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ABSTRACT

Jolkinolide A, jolkinolide B, 17-hydroxyjolkinolide A and 17-hydroxyjolkinolide
B are abundant constitutes in Euphorbia Fischeriana Steud and exhibit profound
bioactivities. In this study, they were selected as quality control to optimize the
extraction of E. fischeriana. Response surface methodology employing Box-Behnken
design was applied to test the optimal conditions for the extraction. The optimized
conditions for the simultaneous extraction of four diterpenoids from E. fischeriana
were: ethanol concentration 100%, extraction temperature 74°C and extraction time
2.0 h. The extraction contents for jolkinolide A, jolkinolide B, 17-hydroxyjolkinolide
A and 17-hydroxyjolkinolide B were 0.1763, 0.9643, 0.4245 and 2.8189 mg/g. The
extract obtained under the optimal conditions was injected into UPLC-Q-TOF-MS
system. Fifty-one peaks were identified. Two peaks were tentatively identified as new

compounds. The compounds were diterpenoids, fatty oil, phenolics and others.
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Experimental
Chemicals and Reagents

The herbs of E. fischeriana (30 kg) were bought from Xianhe Pharmaceutical
Company (Lot Number: 20160616) and verified as genuine ones according to China
Pharmacopeia (2015 edition) by professor Lina Guo and Dezhi Ma of Qigihar
Medical University. Reference specimens and voucher specimens (1.0 kg) are kept in
Research Institute of Medicine and Pharmacy of Qigihar Medical University. The
standards were prepared by ourselves. The purity of all standards were above 98.0%.
Acetonitrile was purchased from Merck Company. Ethanol was purchased from
Tianjin Fuyu chemical Co. Ltd. Formic acid was purchased from Tianjin commie
chemical reagent Co. Ltd.
UPLC-MS detection

UPLC system (Shimadzu, Japan) consisted of a model LC-30AD pump and a
model SIL-30AC autosampler. The chromatograph was equipped with a gradient
mobile phase. Mobile phases were water with 0.1% of formic acid (A) and
acetonitrile with 0.1% of formic acid (B). The gradient used was as follows: 0.01 min,
20% B; 0.01-1 min, 20% to 30% B; 1-7 min, 30% to 50% B; 7-10 min, 50% to 70%
B; 10-15 min, 70% to 100% B; 15-16 min, 100%; 16-16.1 min, 100% to 20% B;
16.1-18 min, 100% B. The injection volume of sample was 1 uL. The flow rate was
0.3 mL-min~* and the column temperature was 35°C. The Q-TOF-MS system (AB,
America) with an ESI source was performed in positive mode and negative mode. The
parameters of ESI-MS were set as follows: ion source gas 1 (50 psi), ion source gas 2
(50 psi), curtain gas (35 psi), temperature (500°C), ion spray voltage floating (5500 V),
declustering potential (100 V), collision energy (10 V). MS conditions were corrected
by APCI positive calibration solution for the AB SCIEX Triple TOF™ systems.
Method validation
Linearity, LOD and LOQ

The linearity was established using a series of concentrations of standards. The

calibration curves of the four compounds were constructed by plotting the integrated



chromatography peak areas () versus the corresponding concentrations of the
injected standard solutions (X) using a 1/x* weighted linear least squares regression
model. LOD and LOQ of the developed method for each compound were determined
at signal-to-noise ratios (S/N) of 3 and 10 respectively.

Precision and recovery

The precision of the method was evaluated by intra-and inter-day variations. The
extract was obtained under the optimized conditions. The sample was tested six times
within a day for the intraday precision. The sample was analyzed in triplicate on three
consecutive days for the inter day precision.

The accuracy of the method was verified by recovery tests. Spiked and unspiked
samples were prepared to perform the recovery tests. Known amount of standard
solutions were spiked into the root of E. fischeriana. Three concentration levels were
prepared. The materials mixed with standards were extracted by optimized method for
evaluating the accuracy. Precision and recovery were evaluated by relative standard
deviations (RSDs).

Extraction procedure

Dried rhizomes of E. fischeriana were powdered by a disintegrator and then sieved
into a homogeneous size (60 mesh). Extractions were carried out in water baths. The
powders of 5.0 g were soaked in 100 mL different proportions of ethanol-water (from
0 % to 100%). Then, the heated reflux extraction experiments were conducted in
water baths (from 20 to 100°C) for 0.5 to 2.5 h.

The filtered extraction solution (2 mL) with 50 pL internal standard fraxinellone
(1 mg/mL) was to a 5 mL volumetric flask, dilute with acetonitrile to volume, and
mix. Then, the mixture was filtered through 0.22 um nylon membranes prior to UPLC
analysis. The extraction was performed in triplicate.

Responses surface methodology

RSM was employed to determine the optimum levels of ethanol concentration
(v/v, %) (Xy), extraction temperature ('C) (Xz) and extraction time (min) (X3) related
to responses yields of the contents of four diterpenoids. We evaluated the effects of
ethanol concentration was ranged from 50 to 100%, ambient temperature that varied
from 40 to 80°C, and the extraction time was evaluated from 1.0 to 2.0 h. All these
conditions were selected based on preliminary experimental results. Moreover, BBD

with RSM was applied to identify the best combination of the parameters. The effect



of three parameters on the extractions were investigated at three levels (-1, 0 and +1).
In total, seventeen experiments were conducted in random order. The values were

fitted with a second-order polynomial model given below:
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Where Y was the response; X; and X; were the independent variables influencing
the response Y; fo, fi Bii, and B described the regression coefficients for intercept,
linear, quadratic and interaction terms, respectively. Design-Expert 8.0.6 was used to
statistically analyzed the data. The quality of fit of the polynomial model was
evaluated with respect to the coefficient of determination (R?) and F-test. The lack of
fit F-value (P < 0.05) was acquired by analysis of variance (ANOVA) and used to
demonstrate variable significance and model adequacy.
Results
Investigation of the fragmentation patterns of reference standards

The extract obtained under the optimized conditions was injected into the UPLC-
MS system.

To get the information about precursor ions and characteristic fragment ions of the
compounds, jolkinolide A, jolkinolide B, 17-hydroxyjolkinolide A, 17-
hydroxyjolkinolide B, euphopilolide, 12-deoxyphorbol-13-hexadecaoate, atis-16-en-
13(S)-hydroxy-3,14-dione, ent-(16R)-16,17-dihydroxykauran-3-one and scopoletin
were injected into the LC-MS system. The fragmentation patterns of the standards
were discussed in detail below..

Jolkinolide A produced a precursor ion [M+H]" at m/z 315.1954 (CyoH703) with
the retention time of 12.79 min. The ion at m/z 297.1846 was attributed to eliminate
one molecule of water. The ion at m/z 269.1897 was produced by further loss of one
molecule of carbonyl. The fragment ions at m/z 191.0706, 177.0551 and 163.0292
were attributed to skeleton residues by the cleavage of B-ring.

Jolkinolide B, 17-hydroxyjolkinolide A, 17-hydroxyjolkinolide B and
euphopilolide are ent-abietane type diterpenoids, which produced [M+H] " ions at m/z
331.1901, 331.1904, 347.1844 and 317.2111 with the retention time of 11.70, 10.78,
9.75, 12.35 min. They produced ions which corresponded to residues by losses of
water, carbonyl and cleavage of B-ring.

