Supplementary Material for Bias-adjusted Kaplan-Meier Survival Curves for Marginal Treatment Effect in Observational Studies

Xiaofei Wang^{1*}, Fangfang Bai², Herbert Pang³, and Stephen L George¹

¹Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, U.S.A. ²School of Statistics, University of International Business and Economics, Beijing, 100029, China ³Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China

*email: xiaofei.wang@duke.edu

This paper has been submitted for consideration for publication in JBS

Theoretical Results

Here, we give the detailed and complete proof of the main results in Section 3 in the paper.

Let

$$N_{1i}(t) = I(Y_{1i} \leqslant t, \delta_{1i} = 1) \qquad N_{1i}^{EL}(t) = p_i D_i I(Y_{1i} \leqslant t, \delta_{1i} = 1)$$

$$Y_{1i}(t) = I(Y_{1i} \geqslant t) \qquad Y_{1i}^{EL}(t) = p_i D_i I(Y_{1i} \geqslant t)$$

$$M_{1i}(t) = N_{1i}(t) - \int_0^t Y_{1i}(s) d\Lambda_1(s) \qquad M_{1i}^{EL}(t) = N_{1i}^{EL}(t) - \int_0^t Y_{1i}^{EL}(s) d\Lambda_1(s)$$

$$\overline{N}_1(t) = \sum_{i=1}^{n_1} I(Y_{1i} \leqslant t, \delta_{1i} = 1) \qquad \overline{Y}_1(t) = \sum_{i=1}^{n_1} I(Y_{1i} \geqslant t), \ \overline{Y}_1^{EL}(t) = \sum_{i=1}^{n} Y_{1i}^{EL}(t)$$

$$\overline{M}_1(t) = \sum_{i=1}^{n_1} M_{1i}(t), \ \pi_1(t) = P(Y_1 \geqslant t) \qquad \overline{M}_1^{EL}(t) = \sum_{i=1}^{n} M_{1i}^{EL}(t) = \sum_{i=1}^{n} p_i D_i M_{1i}(t).$$

Similarly, if the subscript 1 is replaced with subscript 0 in all the aforementioned equations, it will denote the corresponding quantities of $S_0(t)$. For simplicity, we omit it here.

Let $\xi = (\xi_1, \xi_2)^T$, $\xi_1 = \frac{n_1 - \gamma^T a}{n}$, $\xi_2 = \frac{\gamma^T}{n}$ and $\psi(Z_i) = (1, \phi^T(Z_i))^T$. Then $p_i D_i = \frac{1}{n} \frac{D_i}{\xi^T \psi(Z_i)}$ and $p_i(1 - D_i) = \frac{1}{n} \frac{1 - D_i}{1 - \xi^T \psi(Z_i)}$. Let $\hat{\xi}$ be the solution of equations (2.1) and (2.2). Then we have $\frac{1}{n} \sum_{i=1}^n \Big[\frac{D_i}{\hat{\xi}^T \psi(Z_i)} - \frac{1 - D_i}{1 - \hat{\xi}^T \psi(Z_i)} \Big] \psi(Z_i) = 0.$ (0.1)

LEMMA 1: $\hat{\xi}$ is the solution of equation (0.1), and ξ_0 is the value satisfies $\xi_0^T \psi(Z) = e(Z)$, which is the true value of the propensity score P(D = 1|Z). Then under the conditions in Theorem 1, we have

$$\sqrt{n}(\widehat{\xi} - \xi_0) = A^{-1} \frac{1}{\sqrt{n}} \sum_{i=1}^n \frac{(D_i - e(Z_i))\psi(Z_i)}{e(Z_i)(1 - e(Z_i))} + o_p(1),$$

where $A = E\left[\frac{\psi(Z_i)\psi^T(Z_i)}{e(Z_i)(1-e(Z_i))}\right]$.

Proof. Since $\hat{\xi}$ is the solution of (0.1), using a Taylor series expansion at ξ_0 , we have

$$\frac{1}{n}\sum_{i=1}^{n} \left[\frac{D_i}{e(Z_i)} - \frac{1 - D_i}{1 - e(Z_i)}\right]\psi(Z_i) - E\left[\frac{\psi(Z_i)\psi^T(Z_i)}{e(Z_i)(1 - e(Z_i))}\right](\widehat{\xi} - \xi_0) + o_p(n^{-\frac{1}{2}}) = 0$$

Then the results can be obtained immediately.

