Supplementary Material for Bias-adjusted Kaplan-Meier Survival Curves for Marginal Treatment Effect in Observational Studies

Xiaofei Wang ${ }^{1 *}$, Fangfang Bai ${ }^{2}$, Herbert Pang ${ }^{3}$, and Stephen L George ${ }^{1}$
${ }^{1}$ Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, U.S.A. ${ }^{2}$ School of Statistics, University of International Business and Economics, Beijing, 100029, China
${ }^{3}$ Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China

* email: xiaofei.wang@duke.edu

This paper has been submitted for consideration for publication in $J B S$

Theoretical Results

Here, we give the detailed and complete proof of the main results in Section 3 in the paper.

Let

$$
\begin{aligned}
N_{1 i}(t)=I\left(Y_{1 i} \leqslant t, \delta_{1 i}=1\right) & N_{1 i}^{E L}(t)=p_{i} D_{i} I\left(Y_{1 i} \leqslant t, \delta_{1 i}=1\right) \\
Y_{1 i}(t)=I\left(Y_{1 i} \geqslant t\right) & Y_{1 i}^{E L}(t)=p_{i} D_{i} I\left(Y_{1 i} \geqslant t\right) \\
M_{1 i}(t)=N_{1 i}(t)-\int_{0}^{t} Y_{1 i}(s) d \Lambda_{1}(s) & M_{1 i}^{E L}(t)=N_{1 i}^{E L}(t)-\int_{0}^{t} Y_{1 i}^{E L}(s) d \Lambda_{1}(s) \\
\bar{N}_{1}(t)=\sum_{i=1}^{n_{1}} I\left(Y_{1 i} \leqslant t, \delta_{1 i}=1\right) & \bar{Y}_{1}(t)=\sum_{i=1}^{n_{1}} I\left(Y_{1 i} \geqslant t\right), \bar{Y}_{1}^{E L}(t)=\sum_{i=1}^{n} Y_{1 i}^{E L}(t) \\
\bar{M}_{1}(t)=\sum_{i=1}^{n_{1}} M_{1 i}(t), \pi_{1}(t)=P\left(Y_{1} \geqslant t\right) & \bar{M}_{1}^{E L}(t)=\sum_{i=1}^{n} M_{1 i}^{E L}(t)=\sum_{i=1}^{n} p_{i} D_{i} M_{1 i}(t) .
\end{aligned}
$$

Similarly, if the subscript 1 is replaced with subscript 0 in all the aforementioned equations, it will denote the corresponding quantities of $S_{0}(t)$. For simplicity, we omit it here.
Let $\xi=\left(\xi_{1}, \xi_{2}\right)^{T}, \xi_{1}=\frac{n_{1}-\gamma^{T} a}{n}, \xi_{2}=\frac{\gamma^{T}}{n}$ and $\psi\left(Z_{i}\right)=\left(1, \phi^{T}\left(Z_{i}\right)\right)^{T}$. Then $p_{i} D_{i}=\frac{1}{n} \frac{D_{i}}{\xi^{T} \psi\left(Z_{i}\right)}$ and $p_{i}\left(1-D_{i}\right)=\frac{1}{n} \frac{1-D_{i}}{1-\xi^{T} \psi\left(Z_{i}\right)}$. Let $\widehat{\xi}$ be the solution of equations (2.1) and (2.2). Then we have

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n}\left[\frac{D_{i}}{\widehat{\xi}^{T} \psi\left(Z_{i}\right)}-\frac{1-D_{i}}{1-\widehat{\xi}^{T} \psi\left(Z_{i}\right)}\right] \psi\left(Z_{i}\right)=0 \tag{0.1}
\end{equation*}
$$

