NMR spectrum for 13d	S25
¹³ C NMR spectrum for 13d at 330K	S26
¹ H NMR spectrum for 13e	S27
¹³ C NMR spectrum for 13e	S28
¹ H NMR spectrum for 13f in CDCl ₃	S29
¹³ C NMR spectrum for 13f in CDCl ₃	S30
¹ H NMR spectrum for 13f in DMSO	S31
¹³ C NMR spectrum for 13f in DMSO	S32
¹ H NMR spectrum for 13h	S33
¹³ C NMR spectrum for 13h at 330K	S34

¹ H NMR spectrum for 13i	S35
¹³ C NMR spectrum for 13i at 340K	S36
¹ H NMR spectrum for 13j	S37
¹³ C NMR spectrum for 13 j	S38
¹ H NMR spectrum for 13k	S39
¹³ C NMR spectrum for 13k at 320K	S40
¹ H NMR spectrum for 13 I	S41
¹³ C NMR spectrum for 13l at 330K	S42
¹ H NMR spectrum for 13m	S43
¹³ C NMR spectrum for 13m	S44
¹ H NMR spectrum for 14	S45
¹³ C NMR spectrum for 14	S46
¹ H NMR spectrum for 130 at rt	S47
¹ H NMR spectrum for 130 at 370K	
¹³ C NMR spectrum for 130 at rt	S49
¹ H NMR spectrum for 13r	S50
¹³ C NMR spectrum for 13r at 320K	S51
¹ H NMR spectrum for 13s at rt	S52
¹ H NMR spectrum for 13s at 375K	S53
¹³ C NMR spectrum for 13s at rt	S54
¹ H NMR spectrum for 13t at rt	S55
¹ H NMR spectrum for 13t at 350K	S56
¹³ C NMR spectrum for 13t at 345K	S57
COSY spectrum for 13m	S58
HSQC spectrum for 13m	S59
HMBC spectrum for 13m	S60
HMBC region expansions for 13m	S61
NOE spectra for 13m	S62
COSY spectrum for 14	S63
HSQC spectrum for 14	S64
HMBC spectrum for 14	S65
HMBC region expansions for 14	S66
NOE spectra for 14	S67

Experimental

General information

Melting points were measured with a Mel-Temp apparatus, and were not corrected or calibrated. R_f values were obtained using SiO₂ in 1:5 EtOAc:hexanes. Infrared spectra were collected on a Thermo Fisher ScientificTM Nicolet TM iSTM 5 spectrophotometer. ¹H NMR and ¹³C NMR spectra were recorded on an AV-500 Bruker Avance III 500, Bruker HD-500 Avance III HD, Bruker AM-400 Avance III HD, or AX-400 Bruker Avance III HD spectrometers at ambient or specified temperature and are referenced to the solvent. Mass spectra were recorded on a Bruker Biotof II instrument using poly(ethylene glycol) as an internal calibrant. 2'-iodo, 3'-iodo, and 4'-iodo,^[14] 2'-bromo, and 2'-chloroacetophenones^[15] were prepared from the corresponding aminoacetophenones according to the reported procedures, purified by flash chromatography, and dried before use. Other acetophenones, reagents, and solvents were used as purchased.

General procedure for condensation of 2-methylindole with acetophenones

Concentrated aqueous HCl (1.5 ml) was added to a solution of 2-methylindole (0.263 g, 2.00 mmol, 1 eq) and acetophenone (0.725 g, 6.00 mmol, 3 eq) in MeOH (10 ml) under nitrogen atmosphere. The reaction mixtures were heated at reflux for the specified number of days (3 days in the case of unsubstituted acetophenone). Additional portions of methanol were added to bring the reaction mixture to the initial volumes if significant evaporation was observed. Upon completion, the reaction mixture was cooled, quenched with saturated sodium bicarbonate solution (30 ml), and extracted with DCM (3x60 ml/mmol). The combined DCM extracts were dried over anhydrous Na₂SO₄, and concentrated.

In the cases of 2'-, 3'-, and 4'-methoxyacetophenones (products **13f**, **13m**, and **13t**), the crude reaction mixture could be subjected directly to chromatography on silica gel in EtOAc-hexanes (1:9, with gradient to 1:4) to isolate the products. In other cases the starting acetophenone had very similar chromatographic mobility to the product, making direct separation difficult. Thus, the following operation was performed to reduce the acetophenone to a more polar alcohol:

The crude reaction mixture was dissolved in MeOH (10 ml), NaBH₄ (0.228 g, 6.00 mmol, 3 eq), was added, and the mixture was stirred at rt for 1 hour. After evaporation, the reaction mixture was partitioned between saturated aqueous sodium bicarbonate (20 ml) and EtOAc (80 ml/mmol). The layers were separated, and the aqueous layer was washed with EtOAc (2x20 ml), and the combined ethyl acetate layers were dried and concentrated. The crude product was purified by chromatography on silica gel, eluting with DCM-hexanes (3:7) to remove most byproducts, followed by gradient to DCM-EtOAc-hexanes (30:6:64) to elute the aniline product. If additional purification was necessary, crystallization, or chromatography in EtOAc-hexanes (7:93) was performed.

Note: many aniline products exhibited peak broadening in ¹H and ¹³C NMR. The degree of this broadening depended on the structure, solvent, and concentration. Where specified, the spectra were obtained at elevated temperatures to reduce the broadening. In the cases of **130** and **13s**, separate signals were observed for rotamers at rt. Merging of the peaks was observed at higher temperatures, but sufficiently sharp peaks were not observed at the highest temperature permitted by the variable temperature setup used.

2-(2-methyl-4,6-diphenylphenyl)aniline (**9**), obtained by general procedure from 2-methylindole and acetophenone as yellow oil; 486 mg (72%); $R_f = 0.34$ (EtOAc:Hexanes 1:5); IR (neat, cm⁻¹): 3471, 3380, 3057, 3028, 1614, 1496, 1467, 1297, 1266, 1156, 881, 749; ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.74 (d, *J* = 7.5 Hz, 2H), 7.63 (d, *J* = 2.0 Hz, 1H), 7.52 – 7.44 (m, 3H), 7.38 (t, *J* = 7.5 Hz, 1H), 7.31 – 7.24 (m, 2H), 7.20 – 7.10 (m, 3H), 6.92 (td, *J* = 7.5, 1.6 Hz, 1H), 6.67 (dd, *J* = 7.5, 1.2 Hz, 1H), 6.58 (dd, *J* = 7.5, 1.6 Hz, 1H), 6.42 (td, *J* = 7.5, 1.2 Hz, 1H), 4.59 (br s, 2H), 2.14 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 145.5 (C), 142.5 (C), 141.6 (C), 139.9 (C), 139.1 (C), 138.0 (C), 136.4 (C), 130.1 (CH), 128.9 (CH), 127.7 (CH), 127.5 (CH), 127.41 (CH), 127.37 (CH), 126.7 (CH), 126.0 (CH), 124.3 (C), 116.2 (CH), 114.3 (CH), 20.0 (CH3); ¹³C NMR (101 MHz, CDCl₃) δ 144.0 (C), 143.0 (C), 141.7 (C), 140.9 (C), 140.6 (C), 138.5 (C), 136.0 (C), 131.1 (CH), 129.3 (CH), 128.9 (CH), 20.7 (CH3); HRMS (EI) [M+H]⁺ calcd for C₂₅H₂₂N: 336.1747, found 336.1740; Anal. calcd for C₂₅H₂₁N: C, 89.51; H, 6.31; N, 4.18. Found: C, 89.28; H, 6.46; N, 4.16. Note: fewer than expected signals in ¹³C NMR in DMSO-*d*₆ due to overlap of two phenyl CH signals (at 128.9). They are resolved in CDCl₃.

