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 The key characteristics of the 86 Group-1 agents considered by Birkett et al. (2019) were 
determined based on the corresponding toxicological endpoints expressed by those agents, by use 
of the mapping of these endpoints to the key charcteristics given in Table 2.  The determination of 
key characteristics for the six agents summarized in Table 3 is described in detail below. 

References in the main text below were drawn from the Monographs themselves and from relevant 
literature published around the time of their publication. In the ‘Updated PubMed search’, more recent 
studies are cited to support the identification of TEs and the ensuing KCs. In some cases, this search 
revealed information that led to novel TE/KC assignments. Details on the numbering of the 24 TEs 
and their categorization in terms of the ten KCs are given elsewhere in this Annex (Tables 1–2). 
 

Tamoxifen (IARC, 2012a) 
Tamoxifen induces DNA damage (TE#1). DNA adducts were detected in some studies in 

endometrial tissue and in leukocytes of breast-cancer patients treated with tamoxifen (Hemminki et al., 
1996; Shibutani et al., 1999; Umemoto et al., 2004). DNA adducts were also found in animals in vivo 
(Davies et al., 1997; Tryndyak et al., 2006; Gamboa da Costa et al., 2007) as well as in vitro in mammalian 
cells (Glatt et al., 1998). Tamoxifen induced DNA double-strand breaks and oxidized purines and 
pyrimidines via formation of free radicals (TE#2) in human peripheral blood lymphocytes and in 
human MCF-7 breast cancer cells (Wozniak et al., 2007). Clastogenic effects (TE#4) of tamoxifen were 
shown as formation of micronuclei in human lymphoblastoid MCL-5 cells (Styles et al., 1997), and of 
chromosome aberrations and micronuclei in vivo in mouse bone marrow (Vijayalaxmi & Rai, 1996; 
Hirsimäki et al., 2002) and in rat liver (Styles et al., 1997). Tamoxifen also induced endometrial K-RAS 
mutations (TE#5) in postmenopausal breast cancer patients (Wallén et al., 2005), and it reduced p53 
protein levels in MCF-7 human breast adenocarcinoma cells (Guillot et al., 1996). Tamoxifen also acts 
through epigenetic mechanisms (TE#6). Methylation of cell-free plasma DNA of breast cancer patients 
was altered after treatment with the agent (Liggett et al., 2011). Treatment of human endometrial cell 
cultures with tamoxifen resulted in changes in expression of genes associated with transcription 
regulation, cell-cycle control and signal transduction (Pole et al., 2005). In endometrial epithelial cells, 



  2 

the gene PAX2 is crucially involved in cell proliferation and endometrial carcinogenesis; this gene is 
activated by tamoxifen via hypo-methylation of its promoter (Wu et al., 2005b). Long-term exposure of 
rats to tamoxifen induced histone modifications (Tryndyak et al., 2006) and led to substantial changes in 
expression of microRNA genes in the liver (Pogribny et al., 2007). 

Tamoxifen is an anti-estrogen that acts, at least in part, by competing with estrogen receptors 
(TE#17). It is thus effective in arresting the growth of estrogen-responsive tumour cells. However, 
tamoxifen also inhibited the growth of MDA-MB-435 human breast cancer cells (Charlier et al., 1995) 
and of A549 human lung adenocarcinoma cells (Croxtall et al., 1994), which are both ER-negative. 
Apparently, ER-independent mechanisms are operative here (Reddel et al., 1985; Naundorf et al., 1996). 

Tamoxifen induced an imbalance between cell proliferation (TE#15) and apoptosis (TE#13), as 
was shown in benign endometrial tissue from tamoxifen-treated breast cancer patients (Mourits et al., 
2002). Estrogen modulators – including tamoxifen – affected transduction of cellular signalling 
pathways that govern cell growth and proliferation, through downstream effectors such as PAX2 
(Shang, 2006). Tamoxifen reduced cell proliferation (TE#15) in human MCF-7 and MDA-MB-231 
breast carcinoma cells, and induced changes in the expression of individual telomerase components 
(TE#20), which correlated with telomerase activity and cell proliferation (Aldous et al., 1999). 
Tamoxifen inhibited the growth of human MCF-7 breast cancer cells, as well as the expression of 
telomerase reverse transcriptase (hTERT), but it stimulated the growth and activated hTERT mRNA 
expression in human endometrial carcinoma cells. These effects of tamoxifen are mediated by 
transcriptional regulation of the hTERT promoter (Wang et al., 2002a). The tamoxifen-induced decrease 
of telomerase activity in human HepG2 hepatoblastoma cells was shown to be mediated by post-
translational suppression of protein kinase C activity (Brandt et al., 2005). 

Updated PubMed search 
Tamoxifen induces oxidative stress (TE#2). In cells derived from the human retinal pigment 

epithelium and from the mouse retinal photoreceptor, tamoxifen-induced cell death was accompanied 
by increased oxidative stress and elevated zinc levels; this effect was attenuated by the antioxidant N-
acetyl-L-cysteine (Cho et al., 2012). Rats treated with tamoxifen showed an increase in 
aminotransferases, carbonyl groups and 8-oxo-dG, all markers of oxidative stress (Codoñer-Franch et 
al., 2013). Tamoxifen caused autophagic cell death of human glioma cells in vitro through induction of 
oxidative stress, JNK activation, and up/downregulation of pro/anti-autophagic members of the BCL2 
family (Harmalkar et al., 2015). Tamoxifen induced a significant reduction in fat mass in adipose mice 
and transiently stimulated the production of reactive oxygen species (ROS) in these mice, and in 
murine adipocytes exposed to tamoxifen in vitro (Liu et al., 2015). The growth-inhibitory effects of 
tamoxifen on MCF7 human breast cancer cells were associated with enhanced levels of ROS 
production and lipid peroxidation (Sajadimajd et al., 2016). 

 
Hepatitis B virus (IARC, 2012b) 

Hepatitis B virus (HBV) induces chronic necro-inflammatory hepatic diseases (cirrhosis, chronic 
hepatitis) characterized by necrosis of hepatocytes followed by regenerative cell proliferation. These 
disorders induce oxidative/nitrosative stress and lipid peroxidation (LPO), thereby generating excess 
reactive oxygen species (ROS), reactive nitrogen species (RNS), and DNA-reactive aldehydes. The 
DNA adduct (TE#2) etheno-deoxyadenosine – resulting from interaction with LPO-generated 
aldehydes – was excreted in urine of HBV-infected patients diagnosed with chronic hepatitis, cirrhosis 
and hepatocellular carcinoma (Bartsch & Nair, 2004; Bartsch & Nair, 2006). The HBV-encoded X protein 
(HBx) increased the level of mitochondrial reactive oxygen species (TE#2) and caused lipid peroxide 
production in human liver cells (Lee et al., 2004). In human HepAD38 hepatoma cells in vitro, HBV 
replication induced oxidative stress and caused upregulation of heat-shock proteins and of genes 
(TE#7) associated with oxidative and metabolic stress, cell growth, and apoptosis (Severi et al., 2006). 



  3 

Oxidative stress and oxidative DNA damage were also observed in hepatocytes of transgenic mice 
overexpressing the HBV large envelope protein (Hagen et al., 1994) or the HBx protein (Gehrke et al., 
2004). The HBx protein modulates DNA-repair processes (TE#16) by interacting with p53 and/or 
repair enzymes, which may accumulate mutations (TE#5) and sensitize cells to genotoxic stimuli 
(Murakami, 1999). In transfection experiments with human HepG2 hepatoma cells, this protein was also 
found to trans-activate the c-MYC proto-oncogene at the transcriptional level (Balsano et al., 1991). 

HBV infection causes clastogenic/cytogenetic effects (TE#4). Analysis of hepatocellular 
carcinoma (HCC) tissue showed that integration of HBV DNA caused secondary chromosomal 
rearrangements, such as translocations, inversions, deletions and (possibly) amplifications (Matsubara 
& Tokino 1990). Chromosome abnormalities were detected in peripheral blood cells of HBV chronic 
carriers (Simon et al., 1991). Increased frequencies of chromosomal alterations and micronuclei were 
found in human hepatoma HepG2 cells transfected with the HBX gene (Livezey et al., 2002), as well as 
in HBV carriers and HBV patients (Leite et al., 2014). HBV-transfected HepG2T14.1 cells (variant of 
the HepG2 cell line) showed several genetic alterations such as de-novo aberrations of chromosomes 
9, 14, 15, and 20, as well as loss of heterozygosity (LOH) in the q region of chromosome 14. In HBV 
chronic carriers and HBV-positive patients with cirrhosis, the frequency of sister chromatid exchange 
(SCE) was significantly higher than in the controls (Ucur et al., 2003). 