LEMMA 2: When $S_1(t) > 0$, we have

$$\frac{\widehat{S}_{1}(t)}{S_{1}(t)} = 1 - \int_{0}^{t} \frac{\widehat{S}_{1}(s-)}{S_{1}(s)} \Big\{ \frac{d\overline{N}_{1}^{EL}(s)}{\overline{Y}_{1}^{EL}(s)} - d\Lambda_{1}(s) \Big\},$$
(0.2)

where $\Lambda_1(\cdot)$ is the cumulative hazard function of T_1 .

Lemma 2 can be easily proved by the formulas for integration by parts and the differential of a reciprocal, similar to the proof of Theorem 3.2.3 in Flemming and Harrington (1991).

Proof of Theorem 1

Proof. Based on (0.2) in Lemma 2, we can obtain

$$\frac{S_{1}(t) - \widehat{S}_{1}(t)}{S_{1}(t)} = \int_{0}^{t} \frac{\widehat{S}_{1}(s-)}{S_{1}(s)} \frac{I(\overline{Y}_{1}^{EL}(s) > 0)}{\overline{Y}_{1}^{EL}(s)} dM_{1}^{EL}(t) + \int_{0}^{t} \frac{\widehat{S}_{1}(s-)}{S_{1}(s)} I(\overline{Y}_{1}^{EL}(s) = 0) d\Lambda_{1}(s)$$

$$= \sum_{i=1}^{n} \int_{0}^{t} \frac{\widehat{S}_{1}(s-)}{S_{1}(s)} \frac{I(\overline{Y}_{1}^{EL}(s) > 0)}{\overline{Y}_{1}^{EL}(s)} p_{i} D_{i} dM_{1i}(t) + \mathcal{B}_{1}(t),$$

where $\mathcal{B}_1(t) = \int_0^t \frac{\widehat{S}_1(s-)}{S_1(s)} I(\overline{Y}_1^{EL}(s) = 0) d\Lambda_1(s).$

Let $\tau = \inf\{s : \overline{Y}_1^{EL}(s) = 0\}$ and $\mathcal{B}(t) = \mathcal{B}_1(t)S_1(t)$. So $\forall t > \tau, \overline{Y}_1^{EL}(t) = \sum_{i=1}^n p_i D_i I(Y_{1i} \ge t) = 0.$

And we can obtain

$$\begin{aligned} \mathcal{B}(t) &= S_1(t) \int_{\tau}^t \frac{\widehat{S}_1(s-)}{S_1(s)} d\Lambda_1(s) I(\tau < t) \\ &= S_1(t) \widehat{S}_1(\tau) \frac{S_1(\tau) - S_1(t)}{S_1(\tau) S_1(t)} I(\tau < t) \\ &= \widehat{S}_1(\tau) \Big(1 - \frac{S_1(t))}{S_1(\tau)} \Big) I(\tau < t), \end{aligned}$$

therefore, as $n \to \infty$,

$$E[\mathcal{B}(t)] = E\left\{\widehat{S}_{1}(\tau)\left(1 - \frac{S_{1}(t)}{S_{1}(\tau)}\right)I(\tau < t)\right\}$$

$$\leqslant E\left\{I(\tau \leqslant t)(1 - S(t))\right\} = (1 - S(t))(1 - \pi_{1}(t))^{n_{1}} \longrightarrow 0.$$

which implies that as $n \to \infty$, $\mathcal{B}(t) \xrightarrow{P} 0$.

The derivatives of the consistency theorem can be divided into two steps. First, we show that for any fixed $u \in (0,\infty)$ such that as $n_1 \to \infty$, $\overline{Y}_1(u) \xrightarrow{P} \infty$, then $\sup_{0 \le s \le u} |\widehat{S}_1(s) - v_1(u)| \ge 0$. $S_1(s)| \xrightarrow{P} 0$, as $n \to \infty$. Second, we show that if $t \in (0,\infty]$ is such that for any $u < t, \overline{Y}_1(u) \xrightarrow{P} \infty$, as $n \to \infty$. Then $\sup_{0 \leq s \leq t} |\widehat{S}_1(s) - S_1(s)| \xrightarrow{P} 0$, as $n \to \infty$.

