Supplemental material

Prediction and optimization of epoxy adhesive strength from a small

dataset through active learning

Sirawit Pruksawan®?, Guillaume Lambard®*, Sadaki Samitsu?, Keitaro

Sodeyama® and Masanobu Naito®Pd*

4Data-driven Polymer Design Group, Research and Services Division of Materials Data
and Integrated System (MaDIS), National Institute for Materials Science (NIMS),
Tsukuba, Japan; PProgram in Materials Science and Engineering, Graduate School of
Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan; “Energy Materials
Design Group, Research and Services Division of Materials Data and Integrated System
(MaDIS), National Institute for Materials Science (NIMS), Tsukuba, Japan; YDepartment
of Advanced Materials Science, Graduate School of Frontier Sciences, The University of

Tokyo, Kashiwa, Japan

* Corresponding author: LAMBARD.Guillaume@nims.go.jp,
NAITO.Masanobu@nims.go.jp

Information Classification: General


mailto:LAMBARD.Guillaume@nims.go.jp
mailto:LAMBARD.Guillaume@nims.go.jp
mailto:NAITO.Masanobu@nims.go.jp
mailto:NAITO.Masanobu@nims.go.jp

(a)

Available dataset/
Data from previous literature
|
‘ Initial dataset [——— Model training Predictive model Desired output
(b)
Available dataset/
Data from previous literature
|
‘ Initialdataset [——— Modeltraining Predictive model Desired output
Additionaldata Proposal
(c)
Design of experiments ]
|
Conducting experiments ]
I'fiﬁal dffnta.set Model training Predictive model Desired output
with designing
controlled
experiments
Additional data Proposal

Figure S1. Typical workflow of a supervised machine learning task: (a) type A —
conventional machine learning, (b) type B — active learning, (c) type C — active learning

with designing controlled initial dataset.

Figure S1 shows three different types of supervised machine learning workflow:
type A is the conventional machine learning, type B is active learning, and type C is our
proposed approach — active learning with designing controlled initial dataset. In

conventional machine learning (type A), an initial dataset collected from various sources
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is used to train a predictive model, and the obtained model is applied for further prediction
or optimization. Active learning (type B) is another strategy for machine learning in
which the learning algorithm is fine-tuned by incorporating the new data point in its
dataset. This type of iterative process is repeated cycle after cycle until a preliminary goal
of a sufficiently high accuracy of the machine learning model is reached. The iterative
process in active learning can improve the accuracy of the predictive model. In some case,
an additional experimental data may be required to complete an initial dataset. Our
proposed approach in this study (type C) is based on active learning; however, an initial
dataset is constructed with designing controlled experiments and no any data from
previous literature is required. Furthermore, the initial dataset obtained from experimental
conditions suggested by design of experiment techniques allows us to attain a highly

distributed dataset (Table S2), which is very beneficial for generating an accurate model.
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Table S1. Summary of previous research work on machine learning-based experimental

design in materials science. Workflow type refers to Figure S1.

Workflow
Material Target property Feature data Reference
type
BaTiO;-based . . .
.a s as.e Large electrostrains Data from previous literatures B [1]
piezoelectrics
F lectri High ft lectri
erroe e(.: e 1g' erroeiectric Data from previous literatures B [2]
perovskites Curie temperature
BaTiOs-based . .
L 1 Data fi literat B
ceramics arge energy storage ata from previous literatures [3]
NiTi-based sh . . .
111-based shape Low thermal hysteresis Data from previous literatures B [4]
memory alloys
. High glass-forming . .
Metallic glasses o Data from previous literatures B [5]
ability
Epoxy adhesives High adhesive joint ‘ Data.from chemical product C Our study
strength information and process parameters
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Table S2. Experimental results of adhesive joint strength cas (MPa) of samples prepared

under various conditions (initial dataset, dataset size ns = 32 samples). Variable

parameters include molecular weight of epoxy resin MWEe (g/mol), molecular weight of

curing agent MWc¢ (g/mol) and amine-to-epoxide ratio r and curing temperature Teure (°C).