Lemma 1: $\widehat{\xi}$ is the solution of equation (0.1), and ξ_{0} is the value satisfies $\xi_{0}^{T} \psi(Z)=e(Z)$, which is the true value of the propensity score $P(D=1 \mid Z)$. Then under the conditions in Theorem 1, we have

$$
\sqrt{n}\left(\widehat{\xi}-\xi_{0}\right)=A^{-1} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{\left(D_{i}-e\left(Z_{i}\right)\right) \psi\left(Z_{i}\right)}{e\left(Z_{i}\right)\left(1-e\left(Z_{i}\right)\right)}+o_{p}(1)
$$

where $A=E\left[\frac{\psi\left(Z_{i}\right) \psi^{T}\left(Z_{i}\right)}{e\left(Z_{i}\right)\left(1-e\left(Z_{i}\right)\right)}\right]$.
Proof. Since $\widehat{\xi}$ is the solution of (0.1), using a Taylor series expansion at ξ_{0}, we have

$$
\frac{1}{n} \sum_{i=1}^{n}\left[\frac{D_{i}}{e\left(Z_{i}\right)}-\frac{1-D_{i}}{1-e\left(Z_{i}\right)}\right] \psi\left(Z_{i}\right)-E\left[\frac{\psi\left(Z_{i}\right) \psi^{T}\left(Z_{i}\right)}{e\left(Z_{i}\right)\left(1-e\left(Z_{i}\right)\right)}\right]\left(\widehat{\xi}-\xi_{0}\right)+o_{p}\left(n^{-\frac{1}{2}}\right)=0
$$

Then the results can be obtained immediately.

LEmma 2: When $S_{1}(t)>0$, we have

$$
\begin{equation*}
\frac{\widehat{S}_{1}(t)}{S_{1}(t)}=1-\int_{0}^{t} \frac{\widehat{S}_{1}(s-)}{S_{1}(s)}\left\{\frac{d \bar{N}_{1}^{E L}(s)}{\bar{Y}_{1}^{E L}(s)}-d \Lambda_{1}(s)\right\} \tag{0.2}
\end{equation*}
$$

where $\Lambda_{1}(\cdot)$ is the cumulative hazard function of T_{1}.

Lemma 2 can be easily proved by the formulas for integration by parts and the differential of a reciprocal, similar to the proof of Theorem 3.2.3 in Flemming and Harrington (1991).

Proof of Theorem 1

Proof. Based on (0.2) in Lemma 2, we can obtain

$$
\begin{aligned}
\frac{S_{1}(t)-\widehat{S}_{1}(t)}{S_{1}(t)} & =\int_{0}^{t} \frac{\widehat{S}_{1}(s-)}{S_{1}(s)} \frac{I\left(\bar{Y}_{1}^{E L}(s)>0\right)}{\bar{Y}_{1}^{E L}(s)} d M_{1}^{E L}(t)+\int_{0}^{t} \frac{\widehat{S}_{1}(s-)}{S_{1}(s)} I\left(\bar{Y}_{1}^{E L}(s)=0\right) d \Lambda_{1}(s) \\
& =\sum_{i=1}^{n} \int_{0}^{t} \frac{\widehat{S}_{1}(s-)}{S_{1}(s)} \frac{I\left(\bar{Y}_{1}^{E L}(s)>0\right)}{\bar{Y}_{1}^{E L}(s)} p_{i} D_{i} d M_{1 i}(t)+\mathcal{B}_{1}(t),
\end{aligned}
$$

where $\mathcal{B}_{1}(t)=\int_{0}^{t} \frac{\widehat{S}_{1}(s-)}{S_{1}(s)} I\left(\bar{Y}_{1}^{E L}(s)=0\right) d \Lambda_{1}(s)$.
Let $\tau=\inf \left\{s: \bar{Y}_{1}^{E L}(s)=0\right\}$ and $\mathcal{B}(t)=\mathcal{B}_{1}(t) S_{1}(t)$. So $\forall t>\tau, \bar{Y}_{1}^{E L}(t)=\sum_{i=1}^{n} p_{i} D_{i} I\left(Y_{1 i} \geqslant\right.$ $t)=0$.

