
Supplementary Material

We provide in this supplementary material the proofs of Section 3. Consistency of the pro-

posed estimator relies heavily on the work of Delsol and Van Keilegom (2015) (DVK hereaf-

ter) on non-smooth semiparametric M -estimation problems, while the proof of asymptotic

normality relies on a modified version of Theorem 2 of Chen et al. (2003) proposed in Birke

et al. (2017). This distinction in the tools used for consistency and asymptotic normality

is here to be attributed to the particular nature of our loss function. In order to show in

the first place that our estimator is weakly consistent, we indeed need to rely here on the

arduous work of Delsol and Van Keilegom given that the proposed loss function is no longer

strictly convex, and is hence not immune to potential local minima. However, under the

conditions that will allow us to establish weak consistency, the need to rely on the work of

Delsol and Van Keilegom for establishing asymptotic normality in a second step vanishes

in our particular context, as we may conveniently suppose that we avoid possible local

minima for a sufficiently large n and for a sufficiently small neighborhood around the true

parameter vector. As a consequence, the proof of asymptotic normality will only need to

consider shrinking neighborhoods around the true βτ and GC instead of the whole spaces

B and G as for consistency, hereby only requiring the application of (some version of) the

work of Chen et al. (2003).

Now, as a preliminary remark and as already mentioned in Section 3, note that the

following proofs are built on a crucial result of Lopez (2011) for the class G in (C3). This

implies that our proofs have to be read as such under similar conditions as for Lopez, that

is, assuming the existence of a function g : Rd+1 → R such that GC(·|X) = GC(·|g(X)),

or simply considering the case of a univariate covariate. For ease of reading, the proofs are

written considering the latter case.
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Proof of Theorem 3.1. In Theorem 1 of DVK, five high level conditions (A1)-(A5)

are developed under which an M -estimator is consistent in a general semiparametric max-

imization problem. We therefore only need to verify the latter conditions to prove the

consistency of pβτ . For notational convenience with respect to the work of DVK, let us first

rewrite pβτ as

pβτ = arg max
β∈B

n∑
i=1

ψτ

´

βTXi;Yi, pGC(·|Xi)
¯

, (A.1)

where ψτ (a; y,G) = −ρτ (a; y) + (1 − τ)
∫ a
0 G(s) ds and where B is a compact parameter

space, taken to be the neighborhood of βτ mentioned in our assumptions. For further

convenience and without any loss of generality, the proof is written considering the response

variable Y to be positive. This consideration is solely done in the purpose of being coherent

with the arbitrary set value of 0 in the correcting term of ψτ with respect to v defined in

assumption (C3). For instance, one could also easily consider in the following a strictly

negative variable Y , but this would possibly require the arbitrary chosen constant 0 to be

replaced by any constant below v as we only wish to control the behavior of the nuisance

parameter pGC(·|X) below this v.

Next, starting with condition (A1) in DVK, note that the latter is readily satisfied in

our framework by construction of pβτ . Furthermore, using the definition of G in (C3) as

the space embedding the nuisance parameter GC , and equiping the latter with the distance

dG(G1, G2) = supx∈supp(X) supy≤υ |G1(y|x)−G2(y|x)| for any G1, G2 ∈ G, note that (A3) in

DVK is straightforwardly satisfied as well provided assumption (C5)-(i) holds. We therefore

only need to verify here conditions (A2), (A4) and (A5).

Starting with the identifiability condition (A2) ensuring the uniqueness of βτ , we need to

verify that for any ε > 0, inf ||β−βτ ||>ε E
“

ψτ
`

βT
τX;Y,GC(·|X)

˘

− ψτ
`

βTX;Y,GC(·|X)
˘‰

>
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0, where ||·|| denotes the Euclidean distance. To that end, using the definition of ϕτ , we

can show that

inf
||β−βτ ||>ε

E
“

ψτ
`

βT
τX;Y,GC(·|X)

˘

− ψτ
`

βTX;Y,GC(·|X)
˘‰

= inf
||β−βτ ||>ε

E
„∫ βT

τX

βTX

`

1(Y ≥ s)− (1− τ)ḠC(s|X)
˘

ds


= inf
||β−βτ ||>ε

EX
„∫ βT

τX

βTX
(1−GC(s|X))(τ − FT |X(s|X))ds



.

Under assumptions (C1), (C2) and (C4), the latter expectation is observed to be strictly

positive, hereby ensuring condition (A2) is satisfied.