12-Deoxyphorbol-13-hexadecaoate gave [M+H]" ion at m/z 587.3964 with the



retention time of 16.68 min. It could generate ions at m/z 551.3772 and 331.1541,
which corresponded to skeleton residues by losses of two molecules of water and
hexadecaoate group at C-13. The fragment ions at m/z 313.1434, 303.1588 and
295.1321 were attributed to eliminate one molecule of water, one molecule of
carbonyl and two molecules of water from 331.1541. The fragment ions at m/z
285.1485 and 267.1390 were attributed to eliminate two molecules of water from
303.1588. The fragment ions at m/z 257.1523 and 239.1421 were attributed to
skeleton residues by the cleavage of B-ring.

Atis-16-en-13(S)-hydroxy-3,14-dione produced [M+H] * ion at m/z 317.2096 with
the retention time of 6.56 min. The fragment ions at m/z 299.1995, 281.1888 and
263.1781 were attributed to successive losses of three molecules of water. The
fragment ions at m/z 289.2156, 271.2048 and 253.1946 were attributed to
successively eliminate one molecule of carbonyl and two molecules of water. The
fragment ions at m/z 257.1891 and 229.1575 were attributed to skeleton residues by
the cleavage of C-ring.

Ent-(16R)-16,17-dihydroxykauran-3-one showed [M+H]" ion at m/z 321.2426
with the retention time of 6.77 min. It produced ions at m/z 303.2318, 285.2211 and
267.2108, which were attributed to the sequential losses of three molecules of water.
The fragment ion at m/z 257.2258 was attributed to losses of two molecules of H,O
and CO. The fragment ion at m/z 227.1793 was attributed to loss of one molecule of
water and cleavage of C-ring.

Scopoletin showed [M+H]" ion at m/z 193.0504 with the retention time of 2.88
min. It produced ions at m/z 178.0268 and 150.0312 were attributed to the sequential

losses of -CH3 and carbonyl. The fragment ion at m/z 133.0283 was attributed to the

losses of CH3OH and CO. The fragment ion at m/z 105.0333 was attributed to the loss
of H,0O and cleavage of B-ring.
Investigation of the structures of diterpenoids in E. fischeriana

Fifty-one peaks were identified based on comparison of retention times, accurate
masses and fragmentation patterns with available standard compounds and literatures
(Table S1). They were diterpenoids, fatty oil, phenolics and others. Diterpenoids were
classified into 7 subtypes, namely, ent-abietane type diterpenoids, tigliane type
diterpenoids, ent-atisane type diterpenoids, daphnane type diterpenoids, lathyrane
type diterpenoids, diterpene lactone and sesterpenoid.



It is supposed that peaks 9, 13, 15, 24, 25, 27, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41,
42 and 46 were ent-abietane type diterpenoids. Peaks 31, 36, 40, 41 and 42 were
identified as 17-hydroxyjolkinolide B, 17-hydroxyjolkinolide A, jolkinolide B,
jolkinolide A and euphopilolide according to authentic standards. Peak 9 produced
[M+H]" ion at m/z 347.1846 with the retention time of 3.94 min. It produced ion at
m/z 329.1760, 311.1625 and 265.1609, which were attributed to the sequential losses
of two molecules of water and one molecule of HCOOH. The fragment ion at m/z
287.1588 was attributed to the sequential losses of CO and CH3OH. The fragment
ions at m/z 173.0977 and 159.0441 were attributed to the cleavage of A-ring. It was
tentatively identified as 11a,17-dihydroxyhelioscopinolide E (Wang et al. 2017). The
molecular masses of peaks 13 and 15 were 58 Da heavier than those of jolkinolide B
and jolkinolide A. Peak 13 presented [M+H]" ion with mass accuracy at m/z 389.1959
at the retention time with 4.74 min. It produced fragment ions at m/z 311.1591 and
293.1576, which were attributed to the sequential losses of CH3;COOH, one molecule
of water and another molecule of water. The fragment ion at m/z 283.1630 was
attributed to the losses of CH3COOH, CO and one molecule of water from m/z
389.1959. The fragment ion at m/z 237.1266 was attributed to the cleavage of D-ring.
It was tentatively identified as 17-acetoxyjolkinolide B (Wang et al. 2017). Peak 15
presented [M+H]" ion at m/z 373.2010 at the retention time of 5.30 min. It produced
fragment ions at m/z 313.1796, 295.1684 and 277.1586, which were attributed to the
sequential losses of CH3;COOH and two molecules of water. The fragment ion at m/z
267.1741 was corresponded to the sequential losses of CH3COOH, H,O and CO. The
fragment ion at m/z 255.1263 was attributed to the cleavage of D-ring. It was
tentatively identified as 17-acetoxyjolkinolide A (Che et al. 2017). Peak 24 presented
[M+H]" ion with mass accuracy at m/z 351.2163 at the retention time of 7.11 min. It
produced fragment ions at m/z 333.2078, 315.1956 and 297.1846, which were
attributed to the sequential losses of three molecules of water. The fragment ions at
m/z 287.1978 and 269.1830 were attributed to the losses of HCOOH and water from
m/z 333.2078. It was tentatively identified as yuexiandajisu E (Wang et al. 2013).
Peak 25 presented [M+H]" ion with mass accuracy at m/z 351.2153 at the retention
time of 7.80 min. It produced samilar fragment ions as peak 24. It was tentatively
identified as yuexiandajisu D (Lee et al. 2016). Peak 27 showed [M+H]" ion at m/z
349.2002 with the retention time of 8.45 min. It produced ions at m/z 331.1912,
313.1810 and 295.1707, which were attributed to losses of three molecules of water.



The fragment ions at m/z 285.1846 and 267.1729 were attributed to the losses of CO
and HCOOH from m/z 313.1810. The ions at m/z 175.0379 and 147.0435 were
attributed to the cleavage of rings. It was tentatively identified as 7f,113,12p-
trihydroxy-ent-abieta-8(14),13(15)-dien-16,12-olide. Peaks 24 and 25 were 16 Da
heavier than that of peak 30. Peak 30 showed [M+H]" ion at m/z 335.2210 with the
retention time of 9.36 min. It produced ions at m/z 317.2020, 289.1411 and 253.1903,
which were attributed to losses of one molecule of water, HCOOH and another two
molecules of water from m/z 335.2210. It was tentatively identified as 8p,14a-
dihydroxyabiet-13(15)-ene-16,12-lactone (Yan et al. 2008). Peak 35 showed [M+H]"
ion at m/z 363.2161 with the retention time of 10.59 min. It produced ions at m/z
345.2058, 331.1881 and 317.2070, which were attributed to losses of one molecule of
water, CH3;OH and CH3COOH. The ions at m/z 295.1754, 285.1827, 267.1733 and
257.1934 were attributed to sequential losses molecules of water and carbonyls from
m/z 331.1881. It was tentatively identified as euphorin H (Kuang et al. 2016). Peak 34
showed [M+H]" ion at m/z 329.2116 with the retention time of 10.56 min. Similar as
peak 35, it produced ions at m/z 297.1840 and 269.1908, which were attributed to
losses of CH3;0OH and CH3;COOH. The ion at m/z 241.1211 was attributed to loss one
molecule of CO from m/z 269.1908. It produced a series of fragment ions which were
attributed to the ions of cleavage of rings. It was tentatively identified as a new
compound named (Z2)-methyl 2-((4bR,8aR)-4b,8,8-trimethyl -3-0xo0-
4b,5,6,7,8,8a,9,10-octahydrophenanthren-2(3H)-ylidene)propanoate. Peak 37
exhibited [M+H]" ion at m/z 317.2111 with the retention time of 11.00 min. It
produced ions at m/z 299.1997, 289.2139, 281.1890 and 271.2050 which were
attributed to the losses of molecules of water and carbonyls. The ion at m/z 253.1925
was attributed to the loss of HCOOH from 299.1997. It was tentatively identified as
ent-11p-hydroxyabieta-8(14),13(15)-dien-16,123-olide (Kuang et al. 2016). The
molecular masses of peaks 32 and 33 were 16 Da heavier than that of peak 37 with
the retention time of 9.99 and 10.17 min. They showed similar fragment ions. They
were tentatively identified as fischeriolide A and fischeriolide C. Peak 46 showed
[M+H]" ion at m/z 315.1955 with the retention time of 12.73 min. It produced ions at
m/z 297.1841 and 269.1910 which were attributed to losses of water and HCOOH.
The fragment ions at m/z 191.0698, 177.0546, 163.0383, 149.0593 and 139.0384 were
attributed to the cleavage of rings. It was tentatively identified as a new compound,
which named (1aR,7aR,11aR,11cR)-4,8,8,11a-tetramethyl-