And we can obtain

$$
\begin{aligned}
\mathcal{B}(t) & =S_{1}(t) \int_{\tau}^{t} \frac{\widehat{S}_{1}(s-)}{S_{1}(s)} d \Lambda_{1}(s) I(\tau<t) \\
& =S_{1}(t) \widehat{S}_{1}(\tau) \frac{S_{1}(\tau)-S_{1}(t)}{S_{1}(\tau) S_{1}(t)} I(\tau<t) \\
& =\widehat{S}_{1}(\tau)\left(1-\frac{\left.S_{1}(t)\right)}{S_{1}(\tau)}\right) I(\tau<t),
\end{aligned}
$$

therefore, as $n \rightarrow \infty$,

$$
\begin{aligned}
E[\mathcal{B}(t)] & =E\left\{\widehat{S}_{1}(\tau)\left(1-\frac{\left.S_{1}(t)\right)}{S_{1}(\tau)}\right) I(\tau<t)\right\} \\
& \leqslant E\{I(\tau \leqslant t)(1-S(t))\}=(1-S(t))\left(1-\pi_{1}(t)\right)^{n_{1}} \longrightarrow 0
\end{aligned}
$$

which implies that as $n \rightarrow \infty, \mathcal{B}(t) \xrightarrow{P} 0$.
The derivatives of the consistency theorem can be divided into two steps. First, we show that for any fixed $u \in(0, \infty)$ such that as $n_{1} \rightarrow \infty, \bar{Y}_{1}(u) \xrightarrow{P} \infty$, then $\sup _{0 \leqslant s \leqslant u} \mid \widehat{S}_{1}(s)-$
$S_{1}(s) \mid \xrightarrow{P} 0, \quad$ as $n \rightarrow \infty$. Second, we show that if $t \in(0, \infty]$ is such that for any $u<$ $t, \bar{Y}_{1}(u) \xrightarrow{P} \infty$, as $n \rightarrow \infty$. Then $\sup _{0 \leqslant s \leqslant t}\left|\widehat{S}_{1}(s)-S_{1}(s)\right| \xrightarrow{P} 0, \quad$ as $n \rightarrow \infty$.

Under the conditions in this theorem, for any $t \leqslant u, S_{1}(t)>0$. Followed by Lemma 2, we have as $n \rightarrow \infty$,

$$
P\left\{\frac{S_{1}(t)-\widehat{S}_{1}(t)}{S_{1}(t)}=U(t) \quad \text { on } \quad[0, u]\right\}
$$

where

$$
\begin{equation*}
U(t)=\sum_{i=1}^{n} \int_{0}^{t} \frac{\widehat{S}_{1}(s-)}{S_{1}(s)} \frac{I\left(\bar{Y}_{1}^{E L}(s)>0\right)}{\bar{Y}_{1}^{E L}(s)} p_{i} D_{i} d M_{1 i}(t) . \tag{0.3}
\end{equation*}
$$

Note that $\xi_{0} \psi\left(Z_{i}\right)=e\left(Z_{i}\right)$, based on (2.3), we have

$$
\begin{align*}
q_{i}=p_{i} D_{i} & =\frac{1}{n} \frac{D_{i}}{\widehat{\xi} \psi\left(Z_{i}\right)} \\
& =\frac{1}{n} \frac{D_{i}}{e\left(Z_{i}\right)}-\frac{1}{n} \frac{D_{i} \psi^{T}\left(Z_{i}\right)}{e^{2}\left(Z_{i}\right)}\left(\widehat{\xi}-\xi_{0}\right)+o_{p}\left(n^{-\frac{1}{2}}\right), \tag{0.4}
\end{align*}
$$

hence (0.3) becomes

$$
\begin{aligned}
U(t)= & \frac{1}{n} \sum_{i=1}^{n} \int_{0}^{t} \frac{\widehat{S}_{1}(s-)}{S_{1}(s)} \frac{I\left(\bar{Y}_{1}^{E L}(s)>0\right)}{\bar{Y}_{1}^{E L}(s)} \frac{D_{i}}{e\left(Z_{i}\right)} d M_{1 i}(s)- \\
& \frac{1}{n} \sum_{i=1}^{n} \int_{0}^{t} \frac{\widehat{S}_{1}(s-)}{S_{1}(s)} \frac{I\left(\bar{Y}_{1}^{E L}(s)>0\right)}{\bar{Y}_{1}^{E L}(s)} \frac{D_{i} \psi^{T}\left(Z_{i}\right)}{e^{2}\left(Z_{i}\right)} d M_{1 i}(s)\left(\widehat{\xi}-\xi_{0}\right)+o_{p}\left(n^{-\frac{1}{2}}\right) \\
= & U_{1}(t)-U_{2}(t)\left(\widehat{\xi}-\xi_{0}\right)+o_{p}\left(n^{-\frac{1}{2}}\right),
\end{aligned}
$$