Next, for (A4) to hold, it suffices by Remark 1(ii) in DVK and assumption (C3) to show

that the class

F =
{

(y,x) 7→ ψτ
`

βTx; y,G(·|x)
˘

: β ∈ B, G ∈ G
}

is Glivenko-Cantelli. For this, by Theorem 2.4.1 in Van der Vaart and Wellner (1996),

we need to prove that for all ε > 0, the ε−bracketing number N[ ](ε,F , L1(P )) of the

class F with respect to the L1 probability measure on (Y,X) is finite. To that end, let

ψτ = ψτ1 + ψτ2 + ψτ3, where

ψτ1
`

βTx; y,G(·|x)
˘

= −τ(y − βTx)

ψτ2
`

βTx; y,G(·|x)
˘

= (y − βTx)1(y < βTx)

ψτ3
`

βTx; y,G(·|x)
˘

= (1− τ)
∫ βTx

0
G(s|x) ds,

and let F1,F2 and F3 denote the classes induced by ψτ1, ψτ2 and ψτ3, respectively. From
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this decomposition, it is easy to see that

N[ ](ε,F , L1(P )) ≤
3∏
j=1

N[ ](ε,Fj, L1(P )). (A.2)

Now, for the classes F1 and F2, suppose for simplicity and without loss of generality that

all coordinates of x are positive, and define Mε = O(ε−2) pairs (βLk , βUk ), k = 1, . . . ,Mε,

that cover B, assumed to be compact by (C1), such that (βLT
k x, β

UT
k x) define brackets of

length ετ/(1 − τ) for the class {x 7→ βTx : β ∈ B} with respect to the L1−norm. Then,

it is straightforward that N[ ](ε,Fj, L1(P )) ≤ Kjε
−2 for some finite constants Kj > 0, j =

1, 2, which, combined with (A.2), suggests we only have to verify that N[ ](ε,F3, L1(P )) is

bounded in order to prove that condition (A4) holds in our framework.

To that end, by Lemma 6.1 in Lopez (2011) which extends Theorem 2.7.5 in Van der

Vaart and Wellner, first note that there exist Nε ≤ exp(K3ε
−2/(1+η)) brackets (Gj, Gj), j =

1, . . . , Nε, for a finite constant K3 > 0 such that, under (C3), for all G ∈ G, there exists

j = 1, . . . , Nε, for which Gj ≤ G ≤ Gj, and

∫
supp(X)

∫ υ

0

ˇ

ˇGj(s|x)−Gj(s|x)
ˇ

ˇ ds dFX(x) < ε, (A.3)

where FX(x) denotes the c.d.f. of X. From this result, our claim for (A4) to hold is that

brackets for F3 are given by (ζ
jk
, ζjk), j = 1, . . . , Nε, k = 1, . . . ,Mε, where

ζ
jk

(x) = (1− τ)
∫ β

LT
k
x

0
Gj(s|x) ds,

ζjk(x) = (1− τ)
∫ β

UT
k
x

0
Gj(s|x) ds.

For this claim to hold, as it is straightforward to verify that for all ζ ∈ F3 there exist
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j = 1, . . . , Nε, and k = 1, . . . ,Mε, such that ζ
jk
≤ ζ ≤ ζjk, we only need to show that

∫
supp(X)

ˇ

ˇ

ˇ
ζjk(x)− ζ

jk
(x)

ˇ

ˇ

ˇ
dFX(x) < ε, j = 1, . . . , Nε, k = 1, . . . ,Mε.

To that end, developing the expressions of ζ
jk

and ζjk, we have that

∫
supp(X)

ˇ

ˇ

ˇ
ζjk(x)− ζ

jk
(x)

ˇ

ˇ

ˇ
dFX(x)

= (1− τ)
∫

supp(X)

ˇ

ˇ

ˇ

ˇ

ˇ

∫ β
UT
k
x

0
Gj(s|x)ds−

∫ β
LT
k
x

0
Gj(s|x)ds

ˇ

ˇ

ˇ

ˇ

ˇ

dFX(x),

where the latter expression can be bounded above by T1 + T2 where

T1 = (1− τ)
∫

supp(X)

ˇ

ˇ

ˇ

ˇ

ˇ

∫ β
UT
k
x

0
Gj(s|x)ds−

∫ β
UT
k
x

0
Gj(s|x)ds

ˇ

ˇ

ˇ

ˇ

ˇ

dFX(x),

T2 = (1− τ)
∫

supp(X)

ˇ

ˇ

ˇ

ˇ

ˇ

∫ β
UT
k
x

0
Gj(s|x)ds−

∫ β
LT
k
x

0
Gj(s|x)ds

ˇ

ˇ

ˇ

ˇ

ˇ

dFX(x).