2-methyl-3-(1-phenylvinyl)indole (**10**), isolated from the reaction mixture in condensation of 2-methylindole and acetophenone performed by general procedure, with a modification: in ethanol at rt for 3 days. Obtained as a yellow oil, 93 mg (20%); ¹H NMR (400 MHz, CDCl₃): δ 7.93 (br s, 1H), 7.43-7.38 (m, 2H), 7.32 – 7.27 (m, 4H), 7.22 (d, *J* = 8.0, 1H), 7.13 (t, *J* = 8.0 Hz, 1H), 7.00 (t, *J* = 8.0 Hz, 1H), 5.74 (d, *J* = 1.7 Hz, 1H), 5.34 (d, *J* = 1.7 Hz, 1H), 2.29 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 142.6, 142.0, 135.3, 133.3, 128.6, 128.3, 127.6, 127.4, 121.3, 119.7, 115.0, 114.1, 110.3, 127.5, 12.9; The spectroscopic properties for the compound match those previously reported in the literature.^[4b,16]

2-methyl-3-(1-phenylethyl)indole (**11**), isolated from the reaction mixture in condensation of 2-methylindole and acetophenone when the reaction was performed at reflux in in ethanol for 1 day. Obtained as a yellow oil, 50 mg (10%); ¹H NMR (400 MHz, CDCl₃): δ 7.70 (br s, 1H), 7.42 (d, *J* = 7.7 Hz , 1H), 7.38 – 7.34 (m, 2H), 7.29 – 7.23 (m, 3H), 7.17 (t, *J* = 7.7 Hz , 1H), 7.09 (t, t, *J* = 7.7 Hz , 1H), 7.00 (t, t, *J* = 7.7 Hz , 1H), 4.44 (q, *J* = 7.3 Hz, 1H), 2.34 (s, 3H), 1.79 (d, *J* = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 146.3, 135.3, 130.7, 128.5, 128.2, 127.5, 125.7, 120.9, 119.4, 119.1, 116.1, 110.4, 35.6, 20.7, 12.4; The spectroscopic properties for the compound match those previously previously reported in the literature.^[17]

2-Methyl-2-(2-oxo-2-phenylethyl)indolin-3-one (**12**), isolated from the reaction mixture in condensation of 2methylindole and acetophenone when the reaction was performed in ethanol at rt for 11 days in air atmosphere. Obtained as a yellow oil, 20 mg (4%); ¹H NMR (400 MHz, CDCl₃): δ 7.95 (d, *J* = 7.3 Hz, 2H), 7.64 (d, *J* = 7.8 Hz, 1H), 7.59 (t, *J* = 7.3 Hz, 1H), 7.50 – 7.42 (m, 3H), 6.84 (d, *J* = 8.2 Hz, 1H), 6.80 (d, *J* = 7.3 Hz, 1H), 5.71 (br s, 1H), 3.64 (d, *J* = 17.6 Hz, 1H), 2.92 (d, *J* = 17.6 Hz, 1H), 1.45 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 204.2, 198.6, 159.9, 137.7, 137.0, 133.8, 128.9, 128.2, 125.2, 119.0, 118.7, 112.4, 64.7, 44.0, 22.0; The spectroscopic properties for the compound match those previously reported in the literature.^[18]

2-(2-methyl-4,6-di(4-chlorophenyl)phenyl)aniline (**13a**), obtained by general procedure from 2-methylindole (187 mg) and 4'-chloroacetophenone (661 mg) as white solid; 447 mg (77%); mp 150-151 °C; $R_f = 0.32$ (EtOAc:Hexanes 1:5); IR (neat, cm⁻¹): 3473, 3383, 3052, 3029, 2923, 1614, 1494, 1465,1297, 1265, 1091, 1014, 824, 749; ¹H NMR (400 MHz, CDCl₃): δ 7.59 (d, *J* = 8.5 Hz, 2H), 7.51 (d, *J* = 1.5 Hz, 1H), 7.47 – 7.38 (m, 3H), 7.15 (s, 4H), 7.06 (td, *J* = 7.6, 1.5 Hz, 1H), 6.79 (dd, *J* = 7.6, 1.5 Hz, 1H), 6.71 – 6.62 (m, 2H), 3.52 (br s, 2H), 2.24 (s, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆,

340K): δ 145.1 (C), 141.0 (C), 140.0 (C), 138.3 (C), 137.9 (C), 137.6 (C), 136.4 (C), 132.1 (C), 131.1 (C), 130.4 (CH), 129.7 (CH), 128.5 (CH), 128.1 (CH), 127.6 (CH), 127.3 (CH), 127.0 (CH), 125.4 (CH), 123.6 (C), 116.0 (CH), 114.2 (CH), 19.5 (CH3); HRMS (ESI) [M+H]⁺ calcd for C₂₅H₂₀Cl₂N: 404.0967, found 404.0962; Anal. calcd for C₂₅H₁₉Cl₂N: C, 74.26; H, 4.74; N, 3.46; Cl, 17.54. Found: C, 73.99; H, 4.99; N, 3.30; Cl, 17.37.

2-(2-methyl-4,6-di(4-bromophenyl)phenyl)aniline (**13b**), obtained by general procedure from 2-methylindole (191 mg) and 4'-broromacetophenone (870 mg) as yellowish solid; 395 mg (55%); mp 170-171 °C; $R_f = 0.32$ (EtOAc:Hexanes 1:5); IR (neat, cm⁻¹): 3471, 3381, 3048, 2921, 1613, 1491, 1465, 1297, 1264, 1074, 1010, 820, 749; ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.73 (d, *J* = 8.5 Hz, 2H), 7.69 – 7.62 (m, 3H), 7.48 (d, *J* = 2.0 Hz, 1H), 7.35 (d, *J* = 8.5 Hz, 2H), 7.20 (d, *J* = 8.5 Hz, 2H), 6.94 (td, *J* = 7.6, 1.6 Hz, 1H), 6.66 (d, *J* = 7.6 Hz, 1H), 6.57 (dd, *J* = 7.6, 1.6 Hz, 1H), 6.43 (td, *J* = 7.6, 1.0 Hz, 1H), 4.58 (br s, 2H), 2.13 (s, 3H);¹³C NMR (101 MHz, DMSO-*d*₆): δ 145.6 (C), 141.3 (C), 140.7 (C), 138.9 (C), 138.3 (C), 137.9 (C), 136.8 (C), 131.8 (CH), 131.1 (CH), 130.3 (CH), 130.0 (CH), 128.8 (CH), 127.9 (CH), 127.6 (CH), 125.7 (CH), 123.7 (C), 121.0 (C), 120.0 (C), 116.1 (CH), 114.3 (CH), 20.0 (CH3); HRMS (ESI) [M+H]⁺ calcd for C₂₅H₂₀Br₂N: 491.9957, found 491.9956; Anal. calcd for C₂₅H₁₉Br₂N: C, 60.88; H, 3.88; N, 2.84; Br, 32.40. Found: C, 60.58; H, 4.12; N, 2.77; Br, 32.11.