HBV also acts via epigenetic mechanisms (TE#6). HCC tissue samples showed higher methylation 
frequencies in several genes, e.g. APC, GSTP1, Cox-2, than did samples from non-HCC liver tissue 
(Lee et al., 2003; Oh et al., 2007; Su et al., 2007). In human HepG2 and Huh7 hepatoma cells in vitro, 
HBV replication induced methylation of both host and viral DNA (Vivekanandan et al., 2010). The HBx 
protein promoted regional hyper-methylation and global hypo-methylation in cultured human liver 
cells (Park et al., 2007), and in HCC cells (Jung et al., 2010). Differential microRNA expression was 
observed in liver tissue obtained from 12 patients with HBV-related HCC; analysis of targeted genes 
by use of these infection-associated miRNAs revealed that pathways related to cell death, DNA 
damage, recombination, and signal transduction were activated in HBV-infected liver (Ura et al., 2009). 
Deregulation of miRNA was an early event and accumulated throughout the various steps of HBV-
associated hepatocarcinogenesis, with miRNA-145 being a candidate tumour-suppressive miRNA 
with an important role in HCC development (Gao et al., 2011). Similar effects of differential miRNA 
expression during acute and chronic infection were found in HBV-transfected HepG2 cells (Zhang et 
al., 2011). HBV replication in human HuH7 hepatoma cells and in liver tissue from HBV-infected 
patients was shown to be regulated by the acetylation status of the H3/H4 histones bound to the HBV 
mini-chromosome (Pollicino et al., 2006). 

HBV also induces changes in gene expression (TE#7). In HCC tissues/cell lines, HBV was found 
to be integrated into hepatocellular genomic DNA and shown to encode transcriptional trans-activators 
that stimulate gene expression from homologous and heterologous promoters (Schlüter et al., 1994). 
HBV-DNA integration sites isolated from HCC tissue showed that the viral genome induced mutations 
in key regulatory cellular genes (TE#5) (Paterlini-Bréchot et al., 2003). Integration of the HBV X DNA 
fragment and changes in gene expression were also seen in archival HCC specimens obtained from 
patients with HBV infection (Peng et al., 2005). In HepG2 cells, transfection with HBx induced 
expression of key genes involved in modulating signal-transduction pathways (Cougot et al., 2007). 

HBV induces changes in cell signalling (TE#8). In HepG2 and HuH7 human hepatoma cells, the 
HBx protein, encoded by the HBX gene, induced cytoplasmic retention of the p53 protein (Takada et 
al., 1997). This same protein also induced expression of key factors involved in complex signal-
transduction pathways for transactivation, through interaction with binding sites for transcription 
factors AP-1, AP-2, and NF-kappa B (Kekulé et al., 1993). The HBx protein induced expression of genes 
encoding metastasis-associated protein 1 and histone deacetylase in HCC, and in the liver of HBx-
transgenic mice (Yoo et al., 2008). 
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HBV induces acute and chronic inflammation (TE#12) (Bertoletti & Gehring, 2006) The HBV-
specific e-antigen (HBeAg) was shown to have an important immunomodulatory role in this process, 
playing a part in inflammation and regulation of the immune response during acute and chronic HBV 
infection (Yang et al., 2006). 

Integration of the HBV X DNA fragment in HCC modulates the expression of multiple molecules 
that play a key part in cell-cycle regulation (TE#15), apoptosis (TE#13), and cell proliferation, as was 
found in samples from HCC patients with HBV infection (Peng et al., 2005). The protein HBSP is 
generated by splicing during natural HBV infection. Interaction of its BH3 (Bcl2-homology) domain 
with Bcl-2/Bcl-x1 was sufficient to induce apoptosis in HepG2 cells (Lu et al., 2006; Lu et al., 2008). 
Expression of HBx in transgenic mice elicited an apoptotic response in the liver, independent of 
functional p53 protein. A direct, dose-dependent apoptotic function of HBx was also demonstrated 
during transient transfection of hepatocytes in vitro (Terradillos et al., 1998). The same protein was able 
to induce proliferation of human and animal hepatocytes in vitro and of hepatocytes in animals in vivo 
(Madden & Slagle 2001), but this pleiotropic protein also inhibited liver regeneration in animals in vivo 
and in animal cells in vitro (Tralhao et al., 2002). In a later study, HBx was shown to be either pro-
apoptotic or anti-apoptotic in primary rat hepatocytes, depending on the status of NF-kappaB: when 
HBx-induced activation of NF-kappaB was blocked, HBx stimulated apoptosis (Clippinger et al., 2009). 
This protein inhibited the growth of HCC cells and induced G2/M arrest in vitro and in vivo by 
persistent activation of the cyclin B1-CDK1 kinase (Cheng et al., 2009). In contrast, HBx promoted 
proliferation and upregulated transforming growth factors and connective tissue growth factors in a 
human hepatic stellate cell line (Guo et al., 2009a). The HBx protein also interfered with DNA repair 
(TE#16) in human hepatoma cells and fibroblasts in vitro (Becker et al., 1998), and downregulated XPB 
(i.e. ERCC3) and XPD (i.e. ERCC2), two important components of the transcription-repair factor 
TFIIH in human hepatoma cells (Qadri et al., 1996; Jaitovich-Groisman et al., 2001). The HBx protein 
repressed transcription of insulin-like growth factor binding protein-3 (IGFBP-3) by forming a 
complex with histone deacetylase 1 (Shon et al., 2009). 

In HCC tissues harbouring HBV, shortening of the restriction fragments (TRFs) at the ends of 
telomeres was demonstrated (TE#20) (Ohashi et al., 1996). Analysis of HBV-DNA integration sites 
isolated from different HCCs showed that the viral genome acted as an ‘insertional mutagene’, causing 
mutations in important genes controlling cell growth, which may lead to oncogenic transformation 
(TE#23) (Paterlini-Bréchot et al., 2003). In HCC-derived cell lines, the HBV-DNA integrates in a liver-
DNA sequence that strongly resembles that of the oncogene v-ERB-A, thus contributing to cell 
transformation (Dejean et al., 1986). 

Updated PubMed search 
HBx induced repression of the human E-cadherin gene through histone deacetylation in cultured 

human HepG2X hepatoma cells, stably transfected with HBx (Arzumanyan et al., 2012). HBV induced 
acute and chronic inflammation (TE#12) (Fallot et al., 2012). HBx activities in biologically relevant 
hepatocyte systems provided a link between modulation of apoptotic pathways by HBx (TE#13) and 
the development of HBV-associated HCC (Rawat et al. 2012). A meta-analysis of case–control studies 
demonstrated that polymorphisms in genes encoding microRNAs 146a and 196a-2 were associated 
with susceptibility to HBV-induced hepatocellular carcinoma (Xu et al., 2013a). HBx regulated 
numerous cellular signal-transduction pathways and transcription factors as well as cell-cycle 
progression and apoptosis (Xu et al., 2014a). 

 
Arsenic (IARC, 2012c) 

In cultured human alveolar type II (L-132) cells, dimethylarsinic acid caused single-strand DNA 
breaks and suppressed replicative DNA synthesis (TE#1) (Tezuka et al., 1993). Inorganic and organic 
(methylated) arsenic compounds induced DNA strand breaks in human blood cell lines, possibly by 
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different mechanisms (Wang et al., 2002a). In cultured human HeLa S3 cells, arsenite and its methylated 
metabolites induced high levels of oxidative DNA damage (TE#2) (Schwerdtle et al., 2003). Sodium 
arsenite in drinking-water caused oxidative stress in liver, brain and erythrocytes of rats (Flora 1999). 