6,7,7a,8,9,10,11,11a,11b,11c-decahydro-3H-oxireno[2',3":3,4]phenanthro[3,2-b]furan-
3-0ne.

Peaks 14, 20, 21, 23, 26, 29, 38, 45, 48, 49 and 50 were tentatively identified as
ent-atisane type diterpenoids. Peaks 20 and 23 were identified as atis-16-en-13(S)-
hydroxy-3,14-dione and ent-(16R)-16,17-dihydroxykauran-3-one according to
authentic standards. Peak 45 was 30 Da less than that of peak 23. Peak 45 produced
ion at m/z 245.2274, which was attributed to the loss of carbonyl and the cleavage of
C ring. It was tentatively identified as ent-kaurane-3-oxo-16a,17-diol (Liang et al.
2014). Peak 48 was 16 Da less than that of peak 20. Peak 48 showed [M+H]" ion at
m/z 301.2161 with the retention time of 13.85 min. It produced ions at m/z 283.2042
and 255.2103, which were attributed to the losses of water and carbonyl. The ions at
m/z 173.1328 and 145.0648 were attributed to the cleavage of rings. It was tentatively
identified as ent-atis-16(17)-ene-3,14-dione (Yang et al. 2011). Peak 14 showed
[M+H]" ion at m/z 337.2368 with the retention time of 4.76 min. It produced ions at
m/z 319.2301, 301.2161 and 283.2040, which were attributed to the sequential losses
of three molecules of water. The fragment ion at m/z 253.1962 was corresponded to
the cleavage of -CH,OH on C-ring from 283.2040. The fragment ion at m/z 225.1630
was attributed to the cleavage of C-ring. It was tentatively identified as 3S,16S,17-
trihydroxy-2-one-ent-kaurane. Peak 49 showed [M+H]" ion at m/z 323.2580 with the
retention time of 14.49 min. Peak 49 was 14 Da less than that of peak 14. It was
tentatively identified as ent-atisane-3p,16a,17-triol (Lee et al. 1991). Peak 21 showed
[M+H]" ion at m/z 303.2297 with the retention time of 6.75 min. It produced ions at
m/z 285.2185, 267.2086 and 257.2310, which were attributed to the losses of
molecules of water and carbonyl. The fragment ions at m/z 227.1830, 215.1421,
213.1600, 211.1501, 185.1335 and 183.1146 were attributed to the cleavage of rings.
It was tentatively identified as ent-(30,58,80,9B,10a, 12a)-3-hydroxyatis-16-en-14-
one. Peak 26 showed [M+H]" ion at m/z 317.2103 with the retention time of 6.95 min.
It produced ions at m/z 299.1978 and 281.1913, which were attributed to the losses of
two molecules of water. The fragment ion at m/z 271.2058 was attributed to losses of
one molecule of water and CO. The fragment ion at m/z 257.1873 was attributed to
the cleavage of rings. It was tentatively identified as ent-3p3-hydroxyatis-16-ene-2,14-
dione. Peak 38 was 16 Da heavier than that of peak 20. Peak 38 produced ions at m/z
301.2125 and 199.1479, which were attributed to the losses of molecule of water and

the cleavage of rings. It was tentatively identified as ent-3p,(13S)-dihydroxyatis-16-



en-14-one (Liang et al. 2014). Peak 29 showed [M+H]" ion at m/z 335.2211 with the
retention time of 9.14 min. It produced ions at m/z 317.2093, 299.1909 and 271.2069,
which were attributed to the sequential losses of three molecules of water. The
fragment ions at m/z 215.1417, 203.1035, 145.1016, 133.0650 and 119.0843 were
attributed to the cleavage of rings. It was tentatively identified as alboatisin A (Yang
et al. 2011). Peak 50 showed [M+H]" ion at m/z 289.2514 with the retention time of
15.63 min. It produced ions at m/z 271.2406 and 233.1903 which were attributed to
the sequential losses of water and cleavage of ring. It was tentatively identified as ent-
kaur-16-en-14-ol (Wang et al. 2012).

Peaks 3, 10, 22, 39 and 51 were tentatively identified as tigliane type diterpenoids.
Peak 51 was identified as 12-deoxyphorbaldehyde-13-hexadecanoate according to the
authentic standard. Peak 3 showed [M+H]" ion at m/z 569.2590 with the retention
time of 1.73 min. It produced ions at m/z 389.1865, 371.1815, 353.1766 were
attributed to sequential losses of one molecule of water, glycosyl and two molecules
of water. The ions 329.1754, 311.1634, 293.1542, 275.1418 and 265.1566 were
attributed to losses of acetyl, molecules of water and carbonyl. It was tentatively
identified as fischeroside C. Peak 3 was 16 Da heavier than that of peak 10. Peak 10
showed [M+H]" ion at m/z 553.2637 with the retention time of 4.09 min. It produced
a series of ions attributed to losses of acetyl, molecules of water and glycosyl. It was
tentatively identified as fischeroside A (Wang et al. 2017). Peak 22 showed [M+H]"
ion at m/z 405.1941 with the retention time of 6.75 min. It produced ions at m/z
387.1769 and 341.1762 were attributed to losses of one molecule of water and
HCOOH. It was tentatively identified as 20-oxo-prostratin. Peak 39 showed [M+H]"
ion at m/z 391.2117 with the retention time of 11.58 min. It produced ion at m/z
281.1527 was attributed to losses of CH3;COOH, H,O and CH3;OH. The ion at m/z
215.0732 was generated by the cleavage of C-ring. It was tentatively identified as
prostratin (Wang et al. 2010).

