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Theoretical Results

Here, we give the detailed and complete proof of the main results in Section 3 in the paper.

Let

N1i(t) = I(Y1i 6 t, δ1i = 1) NEL
1i (t) = piDiI(Y1i 6 t, δ1i = 1)

Y1i(t) = I(Y1i > t) Y EL
1i (t) = piDiI(Y1i > t)

M1i(t) = N1i(t)−
∫ t

0

Y1i(s)dΛ1(s) MEL
1i (t) = NEL

1i (t)−
∫ t

0

Y EL
1i (s)dΛ1(s)

N1(t) =

n1∑
i=1

I(Y1i 6 t, δ1i = 1) Y 1(t) =

n1∑
i=1

I(Y1i > t), Y
EL

1 (t) =
n∑
i=1

Y EL
1i (t)

M1(t) =

n1∑
i=1

M1i(t), π1(t) = P (Y1 > t) M
EL

1 (t) =
n∑
i=1

MEL
1i (t) =

n∑
i=1

piDiM1i(t).

Similarly, if the subscript 1 is replaced with subscript 0 in all the aforementioned equations,

it will denote the corresponding quantities of S0(t). For simplicity, we omit it here.

Let ξ = (ξ1, ξ2)T , ξ1 = n1−γT a
n

, ξ2 = γT

n
and ψ(Zi) = (1, φT (Zi))

T . Then piDi = 1
n

Di

ξTψ(Zi)

and pi(1−Di) = 1
n

1−Di

1−ξTψ(Zi)
. Let ξ̂ be the solution of equations (2.1) and (2.2). Then we have

1

n

n∑
i=1

[ Di

ξ̂Tψ(Zi)
− 1−Di

1− ξ̂Tψ(Zi)

]
ψ(Zi) = 0. (0.1)

Lemma 1: ξ̂ is the solution of equation (0.1), and ξ0 is the value satisfies ξT0 ψ(Z) = e(Z),

which is the true value of the propensity score P (D = 1|Z). Then under the conditions in

Theorem 1, we have

√
n(ξ̂ − ξ0) = A−1 1√

n

n∑
i=1

(Di − e(Zi))ψ(Zi)

e(Zi)(1− e(Zi))
+ op(1),

where A = E
[
ψ(Zi)ψ

T (Zi)
e(Zi)(1−e(Zi))

]
.

Proof. Since ξ̂ is the solution of (0.1), using a Taylor series expansion at ξ0, we have

1

n

n∑
i=1

[ Di

e(Zi)
− 1−Di

1− e(Zi)

]
ψ(Zi)− E

[ ψ(Zi)ψ
T (Zi)

e(Zi)(1− e(Zi))

]
(ξ̂ − ξ0) + op(n

− 1
2 ) = 0

Then the results can be obtained immediately.
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Lemma 2: When S1(t) > 0, we have

Ŝ1(t)

S1(t)
= 1−

∫ t

0

Ŝ1(s−)

S1(s)

{dNEL

1 (s)

Y
EL

1 (s)
− dΛ1(s)

}
, (0.2)

where Λ1(·) is the cumulative hazard function of T1.

Lemma 2 can be easily proved by the formulas for integration by parts and the differential

of a reciprocal, similar to the proof of Theorem 3.2.3 in Flemming and Harrington (1991).

Proof of Theorem 1

Proof. Based on (0.2) in Lemma 2, we can obtain

S1(t)− Ŝ1(t)

S1(t)
=

∫ t

0

Ŝ1(s−)

S1(s)

I(Y
EL

1 (s) > 0)

Y
EL

1 (s)
dMEL

1 (t) +

∫ t

0

Ŝ1(s−)

S1(s)
I(Y

EL

1 (s) = 0)dΛ1(s)

=
n∑
i=1

∫ t

0

Ŝ1(s−)

S1(s)

I(Y
EL

1 (s) > 0)

Y
EL

1 (s)
piDidM1i(t) + B1(t),

where B1(t) =
∫ t

0
Ŝ1(s−)
S1(s)

I(Y
EL

1 (s) = 0)dΛ1(s).

Let τ = inf{s : Y
EL

1 (s) = 0} and B(t) = B1(t)S1(t). So ∀ t > τ, Y
EL

1 (t) =
∑n

i=1 piDiI(Y1i >

t) = 0.