where "=:" means "defined as" throughout our paper.
Combining equation (0.4) and Lemma 1 , as $n \rightarrow \infty$, we can obtain

$$
\frac{\widehat{S}_{1}(s-)}{S_{1}(s)} \frac{I\left(\bar{Y}_{1}^{E L}(s)>0\right)}{n \bar{Y}_{1}^{E L}(s)} \frac{D_{i}}{e\left(Z_{i}\right)}=\frac{1}{n} \frac{D_{i}}{e\left(Z_{i}\right)} \frac{\widehat{S}_{1}^{(1)}(s-)}{S_{1}(s)} \frac{I\left(\bar{Y}_{1}(s)>0\right)}{\pi_{1}(s)},
$$

where $\widehat{S}_{1}^{(1)}(s-)=\prod_{u<s}\left\{1-\frac{\sum \frac{D_{i}}{e\left(Z i_{i}\right)} \Delta N_{1 i}(u)}{\sum \frac{D_{i}}{e\left(Z_{i}\right)} Y_{1 i}(u)}\right\}$.
Let $U_{1}^{*}(t)=\frac{1}{n_{1}} \sum_{i=1}^{n_{1}} \int_{0}^{t} \frac{\widehat{S}_{1}(s-)}{S_{1}(s)} \frac{I\left(\bar{Y}_{1}(s)>0\right)}{\pi_{1}(s)} d M_{1 i}(s)$. Followed the assumption about D and $\left(Y_{1}, C\right)$, we have $\sup _{0 \leqslant s \leqslant t}\left|U_{1}(t)-U_{1}^{*}(t)\right| \xrightarrow{P} 0$.

The process $M_{1 i}(t)$ is a martingale and the process $\frac{\widehat{S}_{1}^{(1)}(s-)}{S_{1}(s)} \frac{I\left(\bar{Y}_{1}(s)>0\right)}{\pi_{1}(s)}$ is a predictable and bounded process, by Corollary 3.4.1 in Flemming and Harrington (1991), $\forall \epsilon, \eta>0$, for any
$0 \leqslant t<u$, we can obtain

$$
\begin{aligned}
P\left\{\sup _{0 \leqslant s \leqslant t}\left|U_{1}^{*}(s)\right|^{2} \geqslant \epsilon\right\} & \leqslant \frac{\eta}{\epsilon}+P\left\{\int_{0}^{t} \frac{\widehat{S}_{1}^{(1)}(s-)^{2}}{S_{1}^{2}(s)} \frac{\sum_{i=1}^{n_{1}} I\left(Y_{1 i} \geqslant s\right)}{n_{1}^{2} \pi_{1}^{2}(s)} I\left(\bar{Y}_{1}(s)>0\right) d \Lambda_{1}(s) \geqslant \eta\right\} \\
& \leqslant \frac{\eta}{\epsilon}+P\left\{\frac{\Lambda_{1}(t)}{n S_{1}^{2}(t) \pi_{1}(t)} \geqslant \eta\right\} .
\end{aligned}
$$

Therefore, as $n \rightarrow \infty, \sup _{0 \leqslant s<u}\left|U_{1}(s)\right| \xrightarrow{P} 0$. Under the conditions in this theorem, as $n \rightarrow \infty, U_{2}(s)=O_{p}(1)$. On the other side, we have showed that $\left\|\widehat{\xi}-\xi_{0}\right\|=O_{p}\left(n^{-\frac{1}{2}}\right)$, therefore as $n \rightarrow \infty, \sup _{0 \leqslant s<u}\left|U_{2}(s)\left(\widehat{\xi}-\xi_{0}\right)\right| \xrightarrow{P} 0$. The first step of consistency theory is finished.

Next, we are going to show that if $u=\sup \left\{t: \pi_{1}(t)>0\right\}$. Then $\sup _{0 \leqslant s \leqslant u}\left|\widehat{S}_{1}(s)-S_{1}(s)\right| \xrightarrow{P}$ 0 , as $n \rightarrow \infty$.