Peak 6, 17 and 19 were tentatively identified as daphnane type diterpenoids. Peak
6 showed [M+H]" ion at m/z 511.2527 with the retention time of 2.40 min. The
produced ions at m/z 331.0475, 313.1805, 295.1762, 285.1814, 267.1712 and
257.1173 were attributed to the sequential losses of glycosyl, molecules of water and
carbonyls. It was tentatively identified as euphopiloside A (Wei et al. 2018). Peak 17
showed [M+H]" ion at m/z 347.1852 with the retention time of 6.10 min. It produced
ions at m/z 329.1739, 311.1644 and 283.1672, which were attributed to the sequential



losses of three molecules of water. The fragment ion at m/z 213.0899 was attributed to
the cleavage of A-ring. It was tentatively identified as (3aR,6aS,10R,10aR,10bS)-
3a,10a-dihydroxy-5-(hydroxymethyl)-2,10-dimethyl-7-(propan-2-ylidene)-
3a,4,6a,7,10,10a-hexahydrobenzo[e]azulene-3,8(9H,10bH)-dione. Peak 19 presented
[M+H]" ion at m/z 347.1847 at the retention time of 6.54 min. The fragment ions at
m/z 329.1743, 283.1718, 311.1615 were attributed to losses of three molecules of
water. The fragment ion at m/z 301.1615 was attributed to the sequential losses of CO
and H,O. The fragment ion at m/z 241.0880 was attributed to the cleavage of A-ring.
It was tentatively identified as (3aR,6aS,7R,10R,10aR,10bS)-3a,10a-dihydroxy-5-
(hydroxymethyl)-2,10-dimethyl-7-(prop-1-en-2-yl)-3a,4,6a,7,10,10a-
hexahydrobenzo[e]azulene-3,8(9H,10bH)-dione (Wang et al. 2010).

Peak 28 was tentatively identified as lathyrane type diterpenoids. It showed
[M+H]" ion at m/z 481.2590 with the retention time of 9.01 min. It produced fragment
ions at m/z 315.1964, 287.2051 and 269.1912, which were attributed to the sequential
losses of water, cinnamic acid, carbonyl and water. The fragment ion at m/z 297.1839
was corresponded to the cleavage of ring. It was tentatively identified as jolkinol A
(Lee et al. 2016).

Peak 43 was tentatively identified as diterpene lactone. It showed [M+H]" ion at
m/z 289.2513 with the retention time of 12.40 min. The produced ions at m/z
271.2044 and 233.1874 were attributed to the sequential losses of one molecule of
water and lactonic ring. The fragment ion at m/z 109.1003 was attributed to the
cleavage of C ring. It was tentatively identified as fischeria A (Kuang et al. 2016).

Peak 44 was tentatively identified as sesterterpenoid. It showed [M+H]" ion at m/z
525.2115 with the retention time of 12.47 min. The produced ions at m/z 481.2216,
463.2119, 445.2035 and 439.2094 were attributed to the sequential losses of ester
group, two molecules of water and acetyl. The fragment ion at m/z 275.0557 was
attributed to the cleavage of ring and losses of carbonyl. It was tentatively identified
as langduin D (Pan et al. 2011).

Investigation of the structures of phenolics and fatty acid in E. fischeriana.

Peaks 1, 2, 4, 5, 7, 8, 11, 12, 16 and 18 were tentatively identified as phenolics.
Peaks 1 and 2 produced [M+NH,]" ions at m/z 654.1276 and 654.1280 with the
retention time of 1.16 and 1.44 min. They showed similar fragment ions. The
fragment ions at m/z 619, 449, 279 and 109 were attributed to the losses of one

molecule of water and three molecules of gallic acid. They were tentatively identified



as 1,3,6-tri-O-galloyl-p-D-allopyranose and 1,2,6-tri-O-galloyl-B-D-allopyranose
(Wang et al. 2016). Peaks 4 and 5 presented [M+H]" ions at m/z 477.1603 and
491.1168 with the retention time of 1.88 and 2.23 min. They produced fragment ions,
which were attributed to the sequential losses of glycosyls and water. They were
tentatively identified as 2,4-dihydroxy-6-methoxyacetophenoe-4-O-a-L-
arabinofuranosyl(1—6)-p-D-glucopyranoside and 2,4-dihydroxy-6-
methoxyacetophenoe-5-methyl-4-O-a-L-rhamnosyl (1—6)-B-D-glucopyranoside
(Huang et al. 2017). Peak 7 presented [M+H]" ion with mass accuracy at m/z
345.1176 (C15H2109) at the retention time of 2.45 min. It produced fragment ions at
m/z 183.0645, 165.0544 and 137.0593, which were attributed to the sequential losses
of one molecule of hexose residue, one molecule of water and one molecule of
methoxy group. Based on the fragment ions, it was tentatively identified as 2,4-
dihydroxy-6-methoxyacetophenoe 4-O-B-D-glucopyranoside. Peak 8 was identified as
scopoletin according to the authentic standard. Peaks 11 and 18 produced [M+H]"
ions at m/z 331.0444 and 345.0608 with the retention time of 4.52 and 6.18 min. They
produced fragment ions, which were attributed to the sequential losses of methoxyl
and water. They were tentatively identified as 3,8-dihydroxy-2,7-
dimethoxychromeno[5,4,3-cde]chromene-5,10-dione and 3-hydroxy-2,7,8-
trimethoxychromeno[5,4,3-cde]chromene-5,10-dione (Cui et al. 2017). Peaks 12 and
16 presented [M+H]" ions with mass accuracy at m/z 183.0653 and 197.0808 with the
retention time of 4.57 and 5.92 min. They produced fragment ions, which were
attributed to the sequential losses of water, methoxyl and hydroxyl. They were
tentatively identified as 1-(2,4-dihydroxy-6-methoxyphenyl)ethanone and 3-acetyl-
2,6-dihydroxy-4-methoxybenzaldehyde (Lee et al. 2016).

Peak 47 produced [M+H]" ions at m/z 279.2316 with the retention time of 13.82
min. It was tentatively identified as a-linolenic acid. As fatty acid, it produced a series

of ions losses of methyl and methylene (Wang et al. 2012).

Discussion

In the single-factor experiments, ethanol concentration and the extraction
temperature had more remarkable effects on the extraction yields. The amounts of the
extracted target diterpenoids increased with the increase of ethanol concentration. The
extraction yields of jolkinolide B, 17-hydroxyjolkinolide A and 17-
hydroxyjolkinolide B were less when temperature was too high.



The extract along with 9 standards were injected into UPLC-Q-TOF-MS system.
Data were obtained using Analyst TF 1.7.1 Software. PeakView was applied to
analyze the data. In order to identify the structures, compound library was established
by ourselves. More than eighty compounds of E. fischeriana were collected from
literatures. MasterView was used to simulated the fragmentation pattern of each
compound, which would raise the reliability of the results. TCM MS/MS Library was
applied to predict the potential compounds. Both positive and negative ion modes
were tested. It showed that the analyses obtained with the positive ion mode exhibited
greater responses to fragments. According to the results, diterpenoids were the main
constituents of E. fischeriana. Determining the key fragment ions and possible
fragmentation patterns of standards would be beneficial for identifying other
diterpenoids. Neutral losses like H,O, CO, HCOOH, CH3OH and CH3COOH,
cleavages of ring A, ring B, ring C and the lactonic ring were responsible for the main
fragmentation patterns of diterpenoids. In MSMS spectrogram, ent-abietane type
diterpenoids usually showed cleavages of ring A, ring B and the lactonic ring.
Cleavage of ring C often could be seen in ent-atisane type diterpenoids. Diterpene
lactone exhibited the cleavage of lactonic ring. Sugar residues and fatty chains were
likely to lose when they were attached to diterpenoids. However, the structures of
diterpenoids are complex, the analytical method has some limitations in identifying
the isomers. To confirm the structures of the compounds, NMR experiments are

necessary.
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Figure S1. Effect of ethanol concentration (A), extraction temperature (B) and extraction time (C) on the extraction yield of jolkinolide A, jolkinolide B, 17-hydroxy
jolkinolide A and 17-hydroxy jolkinolide B
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Figure S2. Response surface plots (3D) of the extraction yield of jolkinolide A, jolkinolide B, 17-
hydroxy jolkinolide A and 17-hydroxy jolkinolide B of significant interactions between factors:
ethanol concentration (A), extraction time (B) and extraction temperature (C)
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Figure S3. Total ion chromatogram of the extraction of E. fischeriana
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Spectrum from Ja.wiff (sample 2) — Ja, Experiment 5, +TOF MS"2 (100 — 2000) from 12.789 min
Precursor: 315.2 Da, CE: 35.0
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Figure S6. MSMS spectrogram of jolkinolide A