Arsenic also induces cytogenetic damage (TE#4). Increased frequencies of chromosomal 
aberrations and sister chromatid exchange were observed in humans exposed to inorganic arsenic in 
drinking-water (Mahata et al., 2004). Chromosomal aberrations (Oya-Ohta et al., 1996) and micronuclei 
(Yih & Lee 1999) were found in human fibroblasts exposed to arsenicals in vitro. Arsenic also induced 
formation of micronuclei, in bone marrow of exposed mice (Deknudt et al., 1986; Lewińska et al., 2007). 
In vitro, it induced micronucleus formation in Chinese hamster V79 lung fibroblasts (Sinha et al., 2005). 
The mono- and dimethylated metabolites of trivalent arsenic were clastogenic (TE#4) in human 
lymphocytes and mutagenic (TE#5) in mouse lymphoma cells in vitro, but were negative for gene 
mutation in three strains of Salmonella typhimurium in the plate-incorporation assay (Kligerman et al., 
2003). In the Drosophila melanogaster wing somatic mutation and recombination test (SMART) – 
which measures loss of heterozygosity resulting from gene mutation, chromosome rearrangement, 
breakage, and loss – the organic arsenic compound dimethylarsinic acid (DMAV) increased the 
frequency of mutant spots; inorganic arsenic was inactive in this assay (Rizki et al., 2006). Arsenite 
acted as a co-mutagen at the hypoxanthine-guanine phosphoribosyl-transferase (Hprt) locus in Chinese 
hamster V79 lung fibroblasts irradiated with UV light of three different wavelengths (Li & Rossman 
1991). In-vitro treatment of Chinese hamster cells with sodium arsenite caused genetic instability 
(micronucleated, multinucleated, and apoptotic cells) (TE#16), aneuploidy, and persistent genome-
wide hypomethylation (TE#6) (Sciandrello et al., 2002; Sciandrello et al., 2004). 

Arsenic-induced carcinogenesis may proceed through epigenetic mechanisms (TE#6). The 
promoter regions of the genes TP53 and CDKN2A (encoding the tumour-suppressor protein p16) were 
hypermethylated in people chronically exposed to arsenic and in subjects with arsenic-related skin 
cancer (Chanda et al., 2006). Arsenic also induced specific alterations in histone H3 methylation in 
human A549 lung carcinoma cells (Zhou et al., 2008). As mentioned above, genome-wide 
hypomethylation was observed in V79-Cl3 Chinese hamster cells treated with arsenite (Sciandrello et 
al., 2004). Arsenic also induced changes in histone H3 acetylation and DNA methylation in human 
urothelial cell lines (Jensen et al., 2008) and alterations in cellular micro-RNA expression profiles in 
human lymphoblastoid cells (Marsit et al., 2006). 

Arsenite induced amplification (TE#7) of the dihydrofolate reductase (Dhfr) gene in 3T6 mouse 
embryo fibroblasts, which became methotrexate-resistant (Lee et al., 1988), and also amplified DHFR 
in human osteosarcoma TE85 (HOS) cells (Mure et al., 2003). 

Arsenic may induce altered cell signalling (TE#8), especially at low doses. Treatment of human 
keratinocytes and fibroblasts with 0.1–1 microM arsenic increased transcription, protein levels and 
enzyme activity of several base-excision repair genes, including DNA polymerase beta and DNA 
ligase I. However, at higher concentrations (> 10 microM), arsenic induced downregulation of DNA 
repair, oxidative DNA damage and apoptosis (Snow et al., 2005). 

Developmental stage-dependent susceptibility (TE#10) to the effects of arsenic was studied in 
newborns whose mothers experienced varying levels of arsenic exposure during pregnancy. Gene-
expression profiling identified 11 activated transcripts associated with activation of molecular 
networks involving NF-kappaB, stress, inflammation (TE#12), cell proliferation, and apoptosis in the 
newborn (Fry et al., 2007). 

Arsenic induced oxidant stress and NF-kappa B activation in cultured aortic porcine endothelial 
cells, with superoxide and hydrogen peroxide being the predominant reactive species that stimulate 
cell signalling and activate transcription factors (Barchowsky et al., 1996; Barchowsky et al., 1999). Long-
term, low-dose exposure to arsenic induced a generalized resistance to apoptosis in cultured HaCaT 
human keratinocytes, which then became tolerant toward high doses of arsenic, UVA radiation, and a 
number of chemotherapeuticals (Pi et al., 2005). Pretreatment of human keratinocytes with sodium 
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arsenite in vitro decreased the pro-apoptotic effects (TE#13) induced by UVB (Chen et al., 2005). 
Sodium arsenite inhibited apoptosis induced by UVR (solar-simulation ultraviolet radiation) in mouse 
keratinocytes (Wu et al., 2005b). 

Arsenic interferes with cell proliferation and differentiation (TE#15), as evidenced by stimulation 
of keratinocyte-derived growth factors in primary human epidermal keratinocytes (Germolec et al., 
1997), by an increase in cyclin D1 in normal human fibroblasts (Vogt & Rossman 2001), as well as by 
K-RAS oncogene overexpression and hypomethylation of genomic DNA in prostatic epithelial cells 
(Benbrahim-Tallaa et al., 2005a). Increased proliferation of the bladder epithelium was observed in mice 
exposed to arsenite in drinking-water (Luster & Simeonova, 2004). Cell proliferation was also induced 
in animal cells (Trouba et al., 2000) and in human cells (Komissarova et al., 2005) treated with arsenic in 
vitro. 

Arsenic also interferes with cellular DNA repair (Hartwig & Schwerdtle 2002) (TE#16). Exposure to 
trivalent mono-methyl arsenic strongly inhibited DNA repair in normal human primary fibroblasts by 
reducing TP53 induction after exposure to a carcinogen (Shen et al., 2008) or by inhibition of poly(ADP-
ribosyl)ation in cultured human HeLa S3 cells (Walter et al., 2007). These studies also indicated that 
inhibition of DNA repair by arsenic contributed to genomic instability. Sodium arsenite was co-
mutagenic with N-methyl-N-nitrosourea (MMU) at the Hprt locus in V79 Chinese hamster lung 
fibroblasts, probably by inhibiting proper repair of MNU-induced DNA lesions or by interfering with 
DNA-ligase activity (Li & Rossman 1989). 

Arsenic exhibits receptor-mediated effects (TE#17). Chronic exposure to arsenic induced androgen 
independence in human prostate epithelial cells. This malignant transformation led to a sixfold increase 
in the expression of the K-RAS oncogene (Benbrahim-Tallaa et al., 2005b; Benbrahim-Tallaa et al., 2007). 
Arsenite and arsenate activated extracellular signal-regulated kinases 1/2 by an epidermal growth 
factor receptor-mediated pathway in normal human keratinocytes (Tanaka-Kagawa et al., 2003). Arsenic 
is a potent endocrine disruptor, altering gene regulation by the closely related steroid hormone 
receptors for glucocorticoids (GRs), mineralocorticoids (MRs), progesterone (PR), and androgen (AR) 
in a similar manner (Davey et al., 2007). 

Angiogenic effects (TE#19) of arsenic were demonstrated in the chick chorioallantoic membrane 
(CAM) model: exposure to sodium arsenite (33 nM) caused a twofold increase in blood vessel 
branching (Mousa et al., 2007). In mice, low levels of arsenic (50–500 ppb in drinking-water) stimulated 
inflammatory angiogenesis and blood-vessel remodeling in the liver (Straub et al., 2007; States et al., 
2009). 

As evidence for immortalization (TE#23), sodium arsenite and sodium arsenate induced neoplastic 
transformation in normal, diploid Syrian hamster embryo (SHE) cells (Takahashi et al., 2002). Inorganic 
arsenite induced malignant transformation of human prostate epithelial cells (Achanzar et al., 2002). 

Updated PubMed search 
Arsenic induced chromosomal aberrations and micronuclei (TE#4) in bone-marrow cells of rats 

(Patlolla et al., 2012), and erythrocytes of mice (Khan et al., 2013). Arsenic trioxide and sodium arsenite 
inhibited growth and induced death of P3HR1 lymphoblastoid cells: arsenite induced caspase-
dependent apoptosis (TE#13) whereas arsenic trioxide triggered autophagic cell death (Zebboudj et al., 
2014). Upon acute or chronic exposure to arsenite, human bronchial epithelial cells overexpressed the 
cytokines IL-6 and IL-8, which were essential for the progression of the arsenite-induced 
transformation of these cells. These data reveal a link between inflammation (TE#12) and malignant 
transformation (TE#23) in cells chronically exposed to arsenite (Xu et al., 2013b). In acute 
promyelocytic NB4 leukaemia cells, arsenic trioxide caused an increase in the expression (TE#7) of 
CDKN1B (encoding the p27 cyclin-dependent kinase inhibitor) and CDKN2A (encoding protein p16), 
and a reduction in the expression (TE#7) of hTERT (telomerase reverse transcriptase) (Yaghmaie et al., 
2012). 
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UV and Solar Radiation (IARC, 2012d) 
Ultraviolet (UV) light is a genotoxic agent (TE#1) (Griffiths et al., 1998). UV radiation and visible 

light (290–500nm) induced DNA damage (TE#1) in cultured AS52 Chinese hamster ovary (CHO) 
cells (Kielbassa et al., 1997). Radiation in the UVA region (315–400nm) is only weakly absorbed by 
DNA, and induction of DNA damage occurs largely via photosensitizers that absorb UVA and release 
reactive oxygen/nitrogen species (ROS/RNS) that mediate DNA-damage induction (Ridley et al., 2009). 
Exposure of sea-urchin embryos to UVB (290–320nm) resulted in significant DNA damage measured 
as cyclobutane pyrimidine dimers (CPD), followed by a cascade of cellular events, and eventually 
apoptosis (Lesser et al., 2003). UVA (320–340nm) induced formation of single-strand breaks, oxidized 
pyrimidines, oxidized purines (essentially 8-oxo-7,8-dihydroguanine), and CPDs (largely TT-dimers) 
in CHO cells (Douki et al., 2003), and DNA strand-breaks in human HaCaT skin keratinocytes (Didier 
et al., 1999). UVA induced formation of reactive oxygen species (TE#2) in human keratinocytes, in 
particular after replacement of cholesterol with the more rapidly oxidized dehydrocholesterol (Valencia 
et al., 2006). Oxidative lesions in DNA were found in human skin fibroblasts and keratinocytes exposed 
to UVA radiation (Courdavault et al., 2004; Mouret et al., 2006), although CPDs predominated. 

