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Mehmet Başdere, Karen Smilowitz, Sanjay Mehrotra

OS.1 Formulation Comparisons on Related Tour Problems

This section repeats the numerical experiments in Section 6.1 for two additional problems to demon-

strate the value of reformulations under less structured/more general settings. The first problem

is a tour length minimization problem where the length budget constraints are removed. The aim

is to find a minimum length tour which satisfies visit and locking requirements. In this setting,

we compare formulations when the lower and upper bounds of length budget are not explicitly

stated and come implicitly from the objective function. The second problem is a cost minimization

problem where the additive coefficients of the objective function are assigned randomly and the

aim is to find a minimum cost tour which satisfies visit and length requirements while ignoring

locking. In this setting, we compare formulations when solving a generic tour finding problem with

respect to various length budgets. These two problems are less structured compared to the LFTP

and capture a range of tour finding problems with budget and visit requirements.

OS.1.1 Tour Length Minimization Problem.

In this problem, we remove constraints (1c) and (2g) from LFTP-S and reformulations, respec-

tively. Each arc has a unit length and the aim is to find the minimum length tour which visits all

edges in M . Table OS.1 and OS.2 provide the results for tour length minimization problem using

the instances from Section 6.1. In addition, we repeat the experiments by removing the critical

vertices (Q0 versions) to analyze the effect of locking restrictions on model performance. Before

further comparison, we must note that assessing the difficulty of instances for this problem is not

trivial as some of the smaller instances turn out to be more difficult to solve than larger ones. In
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some cases, having more edges to visit can restrict the feasible region more making it more of a

feasibility problem rather than an optimization problem. On the other hand, instances without

locking restrictions are solved faster by all formulations compared to their counterparts with critical

vertices.

Table OS.1: Tour length minimization results on instances with 12, 18 and 24 must-visit edges

Setting Formulation
Count Duration (s) Performance

Sbtr VDLEI CutGen Total Gap (%) Opt Feas

M12Q4
LFTP-R2 35 1 0 2 0.0 10 0
LFTP-R3 29 0 0 2 0.0 10 0
LFTP-S 720 14 14 89 0.0 10 0

M18Q6
LFTP-R2 213 7 2 28 0.0 10 0
LFTP-R3 210 6 2 22 0.0 10 0
LFTP-S 3350 54 129 1044 0.5 9 1

M24Q6
LFTP-R2 465 8 6 74 0.0 10 0
LFTP-R3 410 8 5 54 0.0 10 0
LFTP-S 1809 20 142 768 1.0 9 1

M12Q0
LFTP-R2 67 - 0 3 0.0 10 0
LFTP-R3 20 - 0 2 0.0 10 0
LFTP-S 635 - 4 27 0.0 10 0

M18Q0
LFTP-R2 138 - 1 14 0.0 10 0
LFTP-R3 197 - 1 19 0.0 10 0
LFTP-S 1586 - 28 727 0.3 9 1

M24Q0
LFTP-R2 254 - 2 33 0.0 10 0
LFTP-R3 465 - 5 60 0.0 10 0
LFTP-S 1833 - 47 758 0.2 9 1

Under both critical and noncritical settings, reformulations solve all the instances to optimality

within the time limit of two hours whereas LFTP-S fails to prove optimality in 5 of 100 instances.

Experiments in Table OS.1 show that there is not a significant difference between reformulations,

favoring LFTP-R2 due to its smaller formulation size. Comparing reformulations to LFTP-S,

reformulations perform better than LFTP-S. Significant gaps in total solution times on instances

with 18 and 24 must-visit edges are caused by the instances that are not solved to optimality

by LFTP-S. In cases where LFTP-S solve all instances to optimality the solution time gap to

reformulations is around two- to three-folds. In summary, these results suggest that reformulations

are effective in reducing the solution efforts even in the absence of explicit length budget constraints.

OS.1.2 Cost Minimization Problem.

With the cost minimization objective, each arc has an objective contribution which is assigned

randomly between 0 and 1. The aim is to find minimum cost tour while visiting all edges in M and

satisfying the tour length restrictions. In this problem, we ignore locking restrictions to test the
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Table OS.2: Tour length minimization results on instances with 30 and 36 must-visit edges

Setting Formulation
Count Duration (s) Performance

Sbtr VDLEI CutGen Total Gap (%) Opt Feas

M30Q8 LFTP-R2 423 22 10 200 0.0 10 0
LFTP-S 2348 64 79 834 0.1 9 1

M36Q8 LFTP-R2 394 22 6 76 0.0 10 0
LFTP-S 1127 32 45 197 0.0 10 0

M30Q0 LFTP-R2 600 - 10 126 0.0 10 0
LFTP-S 1485 - 46 323 0.0 10 0

M36Q0 LFTP-R2 250 - 3 41 0.0 10 0
LFTP-S 1300 - 23 142 0.0 10 0

effect of budget constraints on a more generic routing setting; therefore, the experiments are carried

out on networks without critical vertices. The same tour length restrictions from Section 6.1 are

used. Table OS.3 and OS.4 summarize the results. Since locking restrictions are not considered,

VDLEIs are not used and the tables do not have the corresponding VDLEI column.