So it implies to find a t_{0} such that as $n \rightarrow \infty, \sup _{t_{0} \leqslant s \leqslant u}\left|\widehat{S}_{1}(s)-S_{1}(s)\right| \xrightarrow{P} 0$.
For $t_{0} \leqslant s \leqslant u$,

$$
\begin{aligned}
& S_{1}(u) \leqslant S_{1}(s) \leqslant S\left(t_{0}\right) \\
& \widehat{S}_{1}(u) \leqslant \widehat{S}_{1}(s) \leqslant \widehat{S}_{1}\left(t_{0}\right),
\end{aligned}
$$

hence, after simple algorithms, we have

$$
\sup _{t_{0} \leqslant s \leqslant u}\left|\widehat{S}_{1}(s)-S_{1}(s)\right| \leqslant\left|\widehat{S}_{1}\left(t_{0}\right)-S_{1}\left(t_{0}\right)\right|+2\left|S_{1}\left(t_{0}\right)-S_{1}(u)\right|+\left|\widehat{S}_{1}(u)-S_{1}(u)\right| .
$$

We have shown that $\left|\widehat{S}_{1}\left(t_{0}\right)-S_{1}\left(t_{0}\right)\right| \xrightarrow{P} 0, \quad$ as $\quad n \rightarrow \infty$ in the first step, and the second term in last equation tends to 0 by the continuity of $S_{1}(\cdot)$ if we choose some t_{0} close to u. Therefore, it suffices to show that as $n \rightarrow \infty$,

$$
\left|\widehat{S}_{1}(u)-S_{1}(u)\right| \xrightarrow{P} 0 .
$$

We discuss the two cases: $S_{1}(u)=0$ and $S_{1}(u)>0$, separately.
When $S_{1}(u)=0$, there exists a t_{0} such that $\left|S_{1}\left(t_{0}\right)-S_{1}(u)\right| \xrightarrow{P} 0$, which implies
$\left|S_{1}\left(t_{0}\right)\right| \xrightarrow{P} 0$, note that $u>t_{0}$, then

$$
\begin{aligned}
\left|\widehat{S}_{1}(u)-S_{1}(u)\right| & \leqslant\left|\widehat{S}_{1}(u)\right|+\left|S_{1}(u)\right| \\
& \leqslant\left|\widehat{S}_{1}\left(t_{0}\right)\right|+\left|S_{1}\left(t_{0}\right)\right| \\
& \leqslant\left|\widehat{S}_{1}\left(t_{0}\right)-S_{1}\left(t_{0}\right)\right|+2\left|S_{1}\left(t_{0}\right)\right| .
\end{aligned}
$$

Together with the results in the first step, the first term in last equation converges in probability to 0 as $n \rightarrow \infty$.

When $S_{1}(u)>0$, since

$$
\left|\widehat{S}_{1}(u)-S_{1}(u)\right| \leqslant\left|\widehat{S}_{1}(u)-\widehat{S}_{1}\left(t_{0}\right)\right|+\left|\widehat{S}_{1}\left(t_{0}\right)-S_{1}\left(t_{0}\right)\right|+\left|S_{1}\left(t_{0}\right)-S_{1}(u)\right|
$$

so it suffices to show that as $n \rightarrow \infty,\left|\widehat{S}_{1}(u)-\widehat{S}_{1}\left(t_{0}\right)\right| \xrightarrow{P} 0$.
For any $\epsilon>0$,

$$
\begin{aligned}
P\left\{\left|\widehat{S}_{1}(t)-\widehat{S}_{1}\left(t_{0}\right)\right|>\epsilon\right\}= & P\left\{\left|\int_{t_{0}}^{t} I\left\{\bar{Y}^{E L}(t)>0\right\} \widehat{S}_{1}(s-) \frac{d \bar{N}_{1}^{E L}(s)}{\bar{Y}_{1}^{E L}(s)}\right|>\epsilon\right\} \\
\leqslant & P\left\{\left|\int_{t_{0}}^{t} I\{\bar{Y}(t)>0\}\left\{\frac{d \bar{N}_{1}^{E L}(s)}{\bar{Y}_{1}^{E L}(s)}-d \Lambda_{1}(s)\right\}\right|>\epsilon / 2\right\}+(0.5) \\
& P\left\{\left|\int_{t_{0}}^{t} d \Lambda_{1}(s)\right|>\epsilon / 2\right\}
\end{aligned}
$$