UV radiation causes cytogenetic effects (TE#4). UVB (302nm) induced chromatid breaks in 
primary human lymphocytes in vitro (Wang et al., 2005). UVB (310–315nm) induced DNA strand-
breaks in JB6 mouse epidermal cells; addition of various antioxidant enzymes revealed that this DNA 
breakage is at least in part mediated by the formation of hydrogen peroxide and possibly other reactive 
species (Ghosh et al., 1993). In cultured CHO cells, 254-nm low-intensity continuous wave UV light 
strongly enhanced the level of sister chromatic exchange (SCE) (Rasmussen et al., 1989). UVA radiation 
(330–400nm) caused DNA strand-breaks and chromosomal aberrations in human HaCaT cells 
(Wischermann et al., 2008). 

UV and solar radiation are capable of inducing gene mutation (TE#5) (Pfeifer et al., 2005). In skin 
tumours from Xeroderma pigmentosum (XP) patients, all mutations in the TP53 gene were targeted at 
bi-pyrimidine (py-py) sequences, 55% of which were tandem CC→TT transitions, which are 
considered to be a signature of exposure to UV (Dumaz et al., 1994). Likewise, nearly all the melanomas 
from XP patients who carried mutations in the PTEN tumour-suppressor gene had several UV-
associated mutations, occurring at adjacent pyrimidines (Wang et al., 2009). Fingerprint mutations for 
UVA (AT > GC transversions) and UVB (GC > AT transitions) at py-py sites were analysed in the 
TP53 gene in human skin squamous cell carcinoma (SCC) and solar keratosis (SK) samples. These 
two mutation types occurred in nearly equal numbers, with UVA fingerprints largely distributed in the 
basal layer and UVB-induced mutations mainly in the supra-basal region (Agar et al., 2004). Clones of 
TP53-mutated cells were present in normal human and murine epidermis exposed to UVB, with 
sunlight acting as a tumour promoter by favouring the clonal expansion of TP53-mutated cells 
(Wikonkal & Brash 1999). Half of the skin tumours induced in hairless SKH/HR1 mice by daily 
exposure to long-wave UVA (365nm) showed positive staining for the p53 protein, and about 15% of 
the tumours showed a mutation in one of the exons 5, 7, or 8 of the p53 gene; no UVA-specific 
mutations, i.e. mutations specific for reactive oxygen species, were detected (van Kranen et al., 1997). 
Similarly, UV-signature mutations in the p53 tumour-suppressor gene are normally found in squamous 
cell carcinoma of experimental animal models (Rass & Reichrath 2008). When human 293-GTI-K 
embryonic kidney cells, which carry the lacZ bacterial gene on a stable shuttle vector, were irradiated 
with UVA or UVB, similar frequencies of LacZ mutations were seen at > 10% cell survival, whereas 
UVA induced twice as many mutations as did UVB at < 10% survival; mutations at A/T base pairs 
were induced more frequently by UVA than by UVB (Robert et al., 1996). In a series of human skin 
tumours, over 90% of squamous cell carcinomas and more than 50% of basal cell carcinomas 
contained UV-like mutations in the TP53 tumour suppressor gene. The DNA lesions were pyrimidine-
cytosine photoproducts caused by the UVB component of sunlight. Particular codons of the TP53 gene 
are most susceptible, apparently because of slower DNA repair at specific sites (Brash et al., 1996). 
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Continuous UV radiation at 254 nm was mutagenic in CHO cells at the ouabain resistance locus Ouar 
and at the Hgprt gene locus (Rasmussen et al., 1989). UVA-induced CPDs were found predominantly at 
T-T dipyrimidines and correlated with the mutation spectrum (C→T and CC→TT transitions) in CHO 
cells (Rochette et al., 2003).   

UV radiation can give rise to epigenetic changes (TE#6). UV radiation induced DNA hyper-
methylation and histone hypo-acetylation in human SCC cells in vivo and in SKH-1 hairless mice in 
vivo (Nandakumar et al., 2011). Aberrant methylation of tumour-suppressor gene promoters associated 
with transcriptional downregulation was shown in UV-induced human skin tumours such as basal cell 
carcinoma (BCC), squamous cell carcinoma (SCC), melanoma, and cutaneous lymphoma (van Doorn 
et al., 2005). UV radiation induced histone modifications in human skin fibroblasts in vitro (Kim et al., 
2009a) and in the skin of hairless mice (Kim et al., 2013). Differential microRNA expression profiles 
have been described in NIH3T3 mouse embryo fibroblasts (Guo et al., 2009b) and in human 
keratinocytes (Zhou et al., 2012) in response to irradiation with UVB. 

UV radiation also induces changes in gene expression (TE#7) in human cells in vivo (Rochette et 
al., 2009) as well as in vitro (Koch-Paiz et al., 2004; He et al., 2006). In human skin fibroblasts, repeated 
non-cytotoxic UVB exposures induced premature senescence, with loss of replicative potential and 
overexpression of senescence-associated genes (Chen et al., 2008). UV radiation induced prostaglandin 
E2 production and COX-2 expression in human skin in vivo (Seo et al., 2003), indicating that it can 
interfere with cell-signalling pathways (TE#8). 

Genotype susceptibility (TE#10) to UV-induced skin cancer has been reported in vivo in human 
melanoma skin cancers: following exposure to UVB, methylated cytosines were significantly more 
susceptible to CPD formation than unmethylated cytosines (Rochette et al., 2009; 19 427 505). UV-
induced changes in tyrosine cell signalling in melanocytes, keratinocytes, and fibroblasts from both 
human and murine sources were dependent on the characteristic genotypes of the cells exposed: UVR 
induced the receptor tyrosine kinase EphA2 by a p53-independent, but MAPK-dependent, mechanism 
(Zhang et al., 2008). Young adult BALB/c mice were more susceptible to the induction of skin tumours 
from FS40 sunlamps (emitting mainly UVB) than were 18-month-old animals (Ebbesen & Kripke 1982). 
Exposure to high levels of sunlight in childhood is a strong determinant of melanoma risk, which 
indicates developmental stage susceptibility to UV-induced cancers (Whiteman et al., 2001). 

UV induces immunosuppression and immunomodulation (TE#11) in exposed humans. Solar-
simulated UV caused significant immunosuppression in human volunteers, but equivalent doses of 
UVB and UVA did not, when given independently (Damian et al., 2008). However, interactions between 
UVA and UVB augment each other, enabling immunosuppression to occur at doses too low for either 
waveband to be suppressive (Halliday & Rana 2008). UVB radiation can alter the secretion of cytokines 
by epidermal keratinocytes and dermal fibroblasts (Fujisawa et al., 1997). These alterations have been 
implicated in UVB-induced immunosuppression and UVB-induced carcinogenesis (Eberlein-König et 
al., 1998; Suzuki et al., 2001). 

In mice, chronic irradiation with UV produced a systemic change in the immune defence (TE#11), 
which resulted in the failure of the UV-irradiated mice to reject highly antigenic, transplanted UV-
induced tumours that are rejected by non-irradiated syngeneic recipients (Fisher & Kripke, 1977; Fisher 
& Kripke, 2002). A photo-reactivating enzyme that is activated by visible light and repairs UV-induced 
CPD in DNA is present in marsupials, such as the opossum. UVB irradiation of the dorsal skin 
prevented these animals from developing a contact-hypersensitivity (CHS) response to 
dinitrofluorobenzene (DNFB). This effect was largely abolished when photo-reactivating light was 
given before the challenge with DNFB, which demonstrates the role of the pyrimidine dimer in this 
process (Applegate et al., 1989). 