Under the conditions in this theorem, for any $t \leq u$, $S_1(t) > 0$. Followed by Lemma 2, we have as $n \to \infty$,

$$P\left\{\frac{S_1(t) - \widehat{S}_1(t)}{S_1(t)} = U(t) \text{ on } [0, u]\right\},\$$

where

$$U(t) = \sum_{i=1}^{n} \int_{0}^{t} \frac{\widehat{S}_{1}(s-)}{S_{1}(s)} \frac{I(\overline{Y}_{1}^{EL}(s)>0)}{\overline{Y}_{1}^{EL}(s)} p_{i} D_{i} dM_{1i}(t).$$
(0.3)

Note that $\xi_0 \psi(Z_i) = e(Z_i)$, based on (2.3), we have

$$q_{i} = p_{i}D_{i} = \frac{1}{n} \frac{D_{i}}{\hat{\xi}\psi(Z_{i})}$$

= $\frac{1}{n} \frac{D_{i}}{e(Z_{i})} - \frac{1}{n} \frac{D_{i}\psi^{T}(Z_{i})}{e^{2}(Z_{i})} (\hat{\xi} - \xi_{0}) + o_{p}(n^{-\frac{1}{2}}),$ (0.4)

hence (0.3) becomes

$$U(t) = \frac{1}{n} \sum_{i=1}^{n} \int_{0}^{t} \frac{\widehat{S}_{1}(s-)}{S_{1}(s)} \frac{I(\overline{Y}_{1}^{EL}(s) > 0)}{\overline{Y}_{1}^{EL}(s)} \frac{D_{i}}{e(Z_{i})} dM_{1i}(s) - \frac{1}{n} \sum_{i=1}^{n} \int_{0}^{t} \frac{\widehat{S}_{1}(s-)}{S_{1}(s)} \frac{I(\overline{Y}_{1}^{EL}(s) > 0)}{\overline{Y}_{1}^{EL}(s)} \frac{D_{i}\psi^{T}(Z_{i})}{e^{2}(Z_{i})} dM_{1i}(s)(\widehat{\xi} - \xi_{0}) + o_{p}(n^{-\frac{1}{2}})$$

=: $U_{1}(t) - U_{2}(t)(\widehat{\xi} - \xi_{0}) + o_{p}(n^{-\frac{1}{2}}),$

where "=:" means "defined as" throughout our paper.

Combining equation (0.4) and Lemma 1, as $n \to \infty$, we can obtain

$$\frac{\widehat{S}_1(s-)}{S_1(s)} \frac{I(\overline{Y}_1^{EL}(s)>0)}{n\overline{Y}_1^{EL}(s)} \frac{D_i}{e(Z_i)} = \frac{1}{n} \quad \frac{D_i}{e(Z_i)} \frac{\widehat{S}_1^{(1)}(s-)}{S_1(s)} \frac{I(\overline{Y}_1(s)>0)}{\pi_1(s)},$$

where $\widehat{S}_{1}^{(1)}(s-) = \prod_{u < s} \left\{ 1 - \frac{\sum \frac{D_{i}}{e(Z_{i})} \Delta N_{1i}(u)}{\sum \frac{D_{i}}{e(Z_{i})} Y_{1i}(u)} \right\}.$ Let $U_{1}^{*}(t) = \frac{1}{n_{1}} \sum_{i=1}^{n_{1}} \int_{0}^{t} \frac{\widehat{S}_{1}(s-)}{S_{1}(s)} \frac{I(\overline{Y}_{1}(s)>0)}{\pi_{1}(s)} dM_{1i}(s).$ Followed the assumption about D and (Y_{1}, C) , we have $\sup_{0 \leq s \leq t} |U_{1}(t) - U_{1}^{*}(t)| \xrightarrow{P} 0.$