We will now show that both T1 and T2 can be bounded above such that their sum is

bounded by ε. Starting with T1, we have that

T1 ≤ (1− τ)
∫

supp(X)

∫ β
UT
k
x

0

ˇ

ˇGj(s|x)−Gj(s|x)
ˇ

ˇ ds dFX(x)

≤ (1− τ)
∫

supp(X)

∫ υ

0

ˇ

ˇGj(s|x)−Gj(s|x)
ˇ

ˇ ds dFX(x) ≤ (1− τ)ε,

using assumption (C4) and (A.3) for the second and last inequalities, respectively. Con-
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centrating now on T2, we have that

T2 ≤ (1− τ)
∫

supp(X)

∫ β
UT
k
x

β
LT
k
x

ˇ

ˇGj(s|x)
ˇ

ˇ ds dFX(x)

≤ (1− τ)
∫

supp(X)

ˇ

ˇ

ˇ
βUT
k x− β

LT
k x

ˇ

ˇ

ˇ
dFX(x) ≤ τε,

given the brackets induced by (βLT
k , βUT

k ) for the class {x 7→ βTx : β ∈ B} with respect

to the L1−norm. This completes the proof that N[ ](ε,F3, L1(P )) is bounded. Hence, we

conclude that N[ ](ε,F , L1(P )) = O(exp(K3ε
−2/(1+η))), from which it follows that condition

(A4) holds.

Lastly, for condition (A5), we need to establish that

lim
dG(G,GC)→0

sup
β∈B

ˇ

ˇE
“

ψτ
`

βTX;Y,G(·|X)
˘

− ψτ
`

βTX;Y,GC(·|X)
˘‰ˇ

ˇ = 0.

To that end, note that

sup
β∈B

ˇ

ˇE
“

ψτ
`

βTX;Y,G(·|X)
˘

− ψτ
`

βTX;Y,GC(·|X)
˘‰
ˇ

ˇ

≤ (1− τ) sup
β∈B

EX
„∫ βTX

0
|G(s|X)−GC(s|X)| ds



.

Under assumption (C4), this expression can then in turn be bounded above by

(1− τ)
∫ υ

0
sup

x∈supp(X)
|G(s|x)−GC(s|x)| ds ≤ (1− τ) υ sup

x∈supp(X)
sup
y≤υ

|G(y|x)−GC(y|x)| ,

which converges to 0 when dG(G,GC)→ 0, provided assumption (C3) holds. This completes

the proof that (A5) holds in our framework. Hence the assumptions of Theorem 1 in DVK

are met, from which the weak consistency of pβτ follows.
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Before developing the proof of Theorem 3.2, we now illustrate in the following Lemma

how one could replace the general condition (C5)-(ii) in our assumptions by appropriate

bandwidth and kernel conditions when considering the particular case of Beran’s estimator

described in (2.8).

Lemma 1. Suppose conditions (C2) and (C3) hold, and that the following assumptions for

Beran’s estimator in (2.8) hold as well:

(C6) The bandwidth hn satisfies hn = O(n−ν), for 1/4 < ν < 1/3.

(C7) The kernel function K(·) ≥ 0 is compactly supported and Lipschitz continuous of

order 1. Furthermore,
∫
K(u) du = 1,

∫
uK(u) du = 0 and

∫
K2(u) du <∞.

Then, uniformly in β ∈ B,

EX
”

X
´

pGC(βTX|X)−GC(βTX|X)
¯ı

= n−1
n∑
i=1
Xiξ(Yi,∆i, β

TXi|Xi) + oP(n−1/2),

where ξ takes the following form for a response variable still considered to be positive:

ξ(Yi,∆i, t|x) = (1−GC(t|x))
”

∫ Yi∧t

0

−dH0(s|x)
{1−H(s|x)}2 + (1−∆i)1(Yi ≤ t)

{1−H(Yi|x)}

ı

, (A.4)

where H(t|x) = P(Y ≤ t|X = x) and H0(t|x) = P(Y ≤ t,∆ = 0|X = x).