And we can obtain

B(t) = S1(t)

∫ t

τ

Ŝ1(s−)

S1(s)
dΛ1(s)I(τ < t)

= S1(t)Ŝ1(τ)
S1(τ)− S1(t)

S1(τ)S1(t)
I(τ < t)

= Ŝ1(τ)
(

1− S1(t))

S1(τ)

)
I(τ < t),

therefore, as n→∞,

E[B(t)] = E
{
Ŝ1(τ)

(
1− S1(t))

S1(τ)

)
I(τ < t)

}
6 E

{
I(τ 6 t)(1− S(t))

}
= (1− S(t))(1− π1(t))n1 −→ 0,

which implies that as n→∞, B(t)
P−→ 0.

The derivatives of the consistency theorem can be divided into two steps. First, we show

that for any fixed u ∈ (0,∞) such that as n1 → ∞, Y 1(u)
P−→ ∞, then sup06s6u |Ŝ1(s) −
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S1(s)| P−→ 0, as n → ∞. Second, we show that if t ∈ (0,∞] is such that for any u <

t,Y 1(u)
P−→∞, as n→∞. Then sup06s6t |Ŝ1(s)− S1(s)| P−→ 0, as n→∞.

Under the conditions in this theorem, for any t 6 u, S1(t) > 0. Followed by Lemma 2, we

have as n→∞,

P
{S1(t)− Ŝ1(t)

S1(t)
= U(t) on [0, u]

}
,

where

U(t) =
n∑
i=1

∫ t

0

Ŝ1(s−)

S1(s)

I(Y
EL

1 (s) > 0)

Y
EL

1 (s)
piDidM1i(t). (0.3)

Note that ξ0ψ(Zi) = e(Zi), based on (2.3), we have

qi = piDi =
1

n

Di

ξ̂ψ(Zi)

=
1

n

Di

e(Zi)
− 1

n

Diψ
T (Zi)

e2(Zi)
(ξ̂ − ξ0) + op(n

− 1
2 ), (0.4)

hence (0.3) becomes

U(t) =
1

n

n∑
i=1

∫ t

0

Ŝ1(s−)

S1(s)

I(Y
EL

1 (s) > 0)

Y
EL

1 (s)

Di

e(Zi)
dM1i(s)−

1

n

n∑
i=1

∫ t

0

Ŝ1(s−)

S1(s)

I(Y
EL

1 (s) > 0)

Y
EL

1 (s)

Diψ
T (Zi)

e2(Zi)
dM1i(s)(ξ̂ − ξ0) + op(n

− 1
2 )

=: U1(t)− U2(t)(ξ̂ − ξ0) + op(n
− 1

2 ),

where “=:” means “defined as” throughout our paper.

Combining equation (0.4) and Lemma 1, as n→∞, we can obtain

Ŝ1(s−)

S1(s)

I(Y
EL

1 (s) > 0)

nY
EL

1 (s)

Di

e(Zi)
= 1

n

Di

e(Zi)

Ŝ
(1)
1 (s−)

S1(s)

I(Y 1(s) > 0)

π1(s)
,

where Ŝ
(1)
1 (s−) =

∏
u<s

{
1−

∑ Di
e(Zi)

∆N1i(u)∑ Di
e(Zi)

Y1i(u)

}
.

Let U∗
1 (t) = 1

n1

∑n1

i=1

∫ t
0
Ŝ1(s−)
S1(s)

I(Y 1(s)>0)
π1(s)

dM1i(s). Followed the assumption about D and

(Y1, C), we have sup06s6t |U1(t)− U∗
1 (t)| P−→ 0.

The process M1i(t) is a martingale and the process
Ŝ
(1)
1 (s−)

S1(s)
I(Y 1(s)>0)

π1(s)
is a predictable and

bounded process, by Corollary 3.4.1 in Flemming and Harrington (1991), ∀ε, η > 0, for any
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0 6 t < u, we can obtain

P
{

sup
06s6t

|U∗
1 (s)|2 > ε

}
6

η

ε
+ P

{∫ t

0

Ŝ
(1)
1 (s−)2

S2
1(s)

∑n1

i=1 I(Y1i > s)

n2
1π

2
1(s)

I(Y 1(s) > 0)dΛ1(s) > η
}

6
η

ε
+ P

{ Λ1(t)

nS2
1(t)π1(t)

> η
}
.