The process $M_{1i}(t)$ is a martingale and the process $\frac{\widehat{S}_1^{(1)}(s-)}{S_1(s)} \frac{I(\overline{Y}_1(s)>0)}{\pi_1(s)}$ is a predictable and bounded process, by Corollary 3.4.1 in Flemming and Harrington (1991), $\forall \epsilon, \eta > 0$, for any $0 \leq t < u$, we can obtain

$$P\left\{\sup_{0\leqslant s\leqslant t} |U_{1}^{*}(s)|^{2} \geqslant \epsilon\right\} \leqslant \frac{\eta}{\epsilon} + P\left\{\int_{0}^{t} \frac{\widehat{S}_{1}^{(1)}(s-)^{2}}{S_{1}^{2}(s)} \frac{\sum_{i=1}^{n} I(Y_{1i} \geqslant s)}{n_{1}^{2}\pi_{1}^{2}(s)} I(\overline{Y}_{1}(s) > 0) d\Lambda_{1}(s) \geqslant \eta\right\}$$
$$\leqslant \frac{\eta}{\epsilon} + P\left\{\frac{\Lambda_{1}(t)}{nS_{1}^{2}(t)\pi_{1}(t)} \geqslant \eta\right\}.$$

Therefore, as $n \to \infty$, $\sup_{0 \le s < u} |U_1(s)| \xrightarrow{P} 0$. Under the conditions in this theorem, as $n \to \infty$, $U_2(s) = O_p(1)$. On the other side, we have showed that $||\hat{\xi} - \xi_0|| = O_p(n^{-\frac{1}{2}})$, therefore as $n \to \infty$, $\sup_{0 \le s < u} |U_2(s)(\hat{\xi} - \xi_0)| \xrightarrow{P} 0$. The first step of consistency theory is finished.

Next, we are going to show that if $u = \sup\{t : \pi_1(t) > 0\}$. Then $\sup_{0 \le s \le u} |\widehat{S}_1(s) - S_1(s)| \xrightarrow{P} 0$, as $n \to \infty$.

So it implies to find a t_0 such that $as \quad n \to \infty$, $\sup_{t_0 \leq s \leq u} |\widehat{S}_1(s) - S_1(s)| \xrightarrow{P} 0$. For $t_0 \leq s \leq u$,

$$S_1(u) \leqslant S_1(s) \leqslant S(t_0)$$
$$\widehat{S}_1(u) \leqslant \widehat{S}_1(s) \leqslant \widehat{S}_1(t_0),$$

hence, after simple algorithms, we have

$$\sup_{t_0 \leq s \leq u} \left| \widehat{S}_1(s) - S_1(s) \right| \leq \left| \widehat{S}_1(t_0) - S_1(t_0) \right| + 2 \left| S_1(t_0) - S_1(u) \right| + \left| \widehat{S}_1(u) - S_1(u) \right|.$$

We have shown that $|\widehat{S}_1(t_0) - S_1(t_0)| \xrightarrow{P} 0$, as $n \to \infty$ in the first step, and the second term in last equation tends to 0 by the continuity of $S_1(\cdot)$ if we choose some t_0 close to u. Therefore, it suffices to show that as $n \to \infty$,

$$\left|\widehat{S}_1(u) - S_1(u)\right| \xrightarrow{P} 0.$$

We discuss the two cases: $S_1(u) = 0$ and $S_1(u) > 0$, separately.

When $S_1(u) = 0$, there exists a t_0 such that $\left|S_1(t_0) - S_1(u)\right| \xrightarrow{P} 0$, which implies

 $\left|S_1(t_0)\right| \xrightarrow{P} 0$, note that $u > t_0$, then

$$\begin{aligned} \left| \widehat{S}_{1}(u) - S_{1}(u) \right| &\leq \left| \widehat{S}_{1}(u) \right| + \left| S_{1}(u) \right| \\ &\leq \left| \widehat{S}_{1}(t_{0}) \right| + \left| S_{1}(t_{0}) \right| \\ &\leq \left| \widehat{S}_{1}(t_{0}) - S_{1}(t_{0}) \right| + 2 \left| S_{1}(t_{0}) \right| \end{aligned}$$

Together with the results in the first step, the first term in last equation converges in probability to 0 as $n \to \infty$.