Exposure to UV induced apoptosis (TE#13) in human HaCaT keratinocytes. Conditioned medium 
collected 12 hours after UV exposure induced apoptosis in non-irradiated cells, and this effect 
increased progressively when conditioned medium collected 24 or 72 hours after UV exposure was 
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used (Banerjee et al., 2005). Exposure to UV of different human melanoma cell lines initiated 
progressive cell death associated with pronounced apoptosis, with UVA having a greater effect than 
UVB. Microsatellite instability was higher after UVB than after UVA (Hussein et al., 2005). While 
CPDs are the most important apoptosis-inducing UV-associated lesions in repair-proficient cells, 
recent data indicate that (6–4)-photoproducts act as a signal for apoptosis in human fibroblasts deficient 
in DNA repair (Batista et al., 2009). The receptor tyrosine kinase EPHA2 is an essential mediator in 
UV-induced apoptosis (Zhang et al., 2008). 

UV can cause genomic instability (TE#16). UVA and UVB radiation induced persistent genomic 
instability in human cells in vitro (Phillipson et al., 2002; Hussein et al., 2005). UV radiation can also 
induce changes in vascularization (TE#19) in intrinsically aged and photo-aged human skin (Chung & 
Eun, 2007). 

UVA can induce site-specific DNA-damage in telomere sequences (TE#20) in human fibroblasts 
and HL-60 leukaemia cells in vitro. A photo-excited endogenous photosensitizer was shown to oxidize 
the central guanine of 5’-GGG-3’ in the telomere sequence to produce 8-oxodG, probably through an 
electron-transfer reaction. This site-specific damage may participate in the increase in the rate of 
telomere shortening (Oikawa et al., 2001b). 

A bystander effect is defined as the induction of damage in non-irradiated cells by irradiated cells. 
UV radiation induced bystander signalling (TE#22) in human HaCaT keratinocytes and MRC5 
fibroblasts in vitro (Banerjee et al., 2005; Whiteside & McMillan, 2009) and in V79 Chinese hamster 
fibroblasts in vitro (Dahle et al., 2005). 

Repeated in-vitro exposures to UVA induced malignant transformation (TE#23) of human HaCaT 
cells, with acquired resistance to apoptosis induced not only by UVA but also by UVB, arsenite, and 
various other chemicals. Increased protein kinase B signalling and decreased expression of the tumour-
suppressor PTEN may contribute to this malignant transformation (He et al., 2006). Multiple doses of 
combined UVA+UVB induced malignant transformation (TE#23) of human HaCaT keratinocytes 
(Gupta et al., 2006; Han et al., 2015). 

Updated PubMed search 
In vivo, sun-exposed skin of three whale species showed breaks and other lesions in mitochondrial 

DNA (Bowman et al., 2013). DNA breakage (measured by use of the comet assay) (TE#1) also appeared 
in peripheral lymphocytes of rats exposed to natural sunlight (Rodrigues-Junior et al., 2012). Increased 
frequencies of micronucleated erythrocytes (TE#4) were found in newborns of rat dams exposed to 
UVA during pregnancy (Zúñiga-González et al., 2015). The role of microRNAs (TE#6) in the dermal 
response to UV radiation has recently been reviewed (Syed et al., 2013; Syed et al., 2015). Mutations in 
the promoter of the telomerase reverse transcriptase (TERT) gene (TE#20) are common in melanoma, 
basal cell carcinoma and squamous cell carcinoma (Horn et al., 2013; Huang et al., 2013; Scott et al., 2014). 

 
Tobacco Smoking (IARC, 2012e) 

Tobacco smoke is a genotoxic and mutagenic mixture of thousands of chemicals (Hecht 1999; Hecht 
2003; DeMarini 2004), some of which form adducts with DNA (TE#1) (Bartsch et al., 1993; Hang, 2010). 
In a pooled analysis of three prospective studies, an association was found between DNA-adduct levels 
and lung cancer risk, which was more obvious in current smokers. Likewise, in a meta-analysis of nine 
case–control studies, a significant association was found between lung or bladder cancer and the levels 
of bulky DNA adducts in current smokers (Veglia et al., 2008). Adducts have also been detected in 
animals exposed in vivo – whole-body or nose-only – to tobacco smoke (Bond et al., 1989; Gairola et al., 
1991; Husgafvel-Pursiainen 2004). Other types of tobacco smoke-induced DNA damage included strand 
breaks (Nakayama et al., 1985; Holz et al., 1993) and oxidative lesions (TE#2), which have been found in 
a variety of tissues, including sperm, in smokers (DeMarini 2004) and in animals exposed in vivo 
(Husgafvel-Pursiainen 2004). 
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Smokers were shown to have significantly higher levels of sister chromatid exchange (SCE) 
(TE#1) in peripheral lymphocytes than non-smokers (Lambert et al., 1982; Perera et al., 1987; Sardaş et 
al., 1991). In some studies SCE formation in animals in vivo was reported, e.g. in bone-marrow cells 
of exposed mice (Benedict et al., 1984) and in fetal liver cells of mice exposed transplacentally (Karube 
et al., 1989), but in other reports SCE levels were not increased. 

Tobacco smoke induces oxidative stress (TE#2) which results in oxidative damage to DNA and 
chronic inflammation (TE#12). This was supported by results of studies in humans in vivo or in human 
cells in vitro (Faux et al., 2009; Yanbaeva et al., 2007; Milara & Cortijo 2012), in laboratory experiments 
(Bhalla et al., 2009) and in animals in vivo (Verschuere et al., 2012). 

Adducts between haemoglobin and different components of tobacco smoke (TE#3) were detected 
in the blood of smokers in a number of studies (Törnqvist et al., 1986; Bryant et al., 1987; Atawodi et al., 
1998; von Stedingk et al., 2011). Protein adducts were also found in human alveolar basal epithelial A549 
adenocarcinoma cells exposed in vitro to cigarette smoke (Rainey et al., 2009). 

Tobacco smoke and several of its components cause cytogenetic damage (TE#4). Increased 
frequencies of micronuclei (Larramendy & Knuutila, 1991; Piyathilake et al., 1995) and chromosomal 
aberrations (CA) (Littlefield & Joiner 1986) were associated with tobacco smoking and with smokeless 
tobacco use (‘chewing’) in humans (Husgafvel-Pursiainen 2004). Buccal cells from smokers and 
‘chewers’ display many of the changes associated with these two types of tobacco consumption (Proia 
et al., 2006). Cigarette-smoke condensate induced cytogenetic effects in vitro, in human diploid 2BS 
cells (Gu 1990), in human diploid GM03349B fibroblasts (Luo et al., 2004), and in animal cells and 
bacteria (DeMarini et al., 2008). SCE and CA were increased in human lymphocytes treated in vitro with 
the tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) (Salama et 
al., 1999).  

In lung adenocarcinomas from 92 smokers and 14 non-smokers, mutations (TE#5) in the oncogene 
K-RAS were detected in 40 tumours, all from smokers (Ahrendt et al., 2001). Mutations in TP53 were 
found in smoking-associated cancers in smokers (Husgafvel-Pursiainen et al., 1995; Pfeifer et al., 2002). 
Activated K-Ras genes were detected in mouse lung tumours induced by NNK (Reynolds & Anderson 
1991). Mutations at the HPRT locus were found in peripheral T-lymphocytes of smokers (Hackman et 
al., 2000). Both active and passive exposure to tobacco smoke in utero resulted in increased mutation 
at the HPRT locus in the fetus (Grant 2005). 

Tobacco smoke also operates via epigenetic mechanisms (TE#6). Lung cells from smokers were 
shown to carry promoter methylations of critical genes such as CDKN2A (encoding protein p16) and 
FHIT (fragile histidine triad) (Belinsky et al., 2002; Kim et al., 2004; Belinsky, 2005; Bhutani et al., 2008). 
Studies of human cells exposed to cigarette-smoke condensate in vitro also reported histone alterations, 
genomic hypomethylation and local DNA hypermethylation (Liu et al., 2010). Epigenetic alterations in 
tumour suppressor genes, particularly methylation of CDKN2A, may be an important mechanism for 
K-RAS-related tumorigenesis, but one that is rarely involved in the EGFR-related pathway (Toyooka 
et al., 2006). Epigenetic transcriptional silencing (TE#6) of genes via CpG-island hypermethylation has 
become known as a critical component in the initiation and progression of lung cancer (Belinsky 2005). 
In the rat, nearly all adenocarcinomas induced by the tobacco-specific carcinogen NNK were 
hypermethylated at the CDKN2A promoter (Belinsky et al., 1998). In human squamous cell carcinomas 
(SCC), the p16-encoding gene CDKN2A was methylated in 75% of adjacent carcinoma-in-situ lesions. 
Moreover, in premalignant lesions obtained from persons without SCC, the methylation frequency of 
this gene increased from 17% in basal cell hyperplasia, to 24% in squamous cell metaplasia, to 50% in 
carcinoma in situ (Belinsky et al., 1998). 