2-(2-methyl-4,6-di(4-iodophenyl)phenyl)aniline (**13c**), obtained by general procedure from 2-methylindole (80 mg) and 4'-iodoacetophenone (450 mg) as yellowish solid; 206 mg (58%); mp 179-182 °C; $R_f = 0.32$ (EtOAc:Hexanes 1:5); IR (neat, cm⁻¹): 3469, 3378, 3044, 3023, 2923, 1612, 1486, 1464, 1270, 1264, 1003, 817, 749; ¹H NMR (400 MHz, DMSO- d_6): δ 7.82 (d, J = 8.0 Hz, 2H), 7.63 (s, 1H), 7.57 (d, J = 8.0 Hz, 2H), 7.51 (d, J = 8.0 Hz, 2H), 7.45 (d, J = 2.0 Hz, 1H), 7.05 (d, J = 8.0 Hz, 2H), 6.93 (td, J = 7.5, 1.6 Hz, 1H), 6.65 (d, J = 7.5 Hz, 1H), 6.57 (dd, J = 7.5, 1.6 Hz, 1H), 6.43 (t, J = 7.5, 1H), 4.57 (br s, 2H), 2.13 (s, 3H); ¹³C NMR (101 MHz, DMSO- d_6): δ 145.6 (C), 141.5 (C), 141.1 (C), 139.2 (C), 138.3 (C), 138.0 (C), 137.6 (CH), 136.70 (C), 136.2 (CH), 131.2 (CH), 130.0 (CH), 128.9 (CH), 127.9 (CH), 127.4 (CH), 125.5 (C), 123.7 (CH), 116.1 (CH), 114.3 (CH), 93.9 (C), 92.9 (C), 20.0 (CH3); HRMS (ESI) [M+H]⁺ calcd for

C₂₅H₂₀I₂N: 587.9680, found 587.9706; Anal. calcd for C₂₅H₁₉I₂N: C, 51.13; H, 3.26; N, 2.39; I, 43.22. Found: C, 51.18; H, 3.30; N, 2.48; I, 43.22.

2-(2-methyl-4,6-di(4-fluorophenyl)phenyl)aniline (**13d**), obtained by general procedure from 2-methylindole (171 mg) and 4'-fluoroacetophenone (540 mg) as white solid; 385 mg (79%); mp 123-124 °C; $R_f = 0.31$ (EtOAc:Hexanes 1:5); IR (neat, cm⁻¹): 3474, 3383, 3045, 2924, 1607, 1511, 1468, 1297, 1264, 1223, 1158, 810, 750; ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.83 – 7.78 (m, 2H), 7.62 (d, *J* = 2.0 Hz, 1H), 7.46 (d, *J* = 2.0 Hz, 1H), 7.33-7.25 (m, 4H), 6.99 (t, *J* = 8.5 Hz, 2H), 6.93 (t, *J* = 7.5 Hz, 1H), 6.66 (d, *J* = 7.5 Hz, 1H), 6.58 (dd, *J* = 7.5, 1.6 Hz, 1H), 6.43 (t, *J* = 7.5 Hz, 1H), 4.62 (br s, 2H), 2.12 (s, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆, 330K): δ 161.7 (d, *J* = 245 Hz, C), 160.8 (d, *J* = 245 Hz, C), 145.2 (C), 141.2 (C), 137.9 (C), 137.6 (d, *J* = 3 Hz, C), 136.2 (C), 136.1 (d, *J* = 3 Hz, C), 130.5 (d, *J* = 8 Hz, CH), 129.8 (CH), 128.4 (d, *J* = 8 Hz, CH), 127.5 (CH), 127.2 (CH), 125.6 (CH), 123.9 (C), 116.0 (CH), 115.3 (d, *J* = 21 Hz, CH), 114.2 (CH), 113.9 (d, *J* = 21 Hz, CH), 19.6 (CH3); ¹⁹F NMR (376 MHz, CDCl₃): δ -115.6, -116.6; HRMS (ESI) [M+H]⁺ calcd for C₂₅H₂₀F₂N: 372.1558, found 372.1559; Anal. calcd for C₂₅H₁₉F₂N: C, 80.84; H, 5.16; N, 3.77; F, 10.23. Found: C, 80.55; H, 5.43; N, 3.84; F, 10.24. Note: the ¹³C NMR spectrum was obtained at 330K to reduce peak broadening.

2-(2-methyl-4,6-di(4-methylphenyl)phenyl)aniline (**13e**), obtained by general procedure from 2-methylindole (188 mg) and 4'-methylacetophenone (577 mg) as yellow oil; 367 mg (70%); $R_f = 0.35$ (EtOAc:Hexanes 1:5); IR (neat, cm⁻¹): 3471, 3379, 3023, 2919, 1613, 1515, 1497, 1468, 1451, 1296, 1265, 1003, 815, 748; ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.63 (d, *J* = 8.0 Hz, 2H), 7.57 (d, *J* = 2.0 Hz, 1H), 7.42 (d, *J* = 2.0 Hz, 1H), 7.28 (d, *J* = 8.0 Hz, 2H), 7.15 (d, *J* = 8.0 Hz, 2H), 6.97 (d, *J* = 8.0 Hz, 2H), 6.92 (td, *J* = 7.5, 1.6 Hz, 1H), 6.65 (dd, *J* = 7.5, 1.2 Hz, 1H), 6.58 (dd, *J* = 7.5, 1.6 Hz, 1H), 6.42 (td, *J* = 7.5, 1.2 Hz, 1H), 4.51 (s, 2H), 2.35 (s, 3H), 2.21 (s, 3H), 2.11 (s, 3H);¹³C NMR (101 MHz, DMSO-*d*₆): δ 145.6 (C), 142.3 (C), 139.0 (C), 138.7 (C), 137.9 (C), 137.1 (C), 136.7 (C), 136.0 (C), 135.3 (C), 130.1 (CH), 129.5 (CH), 128.8 (CH), 128.1 (CH), 127.7 (CH), 126.9 (CH), 126.5 (CH), 125.8 (CH), 124.5 (C), 116.2 (CH), 114.2 (CH),

20.7 (CH3), 20.6 (CH3), 20.1 (CH3); HRMS (ESI) [M+H]⁺ calcd for C₂₇H₂₆N: 364.2060, found 364.2070; Anal. calcd for C₂₇H₂₅N: C, 89.21; H, 6.93; N, 3.85. Found: C, 89.15; H, 7.05; N, 3.88.