No Variable parameter Measured 644 Appearance feature of adhesives
MWE (g/mol) MWc (g/mol) r Teure (°C) (MPa) (if any)

1 370 230 0.75 90 83x18 remaining uncured resin

2 370 400 1.00 170 28.8+0.7

3 370 2000 1.25 210 15+0.1 Soft

4 370 4000 1.50 130 0.0+0.0 soft; no adhesion to substrates
5 1650 230 1.00 130 18.0+£0.3

6 1650 400 0.75 210 146+1.0 orange-colored

7 1650 2000 1.50 170 33107 soft; sticky

8 1650 4000 1.25 90 20+0.1 soft; remaining uncured resin
9 2900 230 1.25 170 17.7+0.3

10 2900 400 1.50 90 58+0.5

11 2900 2000 0.75 130 57+0.3

12 2900 4000 1.00 210 4.4+05 soft; orange-colored

13 3800 230 1.50 210 153+£25 orange-colored

14 3800 400 1.25 130 104+0.1

15 3800 2000 1.00 90 1.2+0.0 non-uniform,; sticky

16 3800 4000 0.75 170 40+0.1

17 370 230 1.50 130 31901

18 370 400 0.75 90 28115 remaining uncured resin
19 370 2000 1.00 170 1.2+0.2 soft; sticky

20 370 4000 1.25 210 0.6+0.0 soft; no adhesion to substrates
21 1650 230 1.25 90 9.9+0.7

22 1650 400 1.00 130 18.9+0.8

23 1650 2000 0.75 210 59+0.7 soft; orange-colored

24 1650 4000 1.50 170 1.4+05 soft; no adhesion to substrates
25 2900 230 1.00 210 23114 orange-colored

26 2900 400 1.25 170 24605

27 2900 2000 1.50 90 44+0.1 soft; remaining uncured resin
28 2900 4000 0.75 130 2.0+0.6

29 3800 230 0.75 170 155+0.2

30 3800 400 1.50 210 28.9+0.6 orange-colored

31 3800 2000 1.25 130 135+0.7 soft; sticky

32 3800 4000 1.00 90 0.0+0.0 soft; no adhesion to substrates
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Table S3. Experimental results of adhesive joint strength cag (MPa) of samples prepared

by active learning proposals (15 samples). Variable parameters include molecular weight

of epoxy resin MWE (g/mol), molecular weight of curing agent MW¢ (g/mol), amine-to-

epoxide ratio r and curing temperature Teure (°C).

No Variable parameter Measured 64 Appearance feature of adhesives
MWE (g/mol) MWc (g/mol) r Teure (°C) (MPa) (if any)

33 2900 400 1.00 210 240+1.1

34 3800 400 1.00 210 21.2+1.2

35 370 400 1.00 210 29.0£0.1 orange-colored

36 1650 400 1.00 170 22417

37 1650 400 1.00 210 273+1.6

38 370 400 1.25 210 27.8+05 dark-colored

39 370 400 1.25 170 28.3+0.9

40 370 400 1.50 210 23.1+04 dark-colored

41 370 400 1.50 170 224+138

42 1650 400 1.25 210 24.6 £0.0 orange-colored

43 2900 400 1.00 170 20.5+3.5

44 370 230 1.00 210 24620 dark-colored

45 370 230 1.00 170 27.9+0.2

46 1650 400 1.25 170 23510

47 2900 400 1.25 210 25.7+0.9 orange-colored
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Table S4. Hyperparameters used for ML models. Default values of hyperparameters are

used if no value is specified.

Model Hyperparameter

Figure 5a max_depth =5, gamma = 3.3

Figure 5b max_depth = 3, n_estimators = 100, random_state = 2

Figure 5¢ alpha=0.1

Table 2/Figure 6 — initial dataset max_depth = 5, gamma = 3.30, learning_rate = 0.1

Table 2/Figure 6 — cycle 1 max_depth = 4, gamma = 2.70, learning_rate = 0.1
Table 2/Figure 6 — cycle 2 max_depth = 4, gamma = 1.80, learning_rate = 0.1
Table 2/Figure 6 —cycle 3 max_depth = 4, gamma = 2.86, learning_rate = 0.4
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