Changes in protein expression (TE#7) were observed in bronchial brush specimens from heavy 
smokers, where NNK enhanced the synthesis of the protein survivin in epithelial cells (Jin et al., 2008). 
Similar changes were reported for the Akt protein in human airway epithelial cells exposed to NNK in 
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vitro (West et al., 2003), and for the Fhit protein in rodents exposed to environmental cigarette smoke 
in vivo (D’Agostini et al., 2006). 

Key pathways altered in human lung adenocarcinoma (TE#8) correlated with smoking status (Ding 
et al., 2008). Analysis of transcriptional profiles resulting from exposure to complex mixtures such as 
cigarette smoke demonstrated changes in transcription of numerous genes in human cells in vitro (Sen 
et al., 2007). 

The genetic constitution of female smokers, in particular the N-acetyltransferase 2 (NAT2) slow-
acetylation genotype (TE#10) enhances their risk for smoking-associated breast cancer (Ambrosone et 
al., 2008), but this genotype does not clearly influence the bacterial mutagenicity of smokers’ urine 
(Hirvonen et al., 1994; Pavanello et al., 2002). In-vitro genotoxicity studies with human cells revealed 
evidence of genotype-carcinogen interactions, e.g. those associated with glutathione S-transferases M1 
and T1 (Norppa 2003). 

Tobacco smoke has been shown to affect the immune system, in particular early immune function 
(TE#11). Total leukocyte counts, most prominently segmented neutrophils, lymphocytes, and myeloid 
precursor dendritic cells, were reduced in neonates of smoking mothers compared with controls. These 
effects reflect an impact of maternal smoking on the developing fetal immune system (Pachlopnik 
Schmid et al., 2007). In human THP-1 monocytes and lung macrophages, exposure to cigarette smoke 
delayed the production of innate cytokines IL-1beta and IL-6, and reduced glutathione levels. These 
effects were associated with a reduction in NF-kappaB pathway activation (Birrell et al., 2008). The 
effects of tobacco smoking on early immune function through alterations in cytokine production in the 
feto-placental unit have been detected ex vivo in cord blood. Newborns of smoking mothers had altered 
signalling through Toll-like receptors, which are essential for innate microbial responses. These effects 
may play a part in the greater predisposition to infection among smoke-exposed infants (Prescott 2008). 
Chronic exposure of the bronchial epithelium to cigarette smoke caused increased production of 
metalloproteinases (MMP) by macrophages and of proteolytic enzymes by neutrophils (Domagala-
Kulawik 2008). Chronic inhalation of cigarette smoke in rats preferentially inhibited the plaque-forming 
cell response of lung-associated lymph nodes to the T-cell dependent antigen SRBC (sheep red blood 
cells), compared with anatomically distant lymph nodes; this reduction of the antibody response 
primarily involved the B-cell function (Sopori et al., 1989). Chronic exposure to cigarette smoke 
inhibited surface immunoglobulin-mediated responses in B-cells of rats (Savage et al., 1991). 

Exposure of pregnant B6C3F1 mice to inhaled mainstream cigarette smoke throughout gestation 
caused a significant increase in circulating white blood cell and lymphocyte counts in the offspring for 
up to 2.5 months after birth, a decrease in mitogen-stimulated T-lymphocyte proliferation in 3-wk-old 
offspring, and an increase in mixed lymphocyte response in 5-wk-old male pups, compared with 
corresponding effects in sex-matched, air-exposed controls (Ng & Zelikoff 2008). Exposure of 
ovalbumin-sensitized mice to mainstream cigarette smoke suppressed the allergic airway response and 
reduced eosinophilia, tissue inflammation, goblet cell metaplasia, concentrations of IL-4 and IL-5 in 
broncho-alveolar lavage (BAL) fluid, and ovalbumin-specific antibodies. These effects are associated 
with a loss of antigen-specific proliferation and cytokine production by T-cells (Thatcher et al., 2008). 

Chronic inflammation (TE#12) is a known cancer promoter that is induced by smoking as reported 
in studies in humans in vivo and in human cells or organ explants in vitro (van der Vaart et al., 2004; 
Smith et al., 2006; Walser et al., 2008; Zhou et al., 2009). 

Metals found in tobacco smoke, which may have a role in lung carcinogenesis, interfere with 
apoptosis (TE#13) as was reported in studies in humans in vivo (Stavrides 2006). In-vitro treatment of 
human airway epithelial cells with nicotine or NNK attenuated apoptosis and partially induced a 
transformed phenotype, with loss of contact inhibition and independence from exogenous growth 
factors (West et al., 2003). 

Both active smoking and exposure to second-hand smoke are irritants (TE#14) that increase the 
risk of chronic rhinitis (Higgins & Reh, 2012), and may cause bronchial irritation leading to asthma. In-
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utero exposure to maternal smoking may be independently responsible for early-onset asthma (Jindal 
& Gupta 2004). 

Components of cigarette smoke have effects on the cell cycle (TE#15). In a study of 188 primary 
human lung adenocarcinomas, somatic mutations were detected for several tumour-suppressor genes 
involved in critical pathways of cell proliferation, e.g. the ATM gene, which encodes a cell-cycle 
checkpoint kinase that functions as a regulator of TP53 (Ding et al., 2008). Cigarette-smoke extract was 
shown to induce G1 cell-cycle arrest in endothelial cells in vitro (Henderson et al., 2008). In murine or 
human lung epithelial cells, DNA synthesis was inhibited after exposure to benzo(a)pyrene (B(a)P), 
an important combustion product in tobacco smoke, along with activation of the DNA-damage 
checkpoint. Co-treatment with nicotine compromised the growth restriction and induced upregulation 
of cyclins D and A. Nicotine is thus able to override the DNA-damage checkpoint activated by a 
tobacco-related carcinogen (Nishioka et al., 2011). 

The tobacco-smoke constituent 4-aminobiphenyl induced chromosomal instability (TE#16) in 
human cancer cells in vitro (Saletta et al., 2007). Similarly, cigarette-smoke condensate induced genetic 
instability in human airway epithelial cells (Hays et al., 2008). In vivo, short-term exposure to 
mainstream or side-stream tobacco smoke – STS, the main component of second-hand smoke – 
induced mutations (TE#5) at an expanded simple tandem-repeat locus (Ms6-hm) in mouse sperm 
(Marchetti et al., 2011). Cigarette smoke induced telomere dysfunction and chromosomal instability in 
mouse embryos in vitro (Huang et al., 2010). Lung adenocarcinomas obtained from never smokers and 
smokers harbour different regions of genetic alteration and display different levels of genomic 
instability. Microsatellite instability has been found in DNA samples from colon cancer of smokers 
(Slattery et al., 2000). 
Receptor-mediated effects (TE#17) of various tobacco products were reported in studies with 
human placental tissue after maternal smoking (Wang et al., 1988), in human epidermal 
melanocytes exposed in vitro to tobacco-smoke extract (Nakamura et al., 2013), in human 
adenocarcinoma cells exposed in vitro to NNK (Schuller et al., 1999), and in mouse hepatoma 
cells exposed in vitro to cigarette-smoke condensate (Meek & Finch, 1999; Dertinger et al., 
1998). 
Cigarette-smoke condensate and NNK induced malignant transformation of human cells (TE#23) 
in vitro (Narayan et al., 2004; Zhou et al., 2003). 

Updated PubMed search 
Protein adducts (TE#3) were found in guinea-pigs exposed to cigarette smoke in vivo, and in serum 

of human smokers (Ghosh et al., 2012). Studies of human cells exposed to cigarette-smoke condensate 
in vitro revealed (TE#6) histone alterations, hypermethylation (Word et al., 2013), histone acetylation 
(Sundar et al., 2014) and repression of microRNAs (Xi et al., 2013). Cigarette-smoke condensate (CSC) 
caused malignant transformation of human MCF-10A breast epithelial cells (TE#23). This 
transforming capacity was linked to the presence of cadmium in the CSC, since treatment of the cells 
with CdCl2 had comparable transforming effects (Mohapatra et al., 2014). 