Table OS.3: Cost minimization results on instances with 12, 18 and 24 must-visit edges

Setting Formulation
Count Duration (s) Performance
Sbtr CutGen Total Gap (%) Opt Feas

M12Q0
[95% - 110%]

LFTP-R2 20 0 3 0.0 10 0
LFTP-R3 20 0 3 0.0 10 0
LFTP-S 266 2 11 0.0 10 0

M12Q0
[110% - 125%]

LFTP-R2 47 0 3 0.0 10 0
LFTP-R3 53 0 4 0.0 10 0
LFTP-S 223 2 14 0.0 10 0

M12Q0
[125% - 140%]

LFTP-R2 107 1 12 0.0 10 0
LFTP-R3 102 1 9 0.0 10 0
LFTP-S 357 3 20 0.0 10 0

M18Q0
[95% - 110%]

LFTP-R2 44 1 7 0.0 10 0
LFTP-R3 36 1 8 0.0 10 0
LFTP-S 247 2 11 0.0 10 0

M18Q0
[110% - 125%]

LFTP-R2 71 1 9 0.0 10 0
LFTP-R3 65 1 9 0.0 10 0
LFTP-S 245 2 12 0.0 10 0

M18Q0
[125% - 140%]

LFTP-R2 122 1 13 0.0 10 0
LFTP-R3 170 1 19 0.0 10 0
LFTP-S 234 2 9 0.0 10 0

M24Q0
[95% - 110%]

LFTP-R2 90 2 20 0.0 10 0
LFTP-R3 116 2 39 0.0 10 0
LFTP-S 502 9 56 0.0 10 0

M24Q0
[110% - 125%]

LFTP-R2 132 2 21 0.0 10 0
LFTP-R3 207 2 46 0.0 10 0
LFTP-S 996 18 206 0.0 10 0

M24Q0
[125% - 140%]

LFTP-R2 192 3 33 0.0 10 0
LFTP-R3 340 5 92 0.0 10 0
LFTP-S 1700 40 811 0.2 9 1

Compared to LFTP, the cost minimization problem is significantly easier to solve for two

reasons: (i) we do not consider locking restrictions and more importantly, (ii) the cost structure is

not clustered. Similar to the results in LFTP and tour length minimization problem, reformulations
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Table OS.4: Cost minimization results on instances with 30 and 36 must-visit edges

Setting Formulation
Count Duration (s) Performance
Sbtr CutGen Total Gap (%) Opt Feas

M30Q0
[95% - 110%]

LFTP-R2 135 7 88 0 10 0
LFTP-S 598 19 110 0 10 0

M30Q0
[110% - 125%]

LFTP-R2 184 4 46 0 10 0
LFTP-S 435 6 27 0 10 0

M30Q0
[125% - 140%]

LFTP-R2 170 3 48 0 10 0
LFTP-S 1344 28 186 0 10 0

M36Q0
[95% - 110%]

LFTP-R2 136 4 61 0 10 0
LFTP-S 441 13 62 0 10 0

M36Q0
[110% - 125%]

LFTP-R2 190 4 73 0 10 0
LFTP-S 847 35 267 0 10 0

M36Q0
[125% - 140%]

LFTP-R2 423 22 383 0 10 0
LFTP-S 1120 68 647 0 10 0

outperform LFTP-S in the number of subtour elimination inequalities needed and in solution times;

however, the performance gap is not as significant. All formulations find the optimal solutions

within the time limit for all instances except one instance in high budget M24Q0 runs where

LFTP-S fails to prove optimality. Between reformulations, LFTP-R2 performs slightly better

than LFTP-R3. As the length budget increases, the difference between solution times of LFTP-S

and reformulations decreases; however, reformulations are still better compared to LFTP-S.

The results of these additional experiments indicate that reformulations effectively reduce so-

lution times and subtour formations when compared to LFTP-S under different problem settings

which is promising as these settings cover a broad range of tour finding variants with length budget

and locking restrictions.

OS.2 Case Study: Compactness Objective

This section provides a brief discussion on the compactness objective where the aim is to maximize

compactness (or equivalently minimize the area covered by the resulting tour) and uses a proxy

objective function to design compact routes for BACM. Maximizing compactness of a marathon

course is a crucial objective from two perspectives: (i) the resulting tour spans a smaller area,

making it easier to manage for the organizers and (ii) locks a smaller portion of the network

increasing overall accessibility. Considering the formulations proposed throughout the paper, a
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straightforward way to solve this problem is to represent each city block with a critical vertex and

assign a penalty coefficient for each vertex that is blocked by the resulting tour. Penalty coefficient

for each critical vertex can be set to the size or the population of the block that it represents.

However, adding vertices for each block increases the size of the underlying network significantly,

making the resulting problem difficult to solve. For this reason, we introduce a proxy compactness

objective which aims to minimize the weighted distance from the arcs of the tour to the hypothetical

line that passes through the start-finish line of the race. Similar to medical distance minimization

objective, the weights come from the length of the arc.

We use LFTP-R2 to solve the course design problem with a compactness objective for similarity

levels from 100% to 0% as in Section 6.2. The detailed results of the experiments are not reported

here as all the instances are solved within ∼ 30 seconds. Instead, we provide the courses obtained

at different similarity levels in Figure OS.4 along with their improvement measured by the proxy

compactness objective. The resulting courses indicate that proxy compactness objective works well

in limiting the area covered by the resulting tour. Similar to the medical distance objective, notable

improvements can be made while keeping a large portion of the course the same.
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(c) 50% similarity
37.6% improvement.
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(d) 0− 40% similarity
38.0% improvement.

Figure OS.4: Tours with different similarity requirements.
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