2-(2-methyl-4,6-di(4-methoxyphenyl)phenyl)aniline (**13f**), obtained by general procedure from 2-methylindole (184 mg) and 4'-methoxyacetophenone (632 mg) as yellow oil; 296 mg (53%); $R_f = 0.15$ (EtOAc:Hexanes 1:5); IR (neat, cm⁻¹): 3468, 3376, 3033, 3000, 2956, 2933, 2836, 1610, 1508, 1459, 1290, 1242, 1179, 1033, 829, *737*; ¹H NMR (400 MHz, CDCl₃): δ 7.63 (d, *J* = 8.8 Hz, 2H), 7.48-7.52 (m, 2H), 7.18 (d, *J* = 8.8 Hz, 2H), 7.07 (td, *J* = 7.7, 1.6 Hz, 1H), 7.02 (d, *J* = 8.8 Hz, 2H), 6.87 (dd, *J* = 7.7, 1.6 Hz, 1H), 6.74 (d, *J* = 8.8 Hz, 2H), 6.72 – 6.54 (m, 2H), 3.88 (s, 3H), 3.76 (s, 3H), 3.35 (br s, 2H), 2.22 (s, 3H); ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.67 (d, *J* = 8.8 Hz, 2H), 7.53 (d, *J* = 2.0 Hz, 1H), 7.39 (d, *J* = 2.0 Hz, 1H), 7.17 (d, *J* = 8.8 Hz, 2H), 7.03 (d, *J* = 8.8 Hz, 2H), 6.92 (td, *J* = 7.5, 1.6 Hz, 1H), 6.72 (d, *J* = 8.8 Hz, 2H), 6.65 (dd, *J* = 7.5, 1.2 Hz, 1H), 6.58 (dd, *J* = 7.5, 1.6 Hz, 1H), 6.43 (td, *J* = 7.5, 1.2 Hz, 1H), 4.49 (s, 2H), 3.80 (s, 3H), 3.67 (s, 3H), 2.10 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 159.4 (C), 158.4 (C), 144.0 (C), 142.4 (C), 140.2 (C), 138.3 (C), 135.3 (C), 134.2 (C), 133.4 (C), 131.1 (CH), 130.3 (CH), 128.2 (CH), 128.1 (CH), 127.4 (CH), 126.5 (CH), 126.0 (C), 118.4 (CH), 115.1 (CH), 114.4 (CH), 113.2 (CH), 55.5 (CH3), 55.2 (CH3), 20.7 (CH3); ¹³C NMR (101 MHz, DMSO-*d*₆): δ 158.9 (C), 157.9 (C), 145.6 (C), 142.0 (C), 138.8 (C), 137.9 (C), 135.6 (C), 134.0 (C), 132.4 (C), 130.2 (CH), 130.1 (CH), 127.8 (CH), 127.7 (CH), 126.6 (CH), 125.6 (CH), 124.7 (C), 116.3 (CH), 114.4 (CH), 114.3 (CH), 113.0 (CH), 55.2 (CH3), 55.2

2-(2-methyl-4,6-di(3-chlorophenyl)phenyl)aniline (**13h**), obtained by general procedure from 2-methylindole (164 mg) and 3'-chloroacetophenone (580 mg) as yellow oil; 280 mg (55%); $R_f = 0.32$ (EtOAc:Hexanes 1:5); IR (neat, cm⁻¹): 3473, 3383, 3061, 3024, 2978, 2921, 1615, 1594, 1557, 1499, 1463, 1296, 1265, 1081, 1003, 872, 785, 739, ; ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.86 (d, *J* = 2.0 Hz, 1H), 7.75 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.70 (d, *J* = 2.0 Hz, 1H), 7.55 (d, *J* =

2.0 Hz, 1H), 7.50 (t, J = 8.0 Hz, 1H), 7.43 (dd, J = 8.0, 2.0 Hz, 1H), 7.35 (d, J = 2.0 Hz, 1H), 7.27 – 7.14 (m, 3H), 7.02 – 6.89 (m, 1H), 6.69 (d, J = 8.0 Hz, 1H), 6.60 (dd, J = 8.0, 1.5 Hz, 1H), 6.46 (t, J = 8.0 Hz, 1H), 4.75 (s, 2H), 2.14 (s, 3H);¹³C NMR (101 MHz, DMSO- d_6 , 330K): δ 144.8 (C), 143.2 (C), 141.7 (C), 140.9 (C), 138.0 (C), 137.5 (C), 136.7 (C), 133.5 (C), 132.0 (C), 130.4 (CH), 129.8 (CH), 128.8 (CH), 128.5 (CH), 127.72 (CH), 127.71 (CH), 127.4 (CH), 127.0 (CH), 126.2 (CH), 126.1 (CH), 125.7 (CH), 125.2 (CH), 123.7 (C), 116.3 (CH), 114.4 (CH), 19.6 (CH3); HRMS (ESI) [M+H]⁺ calcd for C₂₅H₂₀Cl₂N: 404.0967, found 404.0964; Anal. calcd for C₂₅H₁₉Cl₂N: C, 74.26; H, 4.74; N, 3.46; Cl, 17.54. Found: C, 74.34; H, 4.89; N, 3.36; Cl, 17.35.

1,3,5-tri(3-chlorophenyl)benzene, isolated from the reaction mixture in condensation of 2-methylindole (164 mg) and 3'-chloroacetophenone (580 mg) according to the general procedure. Obtained as a white solid, 55 mg (11%). ¹H NMR (400 MHz, CDCl₃): δ 7.73 (s, 3H), 7.67 (t, *J* = 1.7 Hz, 3H), 7.56 (dt, *J* = 7.5, 1.7 Hz, 3H), 7.42 (t, *J* = 7.5 Hz, 3H), 7.38 (dt, *J* = 7.5, 1.7 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 142.6, 141.5, 135.0, 130.3, 128.0, 127.6, 125.6; The spectroscopic properties for the compound match those previously reported in the literature.^[20b]

2-(2-methyl-4,6-di(3-bromophenyl)phenyl)aniline (**13i**), obtained by general procedure from 2-methylindole (175 mg) and 3'-bromoacetophenone (797 mg) as yellow oil; 395 mg (60%); $R_f = 0.32$ (EtOAc:Hexanes 1:5); IR (neat, cm⁻¹): 3472, 3381, 3059, 3024, 1614, 1591, 1557, 1462, 1296, 1264, 1071, 1003, 872, 749; ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.98 (d, *J* = 2.0 Hz, 1H), 7.79 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.69 (d, *J* = 2.0 Hz, 1H), 7.57 (dd, *J* = 8.0, 2.0 Hz, 1H), 7.53 (d, *J* = 2.0 Hz, 1H), 7.49 (d, *J* = 2.0 Hz, 1H), 7.43 (t, *J* = 8.0 Hz, 1H), 7.33 (dd, *J* = 8.0, 2.0 Hz, 1H), 7.26 (d, *J* = 8.0 Hz, 1H), 7.12 (t, *J* = 8.0 Hz, 1H), 6.96 (td, *J* = 7.5, 1.6 Hz, 1H), 6.69 (d, *J* = 8.0 Hz, 1H), 6.60 (dd, *J* = 7.5, 1.6 Hz, 1H), 6.46 (t, *J* = 7.5 Hz, 1H), 4.75 (s, 2H), 2.14 (s, 3H);¹³C NMR (101 MHz, DMSO-*d*₆, 340K): δ 144.7 (C), 143.4 (C), 141.9 (C), 140.8 (C), 138.0 (C), 137.4 (C), 136.7 (C), 131.3 (CH), 130.5 (CH), 129.9 (CH), 129.7 (CH), 129.04 (CH), 129.01 (CH), 128.9 (CH), 127.73 (CH), 127.65 (CH), 125.6 (CH), 125.5 (CH), 123.7 (C), 122.0 (C), 120.5 (C), 116.3 (CH), 114.4

(CH), 19.5 (CH3); HRMS (ESI) $[M+H]^+$ calcd for C₂₅H₂₀Br₂N: 491.9957, found 491.9980; Anal. calcd for C₂₅H₁₉Br₂N: C, 60.88; H, 3.88; N, 2.84; Br, 32.40. Found: C, 61.04; H, 4.01; N, 2.93; Br, 32.66. Note: the ¹³C NMR spectrum was obtained at 330K to reduce peak broadening. One less signal is observed in ¹³C NMR than expected due to overlap of two aromatic CH signals (at 127.65). The signals are resolved at rt.