 
TCDD (IARC, 2012f) 

Most, if not all the effects of TCDD (2,3,7,8-tetrachlorodibenzo-para-dioxin, 2,3,7,8-TCDD, 
dioxin) are related to its binding to and activation of the aryl hydrocarbon receptor (AhR). 

TCDD is not directly genotoxic. It induced DNA strand breaks (TE#1) as a result of oxidative 
stress (TE#2) in human breast carcinoma cell lines (Lin et al., 2007) and it modulated DNA strand-break 
induction by estrogen in these cells (Lin et al., 2008). TCDD caused single-strand breaks in liver DNA 
of rats treated in vivo, in conjunction with lipid peroxidation (Wahba et al., 1988). These effects may be 
related to a TCDD-induced increase in the bioavailability of iron (Wahba et al., 1989). Formation of 
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oxidative DNA damage upon treatment with TCDD was more pronounced in intact rats compared 
with ovariectomized rats, possibly as a result of enhanced metabolic activation of estrogens to 
catechols by TCDD-induced enzymes. Expression of CYP1B1, an enzyme with estrogen hydroxylase 
activity, was induced by TCDD (Tritscher et al., 1996; Wyde et al., 2001). Sustained oxidative stress was 
observed in TCDD-treated mice (Shertzer et al., 1998). In the [32P]-postlabeling assay, TCDD-specific 
DNA adducts were not detected in the liver of treated male or female rats; however, in this assay TCDD 
caused a dose-dependent decrease in several I-compounds in the liver of female, but not male rats; this 
effect was not seen in the kidney. These findings correlate with the organ/sex specificity of TCDD as 
a carcinogen. Experiments with differently substituted dibenzodioxins showed that their effects on 
hepatic I-compounds correlated with their corresponding structure–Ah receptor binding (Randerath et 
al., 1988; Randerath et al., 1990). 

TCDD is clastogenic in various test systems (TE#4). It induced micronuclei in lymphocytes of two 
TCDD-intoxicated subjects (Valic et al., 2004), in cultured human lymphocytes (Nagayama et al., 1993), 
in primary rat hepatocytes in vitro (Turkez et al., 2012a), and in rats exposed in vivo (Türkez et al., 2012b). 
Increased frequencies of chromosomal aberrations were found in fetal tissues in a group of TCDD-
exposed pregnancies after the Seveso accident (Tenchini et al., 1983). Increased frequencies of 
chromosome aberrations and sister chromatid exchange (SCE) were measured in sheep exposed to 
high levels of TCDD during pasturage (Perucatti et al., 2006). 

TCDD induced intra-chromosomal recombination (TE#4) in mice in vivo (Schiestl et al., 1997). 
TCDD was mutagenic (TE#5) in the mouse lymphoma assay (Rogers et al., 1982) and in various other 
tests for mutagenicity (Escherichia coli, yeast), but did not give a mutagenic response in Salmonella 
typhimurium (Giri 1986). TCDD suppressed the expression of the checkpoint protein Mad2, which has 
an important role in accurate chromosome segregation in mitotic cells. This effect was seen also seen 
in AhR-deficient (-/-) mouse embryonic fibroblasts (MEF). TCDD thus increased chromosomal 
instability (TE#16) through the suppression of Mad2 expression through an AhR-independent pathway 
(Oikawa et al., 2001a). 

TCDD induced changes gene expression (TE#7) in human and animal cells in vitro, and in animals 
in vivo (Kim et al. 2009b; Dere et al., 2006). In a comparative inter-species analysis of the effects of 
TCDD on hepatic gene expression in rats and mice, responses conserved between species were 
associated with xenobiotic and chemical stress, and with alterations in amino acid and lipid metabolism 
(Boverhof et al., 2006). A two-fold or greater downregulation of abour 60 hepatic genes was found in 
rats after subchronic exposure (13 weeks) to TCDD (Ovando et al., 2006). 

TCDD is a strong inducer of several cytochrome-associated enzymes (TE#7), in particular 
CYP1A1 (Denison & Whitlock 1995; Micka et al., 1997; Whitlock 1999) and CYP1B1 (Tritscher et al., 1996; 
Wyde et al., 2001). 

TCDD induces epigenetic effects (TE#6) (not discussed in Monograph Vol. 100F; see review by 
Baccarelli & Bollati 2009). Analysis of T-cells in mesenteric lymph nodes during chemically induced 
acute colitis in mice revealed increased methylation of CpG islands in the immune regulator Foxp3 
and demethylation of IL-17 promoters. Both effects were reversed upon treatment with TCDD: the 
activation of AhR by TCDD thus led to demethylation or methylation of regulatory genes (Singh et al., 
2011). Changes in DNA methylation and gene expression were observed in splenocytes of mice upon 
TCDD-induced suppression of the lipopolysaccharide-stimulated IgM response (McClure et al., 2011). 
Acetylation of histones H3 and H4 and tri-methylation of histone H3 were detected at the promoter 
regions of CYP1A1 and CYP1B1 in human MCF-7 breast cancer cells and in human HepG2 hepatic 
cancer cells exposed to TCDD (Beedanagari et al., 2010). A single intraperitoneal dose of TCDD 
dysregulated the expression of the microRNAs miR101a and miR122 in mice (Yoshioka et al., 2011). 
In mouse embryo fibroblasts exposed to TCDD in vitro, miR101a was one of five prominently 
upregulated miRNAs (Huumonen et al., 2014). 
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In female rats initiated with diethyl-nitrosamine and subsequently treated with TCDD, persistent 
liver-cell proliferation (TE#15) and growth of enzyme-altered foci were seen after chronic exposure 
during 30 weeks followed by cessation of treatment (Tritscher et al., 1995). TCDD induced expression 
of AhR-responsive genes in the pituitary of mice treated in vivo (Huang et al., 2002). TCDD increased 
CYP1A1 mRNA expression in the retina of mice treated in vivo. It also promoted the expression of 
vascular endothelial growth factor-A in the retina and the retinal pigment epithelium of these mice, as 
well as in human retinal pigment epithelial cells (Takeuchi et al., 2009). Inherent differences were 
observed in TCDD-mediated gene-expression responses between mouse hepatoma cells in vitro and 
in hepatic tissue from TCDD-treated mice. Induction of genes involved in xenobiotic metabolism was 
noted in both systems. Responses associated with cell-cycle progression and cell proliferation were 
only seen in vitro, whereas those associated with lipid metabolism and immune effects were observed 
only in vivo (Dere et al., 2006). In human CD34+ cells, TCDD modulated numerous transcripts involved 
in cell cycle or cell proliferation, immune response, signal transduction, ion-channel activity or calcium 
binding, tissue development and differentiation, and female or male fertility (Fracchiolla et al., 2011). 

TCDD interferes with different cell-signalling pathways (TE#8). Alteration of cell signalling by 
TCDD has been observed in animals in vivo and in animal cells in vitro. TCDD activated the MAPK 
pathway via an AhR-independent mechanism in RAW 264.7 murine macrophages (Park et al., 2005). 
TCDD caused concentration-dependent anatomical rearrangements in the shape of the prosencephalic 
artery in zebrafish larvae through activation of Ahr2/Arnt1 pathway (Teraoka et al., 2010). 

A number of epidemiological studies among populations exposed to TCCD found no clear 
association between exposure and altered immunological status (IARC, 1997), and immune effects of 
TCDD are not mentioned in Monograph Volume 100. However, TCDD has immunosuppressive and 
immunotoxic properties (TE#11) (Vineis & Zahm 1988; Kerkvliet 2002). In T-cells isolated from a small 
number of TCDD-exposed industrial workers, the capacity to proliferate upon interleukin-2 
stimulation was significantly diminished, with TCDD showing a long-term immunosuppressive effect 
on T-helper cell function (Tonn et al., 1996). In human CD34+ cells, TCDD modulated numerous 
transcripts involved in cell cycle or cell proliferation, immune response, signal transduction, ion-
channel activity or calcium binding, tissue development and differentiation, and female or male fertility 
(Fracchiolla et al., 2011). Further evidence for effects of TCDD on the immune system comes from 
animal studies. A single subcutaneous injection of TCDD caused a significant reduction in the number 
of total peripheral lymphocytes in marmosets (Neubert et al., 1993). Crossing the placenta during 
gestation, TCDD produced fetal thymic atrophy, inhibited thymocyte maturation and reduced 
expression of thymic MHC class II molecules in mice (Holladay 1999). TCDD dose-dependently 
reduced the number of lipopolysaccharide-induced IgM antibody-forming cells in mice; this effect was 
correlated with a lower frequency of CD19+/CD138+ cells (North et al., 2009). Activation of the AhR 
by TCDD in mice dosed orally during an acute graft-versus-host response induced a population of 
alloreactive donor CD4+/CD25+ regulatory T (Treg)-like cells that had potent suppressive activity in 
vitro (Funatake et al., 2005). TCDD had a direct effect on cultured mouse lymphocytes resulting in the 
selective inhibition of the differentiation of B-cells into antibody-secreting cells (Tucker et al. 1986). 
Direct AhR-dependent effects of TCDD in both CD4+ and CD8+ T-cell subsets in the mouse 
contributed to the complete suppression of the cytotoxic T lymphocyte response, indicating that 
expression of the AhR is not required for the development of an immune response, but is required for 
TCDD-induced immune suppression (Kerkvliet et al., 2002). 