Spectrum from Jb.wiff (sample 1) — Jb, Experiment 6, +TOF MS"2 (100 - 2000) from 11.703 min
Precursor: 331.2 Da, CE: 35.0
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Figure S7. MSMS spectrogram of jolkinolide B



Spectrum from 17Ja.wiff (sample 1) - 17-Ja, Experiment 5, +TOF MS"2 (100 - 2000) from 10.782 min
Precursor: 331.2 Da, CE: 35.0
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Figure S8. MSMS spectrogram of 17-hydroxyjolkinolide A
Spectrum from 17-Jb.wiff (sample 1) — 17-Jb, Experiment 6, +TOF MS"2 (100 - 2000) from 9.748 min
Precursor: 347.2 Da, CE: 35.0
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Figure S9. MSMS spectrogram of 17-hydroxyjolkinolide B
Spectrum from fbc.wiff (sample 1) - fbc, Experiment 8, +TOF MS”2 (100 - 2000) from 16.713 min
Precursor: 587.4 Da, CE: 35.0
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Figure S10. MSMS spectrogram of 12-deoxyphorbol-13-hexadecaoate



Spectrum from anti.wiff (sample 1) - anti, Experiment 11, +TOF MS”2 (100 - 2000) from 6.559 min
Precursor: 317.2 Da, CE: 35.0
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Figure S11. MSMS spectrogram of atis-16-en-13(S)-hydroxy-3,14-dione
Spectrum from 10.wiff (sample 1) - 10, Experiment 11, +TOF MS”2 (100 - 2000) from 6.773 min
Precursor: 321.2 Da, CE: 35.0
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Figure S12. MSMS spectrogram of ent-(16R)-16,17-dihydroxykauran-3-one
Spectrum from 9.wiff (sample 1) — 9, Experiment 10, +TOF MS"2 (100 - 2000) from 12.353 min
Precursor: 317.2 Da, CE: 35.0
271. 2058
161. 0603
2z
Z o 299. 2010
d 5000 4, 0= o700 123. 1171 133. 0654 157, ]016 171. 1175 253. 1957 317. 2111
2 117.0700 ! 143. 0860 183. 1175 193 0867 215. 1432 957, 1544
= ‘ ‘ H ‘ ‘ 203, 1072 ‘ 229.1232  243.1390 o 281.1904  289.2165
) |
H | \‘ H‘\ ‘Hm“ Ll H\‘u‘\\\ H““\‘H‘H\ ! n . ! !
110 120 130 14 150 160 170 200 210 220 230 240 250 260 270 280 290 300 310 320 330

Mass/Charge, Da

Figure S13. MSMS spectrogram of euphopilolide



Spectrum from DZP4.wiff (sample 1) - DZP4-LD-P, Experiment 2, +TOF MS*2 (100 - 1200) from 2.965 min
Precursor: 193.0 Da, CE: 35.0
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Figure S14. MSMS spectrogram of scopoletin
Spectrum from langdunong. wiff (sample 2) — langdunong, Experiment 16, +TOF MS"2 (100 — 2000) from 1.211 min
Precursor: 654.1 Da, CE: 35.0
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Figure S15. MSMS spectrogram of peak 1
Spectrum from langdunong. wiff (sample 2) — langdunong, Experiment 14, +TOF MS"2 (100 - 2000) from 1.460 min
Precursor: 637.1 Da, CE: 35.0
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Figure S16. MSMS spectrogram of peak 2



Spectrum from langdunong. wiff (sample 2) — langdunong, Experiment 12, +TOF MS"2 (100 — 2000) from 1.711 min
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Figure S17. MSMS spectrogram of peak 3
Spectrum from langdunong. wiff (sample 2) — langdunong, Experiment 12, +TOF MS"2 (100 — 2000) from 1.901 min
Precursor: 477.2 Da, CE: 35.0
3000 183. 0655
e
o 2000
z
[}
3
= 1000 165. 0546
0. 249. 0747
137. 0603 ‘ | 261.0752 279. 0849 345.}1167
L L Il Il
110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490
Mass/Charge, Da
Figure S18. MSMS spectrogram of peak 4
Spectrum from langdunong. wiff (sample 2) - langdunong, Experiment 5, +TOF MS"2 (100 - 2000) from 2.244 min
Precursor: 491.1 Da, CE: 35.0
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Figure S19. MSMS spectrogram of peak 5



Spectrum from langdunong. wiff (sample 2) — langdunong, Experiment 13, +TOF MS"2 (100 — 2000) from 2.411 min
Precursor: 511.3 Da, CE: 35.0
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Figure S20. MSMS spectrogram of peak 6
Spectrum from langdunong. wiff (sample 2) — langdunong, Experiment 5, +TOF MS"2 (100 — 2000) from 2.461 min
Precursor: 345.1 Da, CE: 35.0
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Figure S21. MSMS spectrogram of peak 7
Spectrum from langdunong. wiff (sample 2) - langdunong, Experiment 2, +TOF MS"2 (100 - 2000) from 2.583 min
Precursor: 193.0 Da, CE: 35.0
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Figure S22. MSMS spectrogram of peak 8



Spectrum from langdunong. wiff (sample 2) - langdunong, Experiment 5, +TOF MS"2 (100 - 2000) from 3.953 min
Precursor: 347.2 Da, CE: 35.0

0 311.1625  329. 1760
159. 0441 ! !

. 10 131. 0493 225. 0899 265. 1609

I

= 161. 0590 173. 0977 255. 1705 269. 1182 287. 1588

£ 133. 0640 L 115 223.1095 o ‘

E 123.0795| | 135.0819 205.0948 219.1752 | | 9411214 5

( 301. 1839 347. 1848
287. 1260‘ 329. 1293
HHH \H(\HHHH\H HH‘H}HH HHHHH\HHHHHHHHHHHHHm‘HH‘HHHH il \‘H |

L4

110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 zgo ;00 310 320 330 340 350 360 370 380 390
Mass/Charge, Da

Figure S23. MSMS spectrogram of peak 9
Spectrum from langdunong. wiff (sample 2) — langdunong, Experiment 8, +TOF MS"2 (100 — 2000) from 4.085 min
Precursor: 553.3 Da, CE: 35.0

20000 295. 1684

277.1583
10000

Intensity

249. 1635

. 267. 1738 e A
211. 1118‘ 995 1967 ‘ 313. 1786

Ll ul L Ll (A L L ‘
120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580
Mass/Charge, Da

Figure S24. MSMS spectrogram of peak 10

Spectrum from langdunong. wiff (sample 2) - langdunong, Experiment 9, +TOF MS"2 (100 - 2000) from 4.505 min
Precursor: 331.0 Da, CE: 35.0
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Figure S25. MSMS spectrogram of peak 11