1,3,5-tri(3-bromophenyl)benzene, isolated from the reaction mixture in condensation of 2-methylindole (175 mg) and 3'-bromoacetophenone (797 mg) according to the general procedure. Obtained as a white solid, 123 mg (16%). ¹H NMR (400 MHz, CDCl₃): δ 7.82 (t, *J* = 1.7 Hz, 3H), 7.71 (s, 3H), 7.60 (d, *J* = 7.7 Hz, 3H), 7.54 (d, *J* = 7.7 Hz, 3H), 7.36 (t, *J* = 7.7 Hz, 3H);¹³C NMR (101 MHz, CDCl₃) δ 142.9, 141.4, 131.0, 130.6, 130.5, 126.1, 125.7, 123.2. The spectroscopic properties for the compound match those previously reported in the literature.^[20a]

2-(2-methyl-4,6-di(3-iodophenyl)phenyl)aniline (**13j**), obtained by general procedure from 2-methylindole (150 mg) and 3'-iodoacetophenone (844 mg) as yellow oil; 321 mg (48%) ; $R_f = 0.32$ (EtOAc:Hexanes 1:5); IR (neat, cm⁻¹): 3470, 3379, 3054, 3027, 2973, 2919, 1613, 1586, 1553, 1499, 1460, 1297, 1264, 1061, 1003, 874, 749; ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.12 (t, *J* = 1.8 Hz, 1H), 7.79 (dt, *J* = 8.0, 1.3 Hz, 1H), 7.74 (dt, *J* = 8.0, 1.3 Hz, 1H), 7.67 – 7.64 (m, 2H), 7.53 – 7.45 (m, 2H), 7.32 – 7.23 (m, 2H), 6.97 (t, *J* = 8.0 Hz, 1H), 6.94 (td, *J* = 7.5, 1.6 Hz, 1H), 6.67 (dd, *J* = 7.5, 1.2 Hz, 1H), 6.57 (dd, *J* = 7.5, 1.6 Hz, 1H), 6.43 (td, *J* = 7.5, 1.2 Hz, 1H), 4.57 (s, 2H), 2.13 (s, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆): δ 145.6 (C), 143.6 (C), 142.1 (C), 141.0 (C), 138.3 (C), 137.6 (C), 137.5 (CH), 137.0 (C), 136.1 (CH), 135.14 (CH), 135.09 (CH), 131.0 (CH), 129.9 (CH), 129.5 (CH), 128.4 (CH), 127.9 (CH), 127.9 (CH), 126.3 (CH), 125.9 (CH), 123.6 (C), 116.2 (CH), 114.3 (CH), 95.6 (C), 94.0 (C), 19.9 (CH3); HRMS (ESI) [M+H]⁺ calcd for C₂₅H₂₀I₂N: 587.9680, found 587.9685; Anal. calcd for C₂₅H₁₉I₂N: C, 51.13; H, 3.26; N, 2.39; I, 43.22. Found: C, 51.31; H, 3.16; N, 2.37; I, 42.96.

2-(2-methyl-4,6-di(3-fluorophenyl)phenyl)aniline (**13k**), obtained by general procedure from 2-methylindole (197 mg) and 3'-fluoroacetophenone (622 mg) as a white solid; 412 mg (74%); mp 109-110 °C; $R_f = 0.31$ (EtOAc:Hexanes 1:5); IR (neat, cm⁻¹): 3474, 3384, 3062, 2922, 1612, 1490, 1467, 1297, 1266, 1197, 1171, 1158, 866, 748; ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.70 (d, *J* = 2.0 Hz, 1H), 7.67 – 7.60 (m, 2H), 7.56 (d, *J* = 2.0 Hz, 1H), 7.51 (td, *J* = 8.0, 6.0 Hz, 1H), 7.21 (td, *J* = 8.0, 6.0 Hz, 2H), 7.15 – 7.07 (m, 2H), 7.01 – 6.90 (m, 2H), 6.69 (dd, *J* = 7.5, 1.2 Hz, 1H), 6.58 (dd, *J* = 7.5, 1.6 Hz, 1H), 6.43 (td, *J* = 7.5, 1.2 Hz, 1H), 4.61 (s, 2H), 2.15 (s, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆, 320K): δ 162.6 (d, *J* = 244 Hz, C), 161.3 (d, *J* = 244 Hz, C), 145.4 (C), 143.7 (d, *J* = 8 Hz, C), 142.1 (d, *J* = 8 Hz, C), 141.1 (d, *J* = 2 Hz, C), 138.1 (C), 137.7 (d, *J* = 3 Hz, C), 130.5 (d, *J* = 9 Hz, CH), 129.8 (CH), 129.0 (d, *J* = 8 Hz, CH), 127.8 (CH), 127.7 (CH), 125.8 (CH), 125.0 (d, *J* = 3 Hz, CH), 123.7 (C), 122.6 (d, *J* = 3 Hz, CH), 116.1 (CH), 115.6 (d, *J* = 21 Hz, CH), 114.2 (CH), 113.9 (d, *J* = 21 Hz, CH), 113.3 (d, *J* = 22 Hz, CH), 113.0 (d, *J* = 22 Hz, CH), 19.7 (CH3); ¹⁹F NMR (376 MHz, CDCl₃): δ -113.5, -114.7; HRMS (ESI) [M+H]⁺ calcd for C₂₅H₂₀F₂N: 372.1558, found 372.1576; Anal. calcd for C₂₅H₁₉F₂N: C, 80.84; H, 5.16; N, 3.77; F, 10.23. Found: C, 80.65; H, 5.48; N, 3.67; F, 10.02.