TCDD induced a switch from proliferation (TE#15) to terminal differentiation in primary cultures 
of human keratinocytes (Berkers et al., 1995). The 17-beta-estradiol-stimulated cell proliferation and 
increase in cellular DNA content of estrogen-responsive MCF-7 human breast-cancer cells were both 
inhibited by TCDD. This effect was not seen in MDA-MB-231 breast-cancer cells, which are non-
responsive to estrogen (Biegel & Safe 1990). Positive dose–response relationships were seen for the 
effects of TCDD on cell proliferation and growth of altered hepatic foci in female rats exposed in vivo 
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(Maronpot et al., 1993). The dose–response was different from that observed for the effects of TCDD 
on CYP450 gene expression in the same test system (Tritscher et al., 1992). 

TCDD inhibited apoptosis (TE#13) in human bronchial epithelial cells in vitro (Chen et al., 2014). 
TCDD stimulated proliferation of human SaOS-2 osteogenic sarcoma cells, increased the synthesis of 
alkaline phosphatase, and reduced apoptosis in a dose-dependent manner (Guo et al., 2008). TCDD 
caused an early increase in intracellular calcium and subsequent apoptosis in human L-MAT 
lymphoblastic T-cells, which do not express the AhR. An antagonist of calcium-dependent calmodulin 
blocked this effect, which suggests that calcium/calmodulin signals play an important part in the 
induction of apoptosis in L-MAT cells by TCDD (Kobayashi et al., 2009). In SHSY5Y human 
neuroblastoma cells in vitro, TCDD induced loss of viability, which was linked to increased caspase-
3 activity, PARP-1 fragmentation, DNA laddering, nuclear fragmentation and hypo-diploid (apoptotic) 
DNA content (Morales-Hernández et al., 2012). Male rats treated orally with TCDD showed functional 
and structural damages as well as apoptosis in spermatogenic cells. These effects were associated with 
lipid peroxidation (Sönmez et al., 2011). In rabbit chondrocytes in vitro, TCDD caused an increase of 
apoptotic effects in a dose-dependent manner. This effect was blocked by inhibitors of reactive oxygen 
species (ROS) or nitric oxide (NO), suggesting that the increase in apoptosis was mediated via 
ROS/NO-dependent pathways (Yang & Lee 2010). In primary rat hepatocytes in vitro, TCDD inhibited 
UVC-induced apoptosis; this effect was dependent on AhR-activation (Chopra et al., 2010). TCDD 
induced apoptotic cell death with nuclear fragmentation and DNA laddering in cerebellar granule cells 
(CGC) from AhR+/+ but not AhR ̶ / ̶  mice (Sánchez-Martin et al., 2011). TCDD significantly induced 
apoptosis in primary cortical neurons of the rat and in differentiated rat PC12 pheochromocytoma cells. 
The activation of MAPK signalling pathways was associated with this TCDD-mediated neuronal 
apoptosis (Xu et al., 2013c). 

TCDD induces a wide variety of AhR-mediated effects (TE#17). AhR activation by TCDD 
enhanced the invasiveness of human gastric cancer cells, likely through a c-Jun-dependent induction 
of matrix metalloproteinase-9 (Peng et al., 2009). Exposure to TCDD significantly decreased the plasma 
insulin concentration after a glucose challenge in AhR+/+ mice but not in AhR ̶ / ̶   mice (Kurita et al., 
2009). TCDD increased the serum glucose levels in AhR-sensitive C57BL/6J mice, but not in the less 
sensitive DBA/2J mice. The expression of intestinal mRNAs encoding sodium-glucose co-transporter 
1 (SGLT1) and glucose transporter type 2 were thus increased only in the C57BL/6J mice by TCDD 
(Ishida et al., 2005). In mouse hepatoma Hepa-1c1c7 cells, TCDD increased mRNA expression of the 
gene encoding phospholipase A(2)alpha and enhanced the activity of the corresponding enzyme, while 
these effects were not observed in AhR-defective c12 cells (Kinehara et al., 2009). TCDD induced AhR-
mediated apoptosis in the avian DT40 pre-B-cell line through activation of caspases 9 and 3 (Puebla-
Osorio et al., 2004). TCDD induced plasminogen activator inhibitor-1 through an AhR-mediated 
pathway in mouse hepatoma cells (Son & Rozman, 2002). Short-term in-vitro exposure of MRC-7 
human breast cancer cells to TCDD resulted in the suppression of estrogen receptor-alpha protein 
expression (Marquez-Bravo & Gierthy 2008). 

TCDD interferes with endogenous hormones (TE#18). TCDD induced enzymes that increased 
metabolism of endogenous estrogens to catechols in rats (Tritscher et al., 1996; Wyde et al., 2001). TCDD 
induced estrogenic action or inhibited estrogen-induced effects in various tissues because of cross-talk 
between the estrogen receptor and AhR (Ohtake et al., 2008). TCDD affected the expression levels of a 
series of estrogen-responsive genes in MCF-7 human breast carcinoma cells and RL95–2 human 
endometrial carcinoma cells (Tanaka et al., 2007). 

TCDD promoted the transformation (TE#23) of C3H/10T1/2 cells pre-treated with N-methyl-N'-
nitro-N-nitrosoguanidine (MNNG) (Abernethy et al., 1985). Dysregulation of growth regulatory factors 
such as PAI-2, TGF-beta1 and TNF-alpha were suggested to be involved in TCDD-induced 
transformation of human cells (Yang et al., 1999). TCDD immortalized normal human keratinocytes in 
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an AhR-dependent process, presumably by suppressing two key initiators of senescence, p16INK4a 
and p53. This suppression was accompanied by promoter methylation (Ray & Swanson, 2004). 

Updated PubMed search 
TCDD induces effects on cell-signalling pathways (TE#8). TCDD suppressed the attachment of 

spheroids onto human endometrial epithelial cells by inducing CYP1A1 expression and by modulating 
the Wnt-signalling pathway (Tsang et al., 2012). In human bronchial epithelial cells, TCDD inhibited 
the apoptotic effect of staurosporine, at least in part, through activation of the Akt and ERK1/2 
signalling pathways (Chen et al., 2014). In the rat brain cortex and in rat PC12 neuronal cells, TCDD 
caused a significant downregulation of β-catenin and phosphoglycogen-synthase kinase-3β (pSer9-
GSK-3β), which are elements in the Wnt/β-catenin signalling pathway (Xu et al., 2013d). TCDD 
stimulated cell proliferation in the cortex of the rat brain by affecting the Akt/GSK-3β/cyclin D1 
signalling pathway (Xu et al., 2014b). 

TCDD causes Epigenetic effects (TE#6). TCDD induced epigenetic transgenerational inheritance 
of adult-onset disease and epi-mutations in sperm. When gestating female rats (F0) were exposed to 
TCDD and F1–F3 generations were obtained in the absence of exposure, TCDD was found to promote 
early-onset female puberty, to affect spermatogenic cell apoptosis, and to decrease the pool size of 
ovarian primordial follicles. Differential DNA methylation regions were identified in the sperm of all 
males in the F1–F3 generations (Manikkam et al., 2012a; Manikkam et al., 2012b). 

In human glioma cells in vitro, TCDD stimulated transcription and activity of CYP19 (aromatase) 
(TE#7), which is responsible for estrogen synthesis. In glial cells of the brain, estrogen maintains 
normal brain function, ranging from neurotransmission to synapse formation. Therefore, this effect of 
TCDD may perturb hormonal balance in the brain (Tan et al., 2013). TCDD induced genomic instability 
(TE#16) in mouse embryonic fibroblasts (Korkalainen et al., 2012). 
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