Spectrum from langdunong. wiff (sample 2) — langdunong, Experiment 11, +TOF MS"2 (100 - 2000) from 4.540 min
Precursor: 183.1 Da, CE: 35.0
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Figure S26. MSMS spectrogram of peak 12
Spectrum from langdunong. wiff (sample 2) — langdunong, Experiment 13, +TOF MS"2 (100 — 2000) from 4.763 min
Precursor: 389.2 Da, CE: 35.0
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Figure S27. MSMS spectrogram of peak 13
Spectrum from langdunong. wiff (sample 2) - langdunong, Experiment 12, +TOF MS"2 (100 - 2000) from 4. 761 min
Precursor: 337.2 Da, CE: 35.0
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Figure S28. MSMS spectrogram of peak 14



Spectrum from langdunong. wiff (sample 2) — langdunong, Experiment 10, +TOF MS"2 (100 - 2000) from 5.295 min

Precursor: 373.2 Da, CE: 35.0
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Figure S29. MSMS spectrogram of peak 15
Spectrum from langdunong. wiff (sample 2) — langdunong, Experiment 5, +TOF MS"2 (100 — 2000) from 5.933 min
Precursor: 197.1 Da, CE: 35.0
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Figure S30. MSMS spectrogram of peak 16
Spectrum from langdunong. wiff (sample 2) - langdunong, Experiment 10, +TOF MS"2 (100 - 2000) from 6.099 min
Precursor: 347.2 Da, CE: 35.0
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Figure S31. MSMS spectrogram of peak 17



Spectrum from langdunong. wiff (sample 2) - langdunong, Experiment 6, +TOF MS"2 (100 - 2000) from 6. 187 min

Precursor: 345.1 Da, CE: 35.0
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Figure S32. MSMS spectrogram of peak 18
Spectrum from langdunong. wiff (sample 2) — langdunong, Experiment 10, +TOF MS"2 (100 — 2000) from 6.541 min
Precursor: 347.2 Da, CE: 35.0
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Figure S33. MSMS spectrogram of peak 19
Spectrum from langdunong. wiff (sample 2) - langdunong, Experiment 9, +TOF MS"2 (100 - 2000) from 6.603 min
Precursor: 317.2 Da, CE: 35.0
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Figure S34. MSMS spectrogram of peak 20



Spectrum from langdunong. wiff (sample 2) — langdunong, Experiment 9, +TOF MS"2 (100 - 2000) from 6.792 min

Precursor: 303.2 Da, CE: 35.0
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Figure S35. MSMS spectrogram of peak 21
Spectrum from langdunong. wiff (sample 2) — langdunong, Experiment 12, +TOF MS"2 (100 — 2000) from 6.766 min
Precursor: 405.2 Da, CE: 35.0
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Figure S36. MSMS spectrogram of peak 22
Spectrum from langdunong. wiff (sample 2) - langdunong, Experiment 10, +TOF MS"2 (100 - 2000) from 6.794 min
Precursor: 321.2 Da, CE: 35.0
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Figure S37. MSMS spectrogram of peak 23



Spectrum from langdunong. wiff (sample 2) — langdunong, Experiment 7,

+TOF MS™2 (100 - 2000) from 7.105 min

Precursor: 351.2 Da, CE: 35.0
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Figure S38. MSMS spectrogram of peak 24
Spectrum from langdunong. wiff (sample 2) — langdunong, Experiment 7, +TOF MS"2 (100 — 2000) from 7.804 min
Precursor: 351.2 Da, CE: 35.0
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Figure S39. MSMS spectrogram of peak 25
Spectrum from langdunong. wiff (sample 2) - langdunong, Experiment 7, +TOF MS"2 (100 - 2000) from 7.957 min
Precursor: 317.2 Da, CE: 35.0
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Figure S40. MSMS spectrogram of peak 26



Spectrum from langdunong. wiff (sample 2) — langdunong, Experiment 10, +TOF MS"2 (100 - 2000) from 8.466 min
Precursor: 349.0 Da, CE: 35.0
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Figure S41. MSMS spectrogram of peak 27

Spectrum from langdunong. wiff (sample 2) — langdunong, Experiment 10, +TOF MS"2 (100 — 2000) from 9.033 min
Precursor: 481.3 Da, CE: 35.0
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Figure S42. MSMS spectrogram of peak 28

Spectrum from langdunong. wiff (sample 2) - langdunong, Experiment 7, +TOF MS"2 (100 - 2000) from 9.154 min
Precursor: 335.2 Da, CE: 35.0
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Figure S43. MSMS spectrogram of peak 29



Spectrum from langdunong. wiff (sample 2) — langdunong, Experiment 6, +TOF MS"2 (100 - 2000) from 9.373 min

Precursor: 335.2 Da, CE: 35.0
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Figure S44. MSMS spectrogram of peak 30
Spectrum from langdunong. wiff (sample 2) — langdunong, Experiment 5, +TOF MS"2 (100 — 2000) from 9.686 min
Precursor: 347.2 Da, CE: 35.0
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Figure S45. MSMS spectrogram of peak 31
Spectrum from langdunong. wiff (sample 2) - langdunong, Experiment 12, +TOF MS"2 (100 - 2000) from 10.010 min
Precursor: 333.2 Da, CE: 35.0
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Figure S46. MSMS spectrogram of peak 32



Spectrum from langdunong. wiff (sample 2) — langdunong, Experiment 9, +TOF MS"2 (100 - 2000) from 10.036 min
Precursor: 333.2 Da, CE: 35.0
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Figure S47. MSMS spectrogram of peak 33
Spectrum from langdunong. wiff (sample 2) — langdunong, Experiment 7, +TOF MS"2 (100 - 2000) from 10.569 min
Precursor: 329.2 Da, CE: 35.0
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Figure S48. MSMS spectrogram of peak 34
Spectrum from langdunong. wiff (sample 2) — langdunong, Experiment 8, +TOF MS"2 (100 - 2000) from 10.634 min
Precursor: 363.2 Da, CE: 35.0
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Figure S49. MSMS spectrogram of peak 35



Spectrum from langdunong. wiff (sample 2) - langdunong,

Experiment 10, +TOF MS"2 (100 — 2000) from 10.763 min

Precursor: 331.2 Da, CE: 35.0
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Figure S50. MSMS spectrogram of peak 36
Spectrum from langdunong. wiff (sample 2) — langdunong, Experiment 6, +TOF MS"2 (100 — 2000) from 11.044 min
Precursor: 317.2 Da, CE: 35.0
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Figure S51. MSMS spectrogram of peak 37
Spectrum from langdunong. wiff (sample 2) - langdunong, Experiment 13, +TOF MS"2 (100 - 2000) from 11.432 min
Precursor: 319.2 Da, CE: 35.0
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Figure S52. MSMS spectrogram of peak 38



Spectrum from langdunong. wiff (sample 2) — langdunong, Experiment 9, +TOF MS"2 (100 - 2000) from 11.583 min

Precursor: 391.2 Da, CE: 35.0
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Figure S53. MSMS spectrogram of peak 39
Spectrum from langdunong. wiff (sample 2) — langdunong, Experiment 10, +TOF MS"2 (100 — 2000) from 11.679 min
Precursor: 331.2 Da, CE: 35.0
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Figure S54. MSMS spectrogram of peak 40
Spectrum from langdunong. wiff (sample 2) — langdunong, Experiment 6, +TOF MS"2 (100 - 2000) from 12.079 min
Precursor: 315.2 Da, CE: 35.0
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Figure S55. MSMS spectrogram of peak 41