2-(2-methyl-4,6-di(3-methylphenyl)phenyl)aniline (**131**), obtained by general procedure from 2-methylindole (158 mg) and 3'-methylacetophenone (490 mg) as yellow oil; 326 mg (74%); $R_f = 0.35$ (EtOAc:Hexanes 1:5); IR (neat, cm⁻¹): 3471, 3380, 3026, 2922, 1612, 1500, 1452, 1295, 1265, 1003, 876, 786, 748;¹H NMR (400 MHz, DMSO-*d*₆): δ 7.60 (d, J = 2.0 Hz, 2H), 7.53 (d, J = 8.0 Hz, 1H), 7.46 (d, J = 2.0 Hz, 1H), 7.36 (t, J = 7.5 Hz, 1H), 7.19 (d, J = 7.5 Hz, 1H), 7.12 (s, 1H), 7.03 (s, 1H), 7.02 (s, 1H), 6.99 – 6.89 (m, 2H), 6.68 (d, J = 8.0 Hz, 1H), 6.60 (dd, J = 7.5, 1.6 Hz, 1H), 6.45 (t, J = 7.5 Hz, 1H), 4.73 (s, 2H), 2.39 (s, 3H), 2.19 (s, 3H), 2.13 (s, 3H);¹³C NMR (101 MHz, DMSO-*d*₆, 330K): δ 145.2 (C), 142.2 (C), 141.3 (C), 139.7 (C), 139.0 (C), 137.7 (C), 137.6 (C), 136.1 (C), 136.0 (C), 129.8 (CH), 129.4 (CH), 128.5 (CH), 127.7 (CH), 127.1 (CH), 127.0 (CH), 126.9 (CH), 126.7 (CH), 125.7 (CH), 124.3 (C), 123.5 (CH), 116.0 (CH), 114.0 (CH), 20.8 (CH3), 20.7 (CH3), 19.7 (CH3); HRMS (ESI) [M+H]⁺ calcd for C₂₇H₂₆N: 364.2060, found 364.2070; Anal. calcd for C₂₇H₂₅N: C, 89.21; H, 6.93; N, 3.85. Found: C, 88.92; H, 7.09; N, 3.87.

2-(2-methyl-4,6-di(3-methoxyphenyl)phenyl)aniline (**13m**), obtained by general procedure from 2-methylindole (174 mg) and 3'-methoxyacetophenone (598 mg) as yellow oil; 218 mg (42%); $R_f = 0.16$ (EtOAc:Hexanes 1:5); IR (neat, cm⁻¹): 3467, 3376, 3052, 3000, 2936, 1597, 1491, 1466, 1287, 1229, 1172, 1048, 866, 783, 750; ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.62 (d, *J* = 2.0 Hz, 1H), 7.49 (d, *J* = 2.0 Hz, 1H), 7.39 (t, *J* = 7.9 Hz, 1H), 7.31 (d, *J* = 7.9 Hz, 1H), 7.27 (t, *J* = 2 Hz, 1H), 7.10 (t, *J* = 7.9 Hz, 1H), 6.98 – 6.90 (m, 2H), 6.89 (d, *J* = 7.9 Hz, 1H), 6.85 (dd, *J* = 2.6, 1.5 Hz, 1H), 6.72 – 6.65 (m, 2H), 6.58 (dd, *J* = 7.5, 1.6 Hz, 1H), 6.43 (td, *J* = 7.5, 1.2 Hz, 1H), 4.57 (br s, 2H), 3.83 (s, 3H), 3.59 (s, 3H), 2.14 (s, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆): δ 159.8 (C), 158.3 (C), 145.7 (C), 142.9 (C), 142.2 (C), 141.5 (C), 139.1 (C), 138.0 (C), 136.5 (C), 129.9 (CH), 128.5 (CH), 127.7 (CH), 127.5 (CH), 125.9 (CH), 124.5 (C), 121.2 (CH), 119.1 (CH), 116.2 (CH), 114.21 (CH), 114.22 (CH), 113.1 (CH), 112.6 (CH), 112.1 (CH), 55.1 (CH3), 54.6 (CH3), 20.0 (CH3); ¹³C NMR (101 MHz, CDC1₃): δ 160.1 (C), 158.9 (C), 144.0 (C), 143.0 (C), 142.7 (C), 142.4 (C), 140.5 (C), 138.5 (C), 136.1 (C), 131.0 (CH), 129.9 (CH), 128.7 (CH), 128.3 (CH), 128.3 (CH), 126.9 (CH), 125.8 (C), 121.7 (CH), 119.8 (CH), 118.4 (CH), 115.0 (CH), 114.5 (CH), 113.14 (CH), 113.10 (CH), 112.9 (CH), 55.5 (CH3), 55.2 (CH3), 20.7 (CH3); HRMS (ESI) [M+H]⁺ calcd for C₂₇H₂₆NO₂: 396.1958, found 396.1965; Anal. calcd for C₂₇H₂₅NO₂: C, 82.00; H, 6.37; N, 3.54. Found: C, 81.77; H, 6.65; N, 3.54. Note: fewer than expected signals in ¹³C NMR in DMSO-*d*₆ due to overlap of two aryl CH signals (at 129.9). They are resolved in CDCl₃.

3-(5-methoxy-1-(3-methoxyphenyl)-1-methyl-1H-inden-3-yl)-2-methyl-1H-indole (14), isolated from the reaction mixture of condensation of 2-methylindole (174 mg) and 3'-methoxyacetophenone (598 mg), as yellow oil; 224 mg (43%); $R_f = 0.11$ (EtOAc:Hexanes 1:5); IR (neat, cm⁻¹): 3403, 3053, 2962, 2936, 1604, 1582, 1460, 1431, 1290, 1266, 1242, 1041, 742;¹H NMR (500 MHz, CDCl₃): δ 8.04 (br s, 1H), 7.58 (d, *J* = 7.5 Hz, 1H), 7.34 (d, *J* = 8.0 Hz, 1H), 7.23 (t, *J* = 8.0 Hz, 1H), 7.20 – 7.16 (m, 2H), 7.11 (t, *J* = 7.5 Hz, 1H), 7.05 – 6.98 (m, 2H), 6.88 (d, *J* = 2.5 Hz, 1H), 6.78 (t, *J* = 2.8 Hz, 1H), 6.76 (t, *J* = 2.8 Hz, 1H), 6.55 (s, 1H), 3.81 (s, 3H), 3.76 (s, 3H), 2.51 (s, 3H), 1.89 (s, 3H);¹³C NMR (126 MHz, CDCl₃): δ 159.7 (C), 159.1 (C), 146.2 (C), 145.9 (CH), 145.6 (C), 145.3 (C), 135.5 (C), 135.2 (C), 132.8 (C), 129.4 (CH), 128.4 (C), 123.3 (CH), 121.6 (CH), 119.81 (CH), 119.79 (CH), 118.8 (CH), 112.6 (CH), 111.5 (CH), 111.2 (CH), 110.4 (CH), 108.1 (C), 107.5 (CH), 55.6 (CH3), 55.5 (C), 55.2 (CH3), 23.6 (CH3), 13.0 (CH3); HRMS (ESI)

[M+Na]⁺ calcd for C₂₇H₂₅NO₂Na: 418.1778, found 418.1769; Anal. calcd for C₂₇H₂₅NO₂: C, 82.00; H, 6.37; N, 3.54. Found: C, 81.70; H, 6.59; N, 3.54.