By the continuity of $S_{1}(t)$, we can find a t_{0} such that

$$
\left|\int_{t_{0}}^{t} d \Lambda_{1}(s)\right|=\left|-\int_{t_{0}}^{t} \frac{d S_{1}(t)}{S_{1}(t)}\right| \leqslant\left|S_{1}(t)-S_{1}\left(t_{0}\right)\right|<\epsilon / 4 .
$$

Similar to the proof of uniformly consistency of the process $U_{1}(t)$ in the first step, we can easily show that as $n \rightarrow \infty$

$$
P\left\{\left|\int_{t_{0}}^{t} I\{\bar{Y}(t)>0\}\left\{\frac{d \bar{N}_{1}^{E L}(s)}{\bar{Y}_{1}^{E L}(s)}-d \Lambda_{1}(s)\right\}\right|>\epsilon / 2\right\}<\epsilon / 2 .
$$

Here we omit the detailed proof. Hence as $n \rightarrow \infty,\left|\widehat{S}_{1}(t)-\widehat{S}_{1}\left(t_{0}\right)\right| \xrightarrow{P} 0$ when $S_{1}(t)>0$.
We have finished the proof of the consistency theorem.

Proof of Theorem 2
Proof. By the derivations of the consistency theorem and the consistency of $\widehat{S}_{1}(t)$, we can obtain:

$$
\begin{aligned}
\frac{S_{1}(t)-\widehat{S}_{1}(t)}{S_{1}(t)} & =\frac{1}{n} \sum_{i=1}^{n} \int_{0}^{t} \frac{1}{\pi_{1}(s)} \frac{D_{i}}{e\left(Z_{i}\right)} d M_{1 i}(s) \\
& -B_{1} \cdot\left(\widehat{\xi}-\xi_{0}\right)+o_{p}\left(n^{-\frac{1}{2}}\right),
\end{aligned}
$$

where $B_{1}=E\left[\int_{0}^{t} \frac{1}{\pi_{1}(s)} \frac{D_{i} \psi^{T}\left(Z_{i}\right)}{e^{2}\left(Z_{i}\right)} d M_{1 i}(s)\right]$.
Together with Lemma 1, we have

$$
\begin{align*}
\frac{S_{1}(t)-\widehat{S}_{1}(t)}{S_{1}(t)} & =\frac{1}{n} \sum_{i=1}^{n} \int_{0}^{t} \frac{1}{\pi_{1}(s)} \frac{D_{i}}{e\left(Z_{i}\right)} d M_{1 i}(s) \\
& -B_{1} A^{-1} \frac{1}{n} \sum_{i=1}^{n} \frac{\left(D_{i}-e\left(Z_{i}\right)\right) \psi\left(Z_{i}\right)}{e\left(Z_{i}\right)\left(1-e\left(Z_{i}\right)\right)}+o_{p}\left(n^{-\frac{1}{2}}\right) \tag{0.6}
\end{align*}
$$

By the central limit theory of independent identically random variables, we can obtain for any $t \in \mathcal{I}_{1}, \sqrt{n} S_{1}(t)^{-1}\left(\widehat{S}_{1}(t)-S_{1}(t)\right)$ converges to a normal distribution $N\left(0, V_{1}\right)$, where

$$
V_{1}=E\left[\frac{D}{e(Z)} \int_{0}^{t} \frac{1}{\pi_{1}(s)} d M_{1}(s)\right]^{2}-B_{1} A^{-1} B_{1}^{T}
$$

Note that the two terms in equation (0.6) are correlated. We have finished the proof of this theorem.