Spectrum from langdunong. wiff (sample 2) — langdunong, Experiment 11, +TOF MS"2 (100 — 2000) from 12.374 min
Precursor: 317.2 Da, CE: 35.0
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Figure S56. MSMS spectrogram of peak 42
Spectrum from langdunong. wiff (sample 2) — langdunong, Experiment 12, +TOF MS"2 (100 — 2000) from 12.469 min
Precursor: 289.3 Da, CE: 35.0
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Figure S57. MSMS spectrogram of peak 43
Spectrum from langdunong. wiff (sample 2) — langdunong, Experiment 15, +TOF MS"2 (100 - 2000) from 12.474 min
Precursor: 525.2 Da, CE: 35.0
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Figure S58. MSMS spectrogram of peak 44



Spectrum from langdunong. wiff (sample 2) - langdunong, Experiment 8, +TOF MS™2 (100 - 2000) from 12.588 min
Precursor: 291.2 Da, CE: 35.0
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Figure S59. MSMS spectrogram of peak 45
Spectrum from langdunong. wiff (sample 2) — langdunong, Experiment 3, +TOF MS"2 (100 — 2000) from 12.768 min
Precursor: 315.2 Da, CE: 35.0
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Figure S60. MSMS spectrogram of peak 46
Spectrum from langdunong. wiff (sample 2) — langdunong, Experiment 8, +TOF MS"2 (100 - 2000) from 13.843 min
Precursor: 279.2 Da, CE: 35.0
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Figure S61. MSMS spectrogram of peak 47



Spectrum from langdunong. wiff (sample 2) — langdunong, Experiment 4, +TOF MS"2 (100 - 2000) from 13.867 min
Precursor: 301.2 Da, CE: 35.0
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Figure S62. MSMS spectrogram of peak 48
Spectrum from langdunong. wiff (sample 2) — langdunong, Experiment 6, +TOF MS"2 (100 — 2000) from 14.498 min
Precursor: 323.3 Da, CE: 35.0
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Figure S63. MSMS spectrogram of peak 49
Spectrum from langdunong. wiff (sample 2) — langdunong, Experiment 6, +TOF MS"2 (100 - 2000) from 15.658 min
Precursor: 289.3 Da, CE: 35.0
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Figure S64. MSMS spectrogram of peak 50



Spectrum from langdunong. wiff (sample 2) - langdunong, Experiment 9, +TOF MS"2 (100 - 2000) from 17.166 min
Precursor: 585.4 Da, CE: 35.0
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Figure S65. MSMS spectrogram of peak 51



Tables

Table S1. Regression data, LODs and LOQs for four compounds

Analyte Calibratio curve r? Lin((e:g/ti{z;nge (nZ?rr?L) (nZ?rr?L)
jolkinolide A y =0.1132x + 0.0223 0.9993 0.97-4.35 171 5.64
jolkinolide B y = 0.0538x + 0.2097 0.9961 5.71-25.70 0.92 2.99

17-hydroxyjolkinolide A y =0.0281x + 0.0824 0.9911 5.01-22.54 4.12 13.60
17-hydroxyjolkinolide B y =0.0153x + 0.1993 0.9956 18.46-83.09 13.15 43.44

Table S2. Precision and recovery of four active components (n = 3)

Intraday RSD Interday RSD

Analyte - . (ﬁ:’ dOl(Jr:;) Rei&")ery RSD (%)
(%) Pa (%) Rt (%) Pa (%)

jolkinolide A 0.10 4.65 0.13 4.13 0.22 97.8 2.68
0.44 92.3
0.65 94.6

jolkinolide B 0.12 2.81 0.15 3.15 121 98.0 3.74
242 102.3
3.63 106.3

17-hydroxyjolkinolide A 0.19 3.35 0.21 3.89 0.53 93.0 4.98
1.06 98.9
1.58 104.2

17-hydroxyjolkinolide B 0.34 3.24 0.29 3.54 3.52 95.9 4.44
7.03 105.2
10.55 97.8

Table S3. Experimental design applied to extraction and responses of a-glucosidase inhibition

activities and contents of steroid saponins in Box-Behnken design (BBD) assays

Run Independent variables Responses
ethanol extraction .
concentration temperature time "1 Y2 Ys Ya

% °C h mg/g mg/g mg/g mg/g




10

11

12

13

14

15

16

17

75

75

100

50

75

75

50

75

100

75

50

50

75

100

75

75

100

60

60

40

40

60

40

60

40

60

80

80

60

60

60

60

80

80

15

15

15

15

15

15

2.0

2.0

1.0

2.0

15

1.0

15

2.0

15

1.0

15

0.1557

0.1522

0.1504

0.1246

0.1540

0.1433

0.1484

0.1416

0.1397

0.2014

0.1750

0.1469

0.1465

0.1639

0.1577

0.1744

0.1508

0.8573

0.8491

0.8956

0.6657

0.8361

0.7825

0.7130

0.7924

0.8420

0.7961

0.7029

0.8899

0.8598

0.9645

0.8991

0.8130

0.9021

0.3937

0.3985

0.4016

0.2957

0.3880

0.3220

0.3611

0.3282

0.3684

0.3662

0.3846

0.3904

0.3892

0.4327

0.4099

0.3662

0.4035

2.4628

2.3761

2.1944

1.8910

2.2262

1.9803

2.0081

1.9605

2.4287

2.0725

1.5952

2.4064

2.3138

2.8132

2.4843

2.3769

2.5937

Table S4. ANOVA statistics of the quadratic model for the extraction yields of jolkinolide A,

jolkinolide B, 17-hydroxyjolkinolide A and 17-hydroxyjolkinolide B

Source Y, Y, Y, Y,
P-Value P-Value P-Value P-Value
F Value Prob>E F Value Prob>E F Value Prob>E F Value Prob>E
Model 12.29 0.0016 7.98 0.0061 12.44 0.0016 9.73 0.0033
X1 0.30 0.5998 39.45 0.0004 23.46 0.0019 37.35 0.0005
X, 62.64 <0.0001 0.60 0.4643 23.05 0.0020 3.09 0.1224



X3
X1X,
X1X3
XoX3

X2

X,?

X4

Lack of fit

8.10

15.61

3.19

5.12

8.94

4.07

3.44

3.84

0.0248

0.0055

0.1172

0.0581

0.0202

0.0833

0.1061

0.1131

0.37 0.5612 1.30

0.19 0.6797 11.66
17.67 0.0040 13.47
0.14 0.7183 0.06
0.13 0.7332 2.10
12.98 0.0087 29.11
0.01 0.9214 7.25
3.98 0.1079 3.48

0.2915 0.94 0.3642
0.0112 7.96 0.0257
0.0080 10.10 0.0155
0.8120 1.33 0.2861
0.1907 0.01 0.9203
0.0010 26.72 0.0013
0.0310 0.34 0.5760
0.1298 1.78 0.2902