When $S_1(u) > 0$, since

$$\left|\widehat{S}_{1}(u) - S_{1}(u)\right| \leq \left|\widehat{S}_{1}(u) - \widehat{S}_{1}(t_{0})\right| + \left|\widehat{S}_{1}(t_{0}) - S_{1}(t_{0})\right| + \left|S_{1}(t_{0}) - S_{1}(u)\right|$$

so it suffices to show that as $n \to \infty$, $\left| \widehat{S}_1(u) - \widehat{S}_1(t_0) \right| \xrightarrow{P} 0$.

For any $\epsilon > 0$,

$$P\left\{ \left| \widehat{S}_{1}(t) - \widehat{S}_{1}(t_{0}) \right| > \epsilon \right\} = P\left\{ \left| \int_{t_{0}}^{t} I\{\overline{Y}^{EL}(t) > 0\} \widehat{S}_{1}(s-) \frac{d\overline{N}_{1}^{EL}(s)}{\overline{Y}_{1}^{EL}(s)} \right| > \epsilon \right\}$$

$$\leq P\left\{ \left| \int_{t_{0}}^{t} I\{\overline{Y}(t) > 0\} \left\{ \frac{d\overline{N}_{1}^{EL}(s)}{\overline{Y}_{1}^{EL}(s)} - d\Lambda_{1}(s) \right\} \right| > \epsilon/2 \right\} + (0.5)$$

$$P\left\{ \left| \int_{t_{0}}^{t} d\Lambda_{1}(s) \right| > \epsilon/2 \right\}.$$

-

By the continuity of $S_1(t)$, we can find a t_0 such that

$$\left|\int_{t_0}^t d\Lambda_1(s)\right| = \left|-\int_{t_0}^t \frac{dS_1(t)}{S_1(t)}\right| \le \left|S_1(t) - S_1(t_0)\right| < \epsilon/4.$$

Similar to the proof of uniformly consistency of the process $U_1(t)$ in the first step, we can easily show that as $n \to \infty$

$$P\left\{\left|\int_{t_0}^t I\{\overline{Y}(t)>0\}\left\{\frac{d\overline{N}_1^{EL}(s)}{\overline{Y}_1^{EL}(s)}-d\Lambda_1(s)\right\}\right|>\epsilon/2\right\}<\epsilon/2.$$

Here we omit the detailed proof. Hence as $n \to \infty$, $\left|\widehat{S}_1(t) - \widehat{S}_1(t_0)\right| \xrightarrow{P} 0$ when $S_1(t) > 0$.

We have finished the proof of the consistency theorem.

Proof of Theorem 2

Proof. By the derivations of the consistency theorem and the consistency of $\widehat{S}_1(t)$, we can obtain:

$$\frac{S_1(t) - \widehat{S}_1(t)}{S_1(t)} = \frac{1}{n} \sum_{i=1}^n \int_0^t \frac{1}{\pi_1(s)} \frac{D_i}{e(Z_i)} dM_{1i}(s) - B_1 \cdot (\widehat{\xi} - \xi_0) + o_p(n^{-\frac{1}{2}}),$$

where $B_1 = E \left[\int_0^t \frac{1}{\pi_1(s)} \frac{D_i \psi^T(Z_i)}{e^2(Z_i)} dM_{1i}(s) \right].$

Together with Lemma 1, we have

$$\frac{S_1(t) - \widehat{S}_1(t)}{S_1(t)} = \frac{1}{n} \sum_{i=1}^n \int_0^t \frac{1}{\pi_1(s)} \frac{D_i}{e(Z_i)} dM_{1i}(s)
- B_1 A^{-1} \frac{1}{n} \sum_{i=1}^n \frac{(D_i - e(Z_i))\psi(Z_i)}{e(Z_i)(1 - e(Z_i))} + o_p(n^{-\frac{1}{2}}).$$
(0.6)

By the central limit theory of independent identically random variables, we can obtain for any $t \in \mathcal{I}_1$, $\sqrt{n}S_1(t)^{-1}(\widehat{S}_1(t) - S_1(t))$ converges to a normal distribution $N(0, V_1)$, where

$$V_1 = E \left[\frac{D}{e(Z)} \int_0^t \frac{1}{\pi_1(s)} dM_1(s) \right]^2 - B_1 A^{-1} B_1^T.$$

Note that the two terms in equation (0.6) are correlated. We have finished the proof of this theorem.