2-(2-methyl-4,6-di(2-chlorophenyl)phenyl)aniline (130), obtained by general procedure from 2-methylindole (180 mg) and 2'-chloroacetophenone (636 mg) as yellow oil; 55 mg (10%); $R_f = 0.31$ (EtOAc:Hexanes 1:5); IR (neat, cm⁻¹): 3471, 3382, 3056, 2922, 1614, 1499, 1458, 1297, 1265, 1044, 1003, 888, 751;¹H NMR (400 MHz, DMSO-*d*₆, 370K): δ 7.55 (dd, J = 7.5, 1.6 Hz, 1H), 7.50 (dd, J = 7.5, 1.6 Hz, 1H), 7.46 - 7.37 (m, 3H), 7.34 (dd, J = 7.5, 1.2 Hz, 1H), 7.25 (dd, J7.5, 1.6 Hz, 1H), 7.22 (d, J = 2.0 Hz, 1H), 7.16 (td, J = 7.5, 1.6 Hz, 1H), 7.08 (t, J = 7.5 Hz, 1H), 6.89 (td, J = 7.6, 1.6 Hz, 1H), 6.77 (br s, 1H), 6.63 (d, J = 8.0 Hz, 1H), 6.45 (t, J = 7.5 Hz, 1H), 4.25 (s, 2H), 2.17 (s, 3H); ¹H NMR (400 MHz, DMSO- d_6): δ 7.58 (dd, J = 7.5, 1.6 Hz, 1H), 7.55 – 7.33 (m, 5H), 7.30 – 7.11 (m, 3.3H), 7.06 (td, J = 7.5, 1.2 Hz, 0.7H), 6.90 (d, J = 7.5 Hz, 0.6H), 6.86 (td, J = 7.5, 1.6 Hz, 0.7H), 6.68 – 6.58 (m, 1.4H), 6.55 (d, J = 7.5 Hz, 0.3H), 6.49 $(t, J=7.5 \text{ Hz}, 0.3\text{H}), 6.35 (td, J=7.5, 1.2 \text{ Hz}, 0.7\text{H}), 4.62 (s, 1.4\text{H}), 4.26 (s, 0.6\text{H}), 2.14 (s, 2.1\text{H}), 2.13 (s, 0.9\text{H});^{13}\text{C}$ NMR (126 MHz, DMSO-*d*₆): δ 145.4 (C), 144.9 (C), 140.1 (C), 139.24 (C), 139.20 (C), 139.1 (C), 138.7 (C), 137.6 (C), 137.4 (C), 137.3 (C), 137.2 (C), 137.04 (C), 136.97 (C), 132.7 (CH), 132.08 (C), 132.06 (C), 131.6 (CH), 131.3 (C), 131.0 (CH), 130.7 (CH), 130.5 (CH), 130.2 (CH), 130.02 (CH), 129.99 (CH), 129.3 (CH), 129.2 (CH), 129.01 (CH), 128.96 (CH), 128.78 (CH), 128.75 (CH), 128.66 (CH), 128.57 (CH), 127.90 (CH), 127.86 (CH), 127.6 (CH), 126.2 (CH), 125.9 (CH), 124.0 (C), 122.9 (C), 116.1 (CH), 115.9 (CH), 114.6 (CH), 114.2 (CH), 20.2 (CH3), 19.7 (CH3); HRMS (ESI) [M+H]⁺ calcd for C₂₅H₂₀Cl₂N: 404.0967, found 404.0983; Anal. calcd for C₂₅H₁₉Cl₂N: C, 74.26; H, 4.74; N, 3.46; Cl, 17.54. Found: C, 74.39; H, 4.82; N, 3.60; Cl, 17.36. Notes: At rt, the number of signals in ¹³C NMR was expected to double due to rotamers. 5 fewer signals than expected were observed in ¹³C NMR due to overlap. Integration of the signals in the inverse-gated ¹³C NMR spectrum indicated that the signal at 139.20 accounted for 3 signals, and the signals at 131.6, 131.3, 127.6 account for 2 signals each.

2-(2-methyl-4,6-di(2-fluorophenyl)phenyl)aniline (**13r**), obtained by general procedure from 2-methylindole (158 mg) and 2'-fluoroacetophenone (500 mg) as yellow oil; 270 mg (60%); $R_f = 0.31$ (EtOAc:Hexanes 1:5); IR (neat, cm⁻¹): 3473, 3383, 3060, 2971, 2921, 1614, 1580, 1494, 1452, 1297, 1265, 1217, 1156, 831, 750;¹H NMR (400 MHz, DMSO*d*₆): δ 7.62 (td, *J* = 8.0, 1.6 Hz, 1H), 7.57 (s, 1H), 7.48 – 7.38 (m, 1H), 7.36 (s, 1H), 7.35-7.28 (m, 2H), 7.28 – 7.14 (m, 2H), 7.05 (dd, *J* = 10.0, 8.0 Hz, 1H), 6.97 (td, *J* = 7.5, 1.2 Hz, 1H), 6.89 (td, *J* = 7.5, 1.6 Hz, 1H), 6.64 (dd, *J* = 10.0, 8.0 Hz, 2H), 6.42 (t, *J* = 7.5 Hz, 1H), 4.60 (s, 2H), 2.15 (s, 3H);¹³C NMR (101 MHz, DMSO-*d*₆, 320K): δ 159.1 (d, *J* = 247 Hz, C), 158.8 (d, *J* = 244 Hz, C), 144.8 (C), 137.64 (C), 137.62 (C), 136.0 (C), 133.7 (C), 131.3 (d, *J* = 3 Hz, CH), 130.6 (d, *J* = 3 Hz, CH), 129.5 (CH), 129.4 (d, *J* = 8 Hz, CH), 128.8 (d, *J* = 8 Hz, CH), 128.5 (d, *J* = 16 Hz, C), 128.2 (br s, CH), 127.7 (CH), 127.5 (d, *J* = 13 Hz, C), 124.7 (d, *J* = 3 Hz, CH), 123.2 (d, *J* = 3 Hz, CH), 114.7 (d, *J* = 22 Hz, CH), 114.4 (CH), 19.7 (CH3);¹⁹F NMR (376 MHz, CDCl₃): δ -115.6, -118.3; HRMS (ESI) [M+H]⁺ calcd for C₂₅H₂₀F₂N: 372.1558, found 372.1566; Anal. calcd for C₂₅H₁₉F₂N: C, 80.84; H, 5.16; N, 3.77; F, 10.23. Found: C, 80.87; H, 5.27; N, 3.74; F, 10.12.