Proof of Lemma 1. Using the i.i.d. expansion of pGC(c|x) uniformly in c and x, under

conditions (C2), (C3), (C6) and (C7), we have (see e.g. Gonzalez-Manteiga and Cadarso-
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Suarez (1994) or Van Keilegom and Veraverbeke (1997)):

EX
“

X
`

pGC(βTX|X)−GC(βTX|X)
˘‰

= (nhn)−1EX

»

–X
n∑
i=1

K
´

X−Xi
hn

¯

(nhn)−1 ∑n
j=1K

´

X−Xj
hn

¯ξ(Yi,∆i, β
TX|X)

fi

fl + oP(n−1/2)

= (nhn)−1
n∑
i=1

∫ +∞

−∞
xK

ˆ

x−Xi

hn

˙

ξ(Yi,∆i, β
Tx|x)dx+ oP(n−1/2),

where ξ is described in (A.4). Observing that the function ξ(Yi,∆i, t|x) involves an indi-

cator function with respect to t, standard change of variables and a modulus of continuity

argument of the empirical distribution function (see Theorem 2.14 in Stute (1982)) combi-

ned with assumption (C7) then lead to the desired result.

Proof of Theorem 3.2. Given that pβτ is shown to be weakly consistent in Theorem

3.1 and that pGC is assumed by (C5)-(i) to be a uniformly consistent estimator of GC , to

prove that our proposed estimator is asymptotically normally distributed we now restrict

the spaces B and G to shrinking neighborhoods around the true βτ and GC in order to

avoid possible local minima. That is, we define the spaces Bδ = {β ∈ B : ||β − βτ ||≤ δn}

and Gδ = {G ∈ G : dG(G,GC) ≤ δn} for some δn = o(1). In this context, we rely for our

proof on the work of Birke et al. (2017) which slightly adapts Theorem 2 of Chen et al.

(2003).

We therefore need to verify conditions (C.1)-(C.6) of Proposition 2 in Birke et al. (2017)

in order to establish the asymptotic normality of our proposed estimator. To that end, let

us first define Mn(β,G) = n−1 ∑n
i=1m(Yi,Xi, β,G), where

m(Yi,Xi, β,G) = Xi

`

(1− τ)(1−G(βTXi|Xi))− 1(Yi > βTXi)
˘

.
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Furthermore, let

M(β,G) = E rm(Y,X, β,G)s

= EX
”

X
{

(1− τ)p1−G(βTX|X)q− p1− FT |X(βTX|X)qp1−GC(βTX|X)q
} ı

,

and observe that M(βτ , GC) = 0.

We now verify the conditions of Proposition 2 in Birke et al.. First, note that (C.1)

trivially holds by construction of our estimator. Next, for β ∈ Bδ let Γ1(β,GC) denote the

ordinary derivative of M(β,GC) with respect to β, that is,

Γ1(β,GC) := ∂M(β,GC)
∂β

= EX
”

XXT
{
fT |X(βTX|X)(1−GC(βTX|X)) + gC(βTX|X)(τ − FT |X(βTX|X))

}ı
,

where gC(·|x) denotes the density of C conditionally on X = x. Under assumptions (C1)-

(C4), Γ1(β,GC) is then observed to be continuous and of full rank at βτ . Hence, condition

(C.2) is satisfied in our framework.

For condition (C.3), define first for all β ∈ Bδ the functional derivative of M(β,G) at

GC in the direction [G−GC ] as

Γ2(β,GC)[G−GC ] := lim
η→0

1
η

rM(β,GC + η(G−GC))−M(β,GC)s

= (1− τ)EX
“

X
`

GC(βTX|X)−G(βTX|X)
˘‰

.

We then observe that for all (β,G) ∈ Bδ × Gδ, M(β,G) is linear in G since M(β,G) −

M(β,GC) − Γ2(β,GC)[G − GC ] = 0. This verifies the first part of (C.3). For the second

part, we have to show that ||Γ2(β,GC)[ pGC −GC ]−Γ2(βτ , GC)[ pGC −GC ]||= OP(n−1/2). To
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prove this, using assumption (C5)-(ii), we have uniformly in β ∈ Bδ that

Γ2(β,GC)[ pGC −GC ] = n−1
n∑
i=1
φ(Yi,∆i, β

TXi,Xi) + oP(n−1/2),

where φ(Yi,∆i, t,x) = −(1−τ)x ξ(Yi,∆i, t|x). An application of the central limit theorem

then implies that n1/2Γ2(β,GC)[ pGC−GC ] L−→ N (0,V ) where V is finite under assumptions

(C1) and (C5)-(ii). This, in turn, implies that condition (C.3) in Birke et al. is satisfied in

our context.