Proof of Theorem 4

Proof. Followed by the proof of Theorem 2, for a fix time point t, we have

$$\begin{aligned} \widehat{\Delta}(t) - \Delta(t) &= \widehat{S}_{1}(t) - \widehat{S}_{0}(t) - (S_{1}(t) - S_{0}(t)) \\ &= S_{1}(t) \frac{1}{n} \sum_{i=1}^{n} \frac{D_{i}}{e(Z_{i})} \int_{0}^{t} \frac{1}{\pi_{1}(s)} dM_{1i}(s) - S_{1}(t) B_{1}(\widehat{\xi} - \xi_{0}) - \\ &S_{0}(t) \frac{1}{n} \sum_{i=1}^{n} \frac{1 - D_{i}}{1 - e(Z_{i})} \int_{0}^{t} \frac{1}{\pi_{0}(s)} dM_{0i}(s) + S_{0}(t) B_{0}(\widehat{\xi} - \xi_{0}) + o_{p}(n^{-\frac{1}{2}}). \end{aligned}$$

Then the large sample properties can be easily obtained.

Additional Simulation Results

The simulation setups are the same as simulation study 2 except that the sample size is set to n = 100 and n = 300.

method	para	true	est.hat	bias	se	sd	RMSE
KM	$S_1(t)$	0.504	0.572	0.135	0.078	0.074	0.156
KM	$S_0(t)$	0.265	0.221	0.165	0.065	0.062	0.177
KM	$\Delta(t)$	0.239	0.351	0.467	0.103	0.097	0.478
IPW incorrect	$S_1(t)$	0.504	0.529	0.05	0.076	0.075	0.091
IPW incorrect	$S_0(t)$	0.265	0.254	0.041	0.073	0.07	0.084
IPW incorrect	$\Delta(t)$	0.239	0.275	0.149	0.103	0.103	0.181
IPW correct	$S_1(t)$	0.504	0.514	0.02	0.073	0.074	0.075
IPW correct	$S_0(t)$	0.265	0.265	0.002	0.074	0.072	0.074
IPW correct	$\Delta(t)$	0.239	0.248	0.039	0.099	0.104	0.107
EL	$S_1(t)$	0.504	0.508	0.008	0.071	0.068	0.071
EL	$S_0(t)$	0.265	0.272	0.027	0.076	0.067	0.081
EL	$\Delta(t)$	0.239	0.236	0.012	0.097	0.091	0.098

Results of simulation study 2 with n = 100

method	para	true	est.hat	bias	se	sd	RMSE	
KM	$S_1(t)$	0.504	0.569	0.129	0.044	0.044	0.136	67.5
KM	$S_0(t)$	0.265	0.224	0.155	0.039	0.037	0.16	76.7
KM	$\Delta(t)$	0.239	0.345	0.443	0.059	0.057	0.447	53.7
IPW incorrect	$S_1(t)$	0.504	0.524	0.04	0.043	0.044	0.059	92.2
IPW incorrect	$S_0(t)$	0.265	0.256	0.033	0.043	0.042	0.054	92.8
IPW incorrect	$\Delta(t)$	0.239	0.268	0.121	0.058	0.061	0.134	92.5
IPW correct	$S_1(t)$	0.504	0.509	0.01	0.042	0.043	0.043	95.1
IPW correct	$S_0(t)$	0.265	0.267	0.007	0.043	0.043	0.044	94.1
IPW correct	$\Delta(t)$	0.239	0.242	0.013	0.056	0.061	0.057	96.6
EL	$S_1(t)$	0.504	0.506	0.004	0.041	0.041	0.041	94.5
EL	$S_0(t)$	0.265	0.269	0.016	0.043	0.041	0.046	93.1
EL	$\Delta(t)$	0.239	0.237	0.01	0.054	0.055	0.055	95.2

Results of simulation study 2 with n = 300

References

Flemming, T. R. and Harrington, D. P. (1991). Counting processes and survival analysis. New York: Wiley.