Therefore, as n → ∞, sup06s<u |U1(s)| P−→ 0. Under the conditions in this theorem, as

n → ∞, U2(s) = Op(1). On the other side, we have showed that ||ξ̂ − ξ0|| = Op(n
− 1

2 ),

therefore as n → ∞, sup06s<u |U2(s)(ξ̂ − ξ0)| P−→ 0. The first step of consistency theory is

finished.

Next, we are going to show that if u = sup{t : π1(t) > 0}. Then sup06s6u |Ŝ1(s)−S1(s)| P−→

0, as n→∞.

So it implies to find a t0 such that as n→∞, supt06s6u |Ŝ1(s)− S1(s)| P−→ 0.

For t0 6 s 6 u,

S1(u) 6 S1(s) 6 S(t0)

Ŝ1(u) 6 Ŝ1(s) 6 Ŝ1(t0),

hence, after simple algorithms, we have

sup
t06s6u

∣∣∣Ŝ1(s)− S1(s)
∣∣∣ 6 ∣∣∣Ŝ1(t0)− S1(t0)

∣∣∣+ 2
∣∣∣S1(t0)− S1(u)

∣∣∣+
∣∣∣Ŝ1(u)− S1(u)

∣∣∣.
We have shown that

∣∣∣Ŝ1(t0)− S1(t0)
∣∣∣ P−→ 0, as n→∞ in the first step, and the second

term in last equation tends to 0 by the continuity of S1(·) if we choose some t0 close to u.

Therefore, it suffices to show that as n→∞,

∣∣∣Ŝ1(u)− S1(u)
∣∣∣ P−→ 0.

We discuss the two cases: S1(u) = 0 and S1(u) > 0, separately.

When S1(u) = 0, there exists a t0 such that
∣∣∣S1(t0) − S1(u)

∣∣∣ P−→ 0, which implies
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∣∣∣ P−→ 0, note that u > t0, then

∣∣∣Ŝ1(u)− S1(u)
∣∣∣ 6

∣∣∣Ŝ1(u)
∣∣∣+
∣∣∣S1(u)

∣∣∣
6

∣∣∣Ŝ1(t0)
∣∣∣+
∣∣∣S1(t0)

∣∣∣
6

∣∣∣Ŝ1(t0)− S1(t0)
∣∣∣+ 2

∣∣∣S1(t0)
∣∣∣.

Together with the results in the first step, the first term in last equation converges in

probability to 0 as n→∞.

When S1(u) > 0, since

∣∣∣Ŝ1(u)− S1(u)
∣∣∣ 6

∣∣∣Ŝ1(u)− Ŝ1(t0)
∣∣∣+
∣∣∣Ŝ1(t0)− S1(t0)

∣∣∣+
∣∣∣S1(t0)− S1(u)

∣∣∣,
so it suffices to show that as n→∞,

∣∣∣Ŝ1(u)− Ŝ1(t0)
∣∣∣ P−→ 0.

For any ε > 0,

P
{∣∣∣Ŝ1(t)− Ŝ1(t0)

∣∣∣ > ε
}

= P
{∣∣∣ ∫ t

t0

I{Y EL
(t) > 0}Ŝ1(s−)

dN
EL

1 (s)

Y
EL

1 (s)

∣∣∣ > ε
}

6 P
{∣∣∣ ∫ t

t0

I{Y (t) > 0}
{dNEL

1 (s)

Y
EL

1 (s)
− dΛ1(s)

}∣∣∣ > ε/2
}

+(0.5)

P
{∣∣∣ ∫ t

t0

dΛ1(s)
∣∣∣ > ε/2

}
.

By the continuity of S1(t), we can find a t0 such that

∣∣∣ ∫ t

t0

dΛ1(s)
∣∣∣ =

∣∣∣− ∫ t

t0

dS1(t)

S1(t)

∣∣∣ 6 ∣∣∣S1(t)− S1(t0)
∣∣∣ < ε/4.

Similar to the proof of uniformly consistency of the process U1(t) in the first step, we can

easily show that as n→∞

P
{∣∣∣ ∫ t

t0

I{Y (t) > 0}
{dNEL

1 (s)

Y
EL

1 (s)
− dΛ1(s)

}∣∣∣ > ε/2
}
< ε/2.

Here we omit the detailed proof. Hence as n→∞,
∣∣∣Ŝ1(t)− Ŝ1(t0)

∣∣∣ P−→ 0 when S1(t) > 0.