Proof of Theorem 4

Proof. Followed by the proof of Theorem 2, for a fix time point t, we have

$$
\begin{aligned}
\widehat{\Delta}(t)-\Delta(t)= & \widehat{S}_{1}(t)-\widehat{S}_{0}(t)-\left(S_{1}(t)-S_{0}(t)\right) \\
= & S_{1}(t) \frac{1}{n} \sum_{i=1}^{n} \frac{D_{i}}{e\left(Z_{i}\right)} \int_{0}^{t} \frac{1}{\pi_{1}(s)} d M_{1 i}(s)-S_{1}(t) B_{1}\left(\widehat{\xi}-\xi_{0}\right)- \\
& S_{0}(t) \frac{1}{n} \sum_{i=1}^{n} \frac{1-D_{i}}{1-e\left(Z_{i}\right)} \int_{0}^{t} \frac{1}{\pi_{0}(s)} d M_{0 i}(s)+S_{0}(t) B_{0}\left(\widehat{\xi}-\xi_{0}\right)+o_{p}\left(n^{-\frac{1}{2}}\right) .
\end{aligned}
$$

Then the large sample properties can be easily obtained.

Additional Simulation Results

The simulation setups are the same as simulation study 2 except that the sample size is set to $n=100$ and $n=300$.

Results of simulation study 2 with $n=100$

method	para	true	est.hat	bias	se	sd	RMSE
KM	$S_{1}(t)$	0.504	0.572	0.135	0.078	0.074	0.156
KM	$S_{0}(t)$	0.265	0.221	0.165	0.065	0.062	0.177
KM	$\Delta(t)$	0.239	0.351	0.467	0.103	0.097	0.478
IPW incorrect	$S_{1}(t)$	0.504	0.529	0.05	0.076	0.075	0.091
IPW incorrect	$S_{0}(t)$	0.265	0.254	0.041	0.073	0.07	0.084
IPW incorrect	$\Delta(t)$	0.239	0.275	0.149	0.103	0.103	0.181
IPW correct	$S_{1}(t)$	0.504	0.514	0.02	0.073	0.074	0.075
IPW correct	$S_{0}(t)$	0.265	0.265	0.002	0.074	0.072	0.074
IPW correct	$\Delta(t)$	0.239	0.248	0.039	0.099	0.104	0.107
EL	$S_{1}(t)$	0.504	0.508	0.008	0.071	0.068	0.071
EL	$S_{0}(t)$	0.265	0.272	0.027	0.076	0.067	0.081
EL	$\Delta(t)$	0.239	0.236	0.012	0.097	0.091	0.098

Results of simulation study 2 with $n=300$

| method | para | true | est.hat | bias | se | sd | RMSE | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| KM | $S_{1}(t)$ | 0.504 | 0.569 | 0.129 | 0.044 | 0.044 | 0.136 | 67.5 |
| KM | $S_{0}(t)$ | 0.265 | 0.224 | 0.155 | 0.039 | 0.037 | 0.16 | 76.7 |
| KM | $\Delta(t)$ | 0.239 | 0.345 | 0.443 | 0.059 | 0.057 | 0.447 | 53.7 |
| | | | | | | | | |
| IPW incorrect | $S_{1}(t)$ | 0.504 | 0.524 | 0.04 | 0.043 | 0.044 | 0.059 | 92.2 |
| IPW incorrect | $S_{0}(t)$ | 0.265 | 0.256 | 0.033 | 0.043 | 0.042 | 0.054 | 92.8 |
| IPW incorrect | $\Delta(t)$ | 0.239 | 0.268 | 0.121 | 0.058 | 0.061 | 0.134 | 92.5 |
| | | | | | | | | |
| IPW correct | $S_{1}(t)$ | 0.504 | 0.509 | 0.01 | 0.042 | 0.043 | 0.043 | 95.1 |
| IPW correct | $S_{0}(t)$ | 0.265 | 0.267 | 0.007 | 0.043 | 0.043 | 0.044 | 94.1 |
| IPW correct | $\Delta(t)$ | 0.239 | 0.242 | 0.013 | 0.056 | 0.061 | 0.057 | 96.6 |
| | | | | | | | | |
| EL | $S_{1}(t)$ | 0.504 | 0.506 | 0.004 | 0.041 | 0.041 | 0.041 | 94.5 |
| EL | $S_{0}(t)$ | 0.265 | 0.269 | 0.016 | 0.043 | 0.041 | 0.046 | 93.1 |
| EL | $\Delta(t)$ | 0.239 | 0.237 | 0.01 | 0.054 | 0.055 | 0.055 | 95.2 |

References

Flemming, T. R. and Harrington, D. P. (1991). Counting processes and survival analysis. New York: Wiley.