2-(2-methyl-4,6-di(2-methylphenyl)phenyl)aniline (**13s**), obtained by general procedure from 2-methylindole (155 mg) and 2'-methylacetophenone (470 mg) as yellow oil; 114 mg (27%); $R_f = 0.35$ (EtOAc:Hexanes 1:5); IR (neat, cm⁻¹): 3473, 3381, 3057, 3019, 2953, 2923, 1613, 1500, 1490, 1453, 1296, 1266, 1046, 1003, 888, 755; ¹H NMR (400 MHz, DMSO-*d*₆, 375K): δ 7.34 – 7.22 (m, 5H), 7.11 (d, *J* = 7.5 Hz, 1H), 7.08 (d, *J* = 7.5 Hz, 1H), 7.05 – 6.98 (m, 2H), 6.93 (t, *J* = 7.5 Hz, 1H), 6.88 (td, *J* = 7.5, 1.6 Hz, 1H), 6.70 (br s, 1H), 6.63 (d, *J* = 7.5 Hz, 1H), 6.42 (t, *J* = 7.5 Hz, 1H), 4.19 (s, 2H), 2.35 (s, 3H), 2.174 (s, 3H), 2.166 (s, 3H); ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.35 – 7.20 (m, 5H), 7.14 – 6.93 (m, 4.3H), 6.91 – 6.80 (m, 2H), 6.64 (dd, *J* = 8.0 Hz, 0.7H), 6.57 (d, *J* = 8.0 Hz, 0.3H), 6.54 (dd, *J* = 7.5, 1.6 Hz, 0.7H), 6.42 (t, *J* = 7.5 Hz, 0.3H), 6.33 (t, *J* = 7.5 Hz, 0.7H), 4.56 (s, 1.4H), 4.34 (s, 0.6H), 2.33 (s, 3H), 2.18 (s, 2.1H), 2.14 (s, 0.9H), 2.13 (s, 2.1H), 2.12 (s, 0.9H); ¹³C NMR (126 MHz, DMSO-*d*₆): δ 145.4 (C), 144.8 (C), 141.3 (C), 141.2 (C), 141.0 (C), 140.9 (C), 140.8 (C), 139.7 (C), 139.6 (C), 137.3 (C), 137.2 (C), 136.2 (C), 136.1 (C), 135.3 (C), 134.8 (C), 134.6 (C), 131.2 (CH), 130.9 (CH), 129.6 (CH), 129.5 (CH), 129.4 (CH), 129.3 (CH), 128.7 (CH), 128.6 (CH), 128.5 (CH), 128.3 (CH), 127.6 (CH), 127.5 (CH), 127.2 (CH), 126.6 (CH), 126.4 (CH), 125.9 (CH), 124.70 (CH), 124.65 (C),

124.3 (CH), 123.4 (C), 116.0 (CH), 115.6 (CH), 114.3 (CH), 114.12 (CH), 20.31 (CH3), 20.29 (CH3), 20.1 (CH3), 20.0 (CH3), 19.9 (CH3); HRMS (ESI) $[M+H]^+$ calcd for $C_{27}H_{26}N$: 364.2060, found 364.2075; Anal. calcd for $C_{27}H_{25}N$: C, 89.21; H, 6.93; N, 3.85. Found: C, 89.04; H, 6.92; N, 3.82. Notes: At rt, the number of signals in ¹³C NMR was expected to double due to rotamers. 8 fewer signals than expected were observed in ¹³C NMR at rt due to overlap. Integration of the signals in inverse-gated ¹³C NMR spectrum indicated that signals at 141.2, 134.8, 130.4, 129.5, 129.4, 127.2, 125.9, and 20.29 account for 2 signals each.

2-(2-methyl-4,6-di(2-methoxyphenyl)phenyl)aniline (**13t**), obtained by general procedure from 2-methylindole (164 mg) and 2'-methoxyacetophenone (563 mg) as yellow oil; 298 mg (60%); $R_f = 0.11$ (EtOAc:Hexanes 1:5); IR (neat, cm⁻¹): 3463, 3375, 3056, 3024, 3000, 2924, 1613, 1494, 1463, 1244, 1026, 751;¹H NMR (400 MHz, DMSO-*d*₆, 350K): δ 7.42 (d, *J* = 2.0 Hz, 1H), 7.38 (dd, *J* = 7.5, 1.7 Hz, 1H), 7.33 (ddd, *J* = 8.0, 7.5, 1.7 Hz, 1H), 7.24 (d, *J* = 2.0 Hz, 1H), 7.15 – 7.00 (m, 4H), 6.90 – 6.80 (m, 2H), 6.74 (td, *J* = 7.5, 1.2 Hz, 1H), 6.68 (dd, *J* = 7.5, 1.6 Hz, 1H), 6.60 (dd, *J* = 8.0, 1.2 Hz, 1H), 6.40 (td, *J* = 7.5, 1.2 Hz, 1H), 4.20 (br s, 2H), 3.81 (s, 3H), 3.62 (s, 3H), 2.12 (s, 3H); ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.41 (s, 1H), 7.37 (d, *J* = 7.5 Hz, 1H), 7.33 (d, *J* = 7.5 Hz, 1H), 7.21 (s, 1H), 7.15 – 7.00 (m, 4H), 6.85 (t, *J* = 7.5 Hz, 1H), 6.67 – 6.57 (m, 2H), 6.39 (t, *J* = 7.5 Hz, 1H), 4.56 (br s, 2H), 3.79 (s, 3H), 3.59 (br s, 3H), 2.09 (s, 3H);¹³C NMR (101 MHz, DMSO-*d*₆, 345K): δ 156.1 (C), 155.9 (C), 144.8 (C), 138.2 (C), 136.3 (C), 136.2 (C), 135.9 (C), 130.42 (C), 130.37 (CH), 130.0 (CH), 129.5 (CH), 129.4 (C), 129.2 (CH), 128.7 (CH), 128.3 (CH), 127.6 (CH), 126.9 (CH), 124.6 (C), 120.5 (CH), 119.2 (CH), 115.6 (CH), 114.0 (CH), 111.8 (CH), 110.5 (CH), 55.3 (CH3), 54.7 (CH3), 19.5 (CH3); HRMS (ESI) [M+H]⁺ calcd for C₂₇H₂₆NO₂: 396.1958, found 396.1950; Anal. calcd for C₂₇H₂₅NO₂: C, 82.00; H, 6.37; N, 3.54. Found: C, 81.74; H, 6.57; N, 3.60. Notes: The spectra were obtained at 350K and 345K to decrease peak broadening.

S27

90 80 fl (ppm)

S36

90 80 f1 (ppm) S46

COSY spectrum for **13m**

HSQC spectrum for **13m**

NOE spectra for **13m** ,OCH₃ d 1 ∣a NH2 .OCH₃ q k pl c,n j h,b a m m i r r q e d g 13m 5.5 5.0 f1 (ppm) 3.5 3.0 2.5 7.5 .0 7.0 6.5 6.0 4.5 4.0 2. 1D Selective Gradient NOESY freq: 3.841ppm 7.5 5.0 f1 (ppm) 7.0 3.5 3.0 2. .0 6.5 6.0 5.5 4.5 4.0 2.5 1D Selective Gradient NOESY freq: 3.578ppm M 7.5 7.0 6.5 6.0 5.5 3.5 3.0 2.5 5.0 f1 (ppm) .0 4.5 4.0 2. 1D Selective Gradient NOESY freq: 7.631ppm 5.5 5.0 f1 (ppm) 4.5 4.0 3.5 3.0 2.5 .0 7.5 7.0 6.5 6.0 2. 1D Selective Gradient NOESY freq: 7.497ppm 7.5 7.0 5.0 f1 (ppm) .0 6.5 6.0 5.5 4.5 4.0 3.5 3.0 2.5 2. 1D Selective Gradient NOESY freq: 2.136ppm MMM MM .0 7.5 7.0 6.5 5.0 f1 (ppm) 3.5 3.0 2.5 2. 6.0 5.5 4.5 4.0

COSY spectrum for **14**

HMBC spectrum for 14

HMBC region expansions for 14