We have finished the proof of the consistency theorem.
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Proof of Theorem 2

Proof. By the derivations of the consistency theorem and the consistency of Ŝ1(t), we can

obtain:

S1(t)− Ŝ1(t)

S1(t)
=

1

n

n∑
i=1

∫ t

0

1

π1(s)

Di

e(Zi)
dM1i(s)

− B1 · (ξ̂ − ξ0) + op(n
− 1

2 ),

where B1 = E
[ ∫ t

0
1

π1(s)
Diψ

T (Zi)
e2(Zi)

dM1i(s)
]
.

Together with Lemma 1, we have

S1(t)− Ŝ1(t)

S1(t)
=

1

n

n∑
i=1

∫ t

0

1

π1(s)

Di

e(Zi)
dM1i(s)

− B1A
−1 1

n

n∑
i=1

(Di − e(Zi))ψ(Zi)

e(Zi)(1− e(Zi))
+ op(n

− 1
2 ). (0.6)

By the central limit theory of independent identically random variables, we can obtain for

any t ∈ I1,
√
nS1(t)−1(Ŝ1(t)− S1(t)) converges to a normal distribution N(0, V1),where

V1 = E
[ D

e(Z)

∫ t

0

1

π1(s)
dM1(s)

]2

−B1A
−1BT

1 .

Note that the two terms in equation (0.6) are correlated. We have finished the proof of this

theorem.

Proof of Theorem 4

Proof. Followed by the proof of Theorem 2, for a fix time point t, we have

∆̂(t)−∆(t) = Ŝ1(t)− Ŝ0(t)− (S1(t)− S0(t))

= S1(t)
1

n

n∑
i=1

Di

e(Zi)

∫ t

0

1

π1(s)
dM1i(s)− S1(t)B1(ξ̂ − ξ0)−

S0(t)
1

n

n∑
i=1

1−Di

1− e(Zi)

∫ t

0

1

π0(s)
dM0i(s) + S0(t)B0(ξ̂ − ξ0) + op(n

− 1
2 ).

Then the large sample properties can be easily obtained.
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Additional Simulation Results

The simulation setups are the same as simulation study 2 except that the sample size is set

to n = 100 and n = 300.

Results of simulation study 2 with n = 100

method para true est.hat bias se sd RMSE

KM S1(t) 0.504 0.572 0.135 0.078 0.074 0.156

KM S0(t) 0.265 0.221 0.165 0.065 0.062 0.177

KM ∆(t) 0.239 0.351 0.467 0.103 0.097 0.478

IPW incorrect S1(t) 0.504 0.529 0.05 0.076 0.075 0.091

IPW incorrect S0(t) 0.265 0.254 0.041 0.073 0.07 0.084

IPW incorrect ∆(t) 0.239 0.275 0.149 0.103 0.103 0.181

IPW correct S1(t) 0.504 0.514 0.02 0.073 0.074 0.075

IPW correct S0(t) 0.265 0.265 0.002 0.074 0.072 0.074

IPW correct ∆(t) 0.239 0.248 0.039 0.099 0.104 0.107

EL S1(t) 0.504 0.508 0.008 0.071 0.068 0.071

EL S0(t) 0.265 0.272 0.027 0.076 0.067 0.081

EL ∆(t) 0.239 0.236 0.012 0.097 0.091 0.098
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Results of simulation study 2 with n = 300

method para true est.hat bias se sd RMSE

KM S1(t) 0.504 0.569 0.129 0.044 0.044 0.136 67.5

KM S0(t) 0.265 0.224 0.155 0.039 0.037 0.16 76.7

KM ∆(t) 0.239 0.345 0.443 0.059 0.057 0.447 53.7

IPW incorrect S1(t) 0.504 0.524 0.04 0.043 0.044 0.059 92.2

IPW incorrect S0(t) 0.265 0.256 0.033 0.043 0.042 0.054 92.8

IPW incorrect ∆(t) 0.239 0.268 0.121 0.058 0.061 0.134 92.5

IPW correct S1(t) 0.504 0.509 0.01 0.042 0.043 0.043 95.1

IPW correct S0(t) 0.265 0.267 0.007 0.043 0.043 0.044 94.1

IPW correct ∆(t) 0.239 0.242 0.013 0.056 0.061 0.057 96.6

EL S1(t) 0.504 0.506 0.004 0.041 0.041 0.041 94.5

EL S0(t) 0.265 0.269 0.016 0.043 0.041 0.046 93.1

EL ∆(t) 0.239 0.237 0.01 0.054 0.055 0.055 95.2
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