Next, condition (C.4) in Birke et al. is readily satisfied in our context by assumption

(C5). To establish that condition (C.5) holds as well, we need to verify the conditions of

Theorem 3 in Chen et al. (2003). To that end, let m = mc +mlc, where

mc(Y,X, β,G) = X(1− τ)(1−G(βTX|X))

mlc(Y,X, β,G) = −X1(Y > βTX).

Then, condition (3.1) is easily observed to hold for some s1j, sj ∈ (0, 1] and r = 2 under

assumption (C1). For condition (3.2), as mlc does not depend here on G, we first note via

the proof of Theorem 3 in Chen et al. that the constant sj controlling for the regularity

of the nuisance parameter and appearing in condition (3.2) may in fact be replaced by the

constant s1j already appearing in condition (3.1). Therefore, we will verify condition (3.2)

with respect to s1j instead of sj as initially stated in Chen et al.. To that end, first it can

be observed that for all positive values εn = o(1),

sup
β?:||β−β?||≤εn

|1(Y > βT
?X)−1(Y > βTX)| ≤ 1(Y > βTX−εn||X||)−1(Y > βTX+εn||X||).
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Hence, we have that

E

«

sup
β?:||β−β?||≤εn

ˇ

ˇ

ˇ

ˇX
`

1(Y > βT
?X)− 1(Y > βTX)

˘
ˇ

ˇ

ˇ

ˇ

2
ff

≤ E
”

||X||2
{
1(Y > βTX − εn||X||)− 1(Y > βTX + εn||X||)

}ı
= EX

“

||X||2
{
H

`

βTX + εn||X||
ˇ

ˇX
˘

−H
`

βTX − εn||X||
ˇ

ˇX
˘

}
‰

≤ EX
“

||X||3K4εn
‰

,

for some finite constant K4 under assumptions (C2) and (C3). Hence, provided assumption

(C1) is satisfied, we may observe that condition (3.2) holds for s1j = 1/2. For the last

condition of Theorem 3 in Chen et al., for ε > 0 denote first by N(ε,Gδ, ||·||G) the covering

number (Van der Vaart and Wellner (1996, p. 83)) of the class Gδ under the sup-norm

metric we consider on the latter with a slight abuse of notation. Now, keeping in mind

that N(ε,Gδ, ||·||G) ≤ N[ ](ε,Gδ, ||·||G), and since all the functions in the class Gδ have values

between 0 and 1 by (C3), we first observe that only one ε-bracket suffices to cover Gδ if

ε > 1. Then, using Lemma 6.1 in Lopez (2011) for a bound on the bracketing number for

the case ε ≤ 1, we have that

∫ ∞
0

a

logN(ε,Gδ, ||·||G) dε ≤
∫ 1

0

b

logN[ ](ε,Gδ, ||·||G) dε

≤ K5

∫ 1

0
ε−

1
1+η dε

<∞ ,

for some finite constant K5, hereby satisfying condition (3.3) in Chen et al. for sj = 1. It

then follows from their Theorem 3 that condition (C.5) in Birke et al. holds in our context.

Lastly, for condition (C.6) we need to establish that n1/2
”

Mn(βτ , GC) + Γ2(βτ , GC)[ pGC −GC ]
ı
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converges to a normal distribution N (0,Σ) for some positive definite matrix Σ. Recalling

that Mn(βτ , GC) = n−1 ∑n
i=1m(Yi,Xi, βτ , GC) is the average of independent random vec-

tors with mean 0, this follows easily using the same arguments as for the verification of

condition (C.3) for the particular case of β = βτ . Hence, we obtain

n1/2
”

Mn(βτ , GC) + Γ2(βτ , GC)[ pGC −GC ]
ı

L−→ N (0,Σ),

where Σ = Cov(Λi) with

Λi = m(Yi,Xi, βτ , GC)− (1− τ)Xi ξ(Yi,∆i, β
T
τXi|Xi). (A.5)

Theorem 3.2 then follows directly from an application of Proposition 2 in Birke et al.,

hereby concluding the proof.
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