Table S5. Compounds identified in E. fischeriana by UPLC-Q-TOF-MS/MS in positive ion

mode
No.  Tg(min) [M+H]*  Error (ppm) Formula Fragment ions in positive ion mode Identification
1 1.19 637.1000 -3.6 Cy7H24045 619, 449, 279, 109 1,3,6-tri-O-galloyl-B-D-allopyranose
2 1.44 637.1022 -1.3 Cy7H24045 619, 449, 279, 109 1,2,6-tri-O-galloyl-B-D-allopyranose
3 1.73 569.2590 -0.3 CygH4o01 389, 371, 353, 329, 311, 293, 275, 265 fischeroside C
4 1.88 477.1603 0.1 CyoH2g013 345, 185, 166 2,4-dihydroxy-6-methoxyacetophenoe-4-
O-0-L-arabinofuranosyl(1—6)-p-D-
glucopyranoside
5 2.23 491.1743 -3.3 C,1H30013 345, 183, 177, 165, 153, 145 2,4-dihydroxy-6-methoxyacetophenoe-5-
methyl-4-0-a-L-rhamnosyl(1—6)-B-D-
glucopyranoside
6 2.40 511.2527 -2.1 C6H3s019 331, 313, 295, 285, 267, 257 euphopiloside A
7 2.45 345.1176 -1.2 C15H,009 183, 165, 137 2,4-dihydroxy-6-methoxyacetophenoe 4-
O-B-D-glucopyranoside
8 2.61 193.0495 -0.2 C10HgO4 178, 165, 161, 150, 137, 133, 122, 105 scopoletin
9 3.95 347.1846 -1.7 CyoH605 329, 311, 265, 287, 173, 159 11a,17-dihydroxyhelioscopinolide E
10 4.09 553.2637 -1.2 Cu8H40011 313, 295, 277, 267, 255 fischeroside A
11 452 331.0444 -1.3 C16H100s 316, 299, 271, 253, 225 3,8-dihydroxy-2,7-
dimethoxychromeno[5,4,3-
cde]chromene-5,10-dione
12 457 183.0653 0.6 CgH1004 165, 153, 150, 141, 137, 123, 119, 109 1-(2,4-dihydroxy-6-

methoxyphenyl)ethanone




13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

4.74

4.76

5.30

5.92

6.10

6.18

6.54

6.59

6.75

6.75

6.78

7.11

7.80

7.95

8.45

9.01

9.14

9.36

9.68

389.1959

337.2368

373.2010

197.0808

347.1852

345.0608

347.1847

317.2105

303.2297

405.1941

321.2422

351.2163

351.2153

317.2103

349.2002

481.2590

335.2211

335.2210

347.1844

-1.6

0.1

18

-1.7

-1.5

8.2

0.2

11

-1.8

CZZHZSOG

CZO H 3204

CZZHZBOS

C10H12O4

CZOHZGOS

Cl7H1208

CZOHZGO

CooH2604

CZOHBOOZ

C22H2807

CyoH3204

CaoH3005

CaoH3005

CaoH2503

CooH260s

CagH3605

CaoH300,4

C20H3004

CZOHZG()S

311, 293, 283, 237

319, 301, 283, 253, 225

313, 295, 277, 267, 255

179, 167, 164, 151, 133, 123, 107, 105

329, 311, 283, 215, 213, 149

330, 315, 313, 287, 242

329, 283, 311, 301, 241

299, 271, 253, 239, 171, 147

285, 267, 257, 227, 215, 213, 211, 185,
183

387,341

303, 285, 267, 239, 227, 171, 157, 131,
119

333, 315, 297, 287, 269

333, 316, 269

299, 281, 271, 257

331, 313, 295, 285, 267, 175, 147

315, 297, 287, 269

317, 299, 271, 215, 203, 145, 133, 119

317, 289, 253, 201

329, 311, 301, 283, 273, 265, 255, 237,

17-acetoxyjolkinolide B
3S,16S,17-trihydroxy-2-one-ent-kaurane
17-acetoxyjolkinolide A

3-acetyl-2,6-dihydroxy-4-
methoxybenzaldehyde
(3aR,6aS,10R,10aR,10bS)-3a,10a-
dihydroxy-5-(hydroxymethyl)-2,10-
dimethyl-7-(propan-2-ylidene)-
3a,4,6a,7,10,10a-
hexahydrobenzo[e]azulene-
3,8(9H,10bH)-dione.
3-hydroxy-2,7,8-
trimethoxychromenol[5,4,3-
cde]chromene-5,10-dione
(3aR,6aS,7R,10R,10aR,10bS)-3a,10a-
dihydroxy-5-(hydroxymethyl)-2,10-
dimethyl-7-(prop-1-en-2-yl)-
3a,4,6a,7,10,10a-
hexahydrobenzo[e]azulene-
3,8(9H,10bH)-dione
atis-16-en-13(S)-hydroxy-3,14-dione

ent-(3a,5B,80,96,10a, 12a)-3-
hydroxyatis-16-en-14-one

20-oxo-prostratin

ent-(16R)-16,17-dihydroxykauran-3-one

yuexiandajisu E
yuexiandajisu D
ent-3B-hydroxyatis-16-ene-2,14-dione

7B,11B,12B-trihydroxy-ent-abieta-
8(14),13(15)-dien-16,12-olide
jolkinol A

alboatisin A

8B,14a-dihydroxyabiet-13(15)-ene-16,12-
lactone
17-hydroxyjolkinolide B




32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

9.99

10.17

10.56

10.59

10.75

11.00

1141

11.58

11.67

12.10

12.36

12.40

12.47

12.58

12.73

13.82

13.85

14.49

15.63

17.15

333.2063

333.2057

329.2116

363.2161

331.1902

317.2111

319.2242

391.2117

331.1895

315.1952

317.2107

289.2145

525.2115

291.2324

315.1956

279.2316

301.2161

323.2580

289.2521

585.4152

0.9

-1.0

1.3

-1.5

-1.7

0.4

CZO H 2804

CZO H 2804

C21HZBO3

C21H3005

CZO H 2604

CZOHZSO3

CZOH3OO3

CZZH3OOG

CZOHZGOA

CooH2603

CooH2603

C19H2802

Ca9H3204

ClQHSOOZ

CZOHZGOB

C18H3002

CaoHz50;

CaoH3403

C20H320

C36H5606

227,213, 191, 163

315, 297, 269, 241, 217, 199, 177, 137,
119

315, 297, 287, 269, 251, 241, 227, 177,
139

297, 269, 255, 241, 215, 205, 191, 173,
161, 159, 137, 131

345, 311, 317, 295, 285, 267, 257, 175

313, 295, 285, 271, 267, 175

299, 289, 281, 271, 253, 175

301, 199

281, 215

313, 285, 267, 221, 193, 165, 137, 125

297, 287, 269, 227, 177, 175, 161, 149

317, 299, 271, 253, 169, 161, 157, 133

271, 233, 109

481, 463, 445, 439, 275

245,171, 139

297, 269, 191, 177, 163, 149, 139, 105

261, 243, 149, 123, 109

283, 255, 173, 145

305, 277, 259, 241, 205, 187, 149

271, 233, 201

329, 311, 299, 265, 237, 223, 213

fischeriolide A

fischeriolide C

(2)-methyl 2-((4bR,8aR)-4b,8,8-trimethyl
-3-0x0-4b,5,6,7,8,8a,9,10-
octahydrophenanthren-2(3H)-
ylidene)propanoate
euphorin H

17-hydroxyjolkinolide A

ent-11p-hydroxyabieta-8(14),13(15)-
dien-16,12p-olide
ent-3p,(13S)-dihydroxyatis-16-en-14-one

prostratin
jolkinolide B
jolkinolide A
euphopilolide
fischeria A
langduin D
ent-kaurane-3-o0xo-16a,17-diol

(1aR,7aR,11aR,11cR)-4,8,8,11a-
tetramethyl-6,7,7a,8,9,10,11,11a,11b,11c-
decahydro-3H-
oxireno[2',3":3,4]phenanthro[3,2-b]furan-
3-one

a-linolenic acid
ent-atis-16(17)-ene-3,14-dione
ent-atisane-3p,16a,17-triol
ent-kaur-16-en-14-ol

12-deoxyphorbaldehyde-13-

hexadecanoate




