
SUPPLEMENTARY MATERIAL

Appendix A: Proofs of the Main Theorems

For convenience, we introduce the following additional notation that will be used throughout

the Appendix.

i. Let W̃ denote the difference between the sample covariance matrix S and the true

covariance matrix Σ0 = (Θ0)
−1

and ∆ the difference between an estimate Θ̃ and the

true precision matrix Θ0. That is,

W̃ = S − Σ0

∆ = Θ̃−Θ0.

ii. Let R (∆) denote the difference between nΘ̃−1/2, the gradient of n log det(Θ̃)/2, and

its first-order Taylor expansion at Θ0:

R (∆) =
n

2

(
Θ̃−1 − Σ0 + Σ0∆Σ0

)
.

iii. Recall our objective function

L(Θ) =
n

2

(
tr(SΘ)− log det(Θ)

)
+

1

2

∑
i,j

penSS(θij) +
∑
i

pen1(θii),

where

penSS(θij) = − log
[( η

2v1

)
e
−
|θij |
v1 +

(1− η
2v0

)
e
−
|θij |
v0

]
, and pen1(θii) = τ |θii|

denote the penalty terms on θij (i 6= j) and θii, respectively.

Let Zij denote the subgradient of the penalty term with respect to θij:

Zij = Zij(θij) =


τ if i = j

1
2
pen′SS(θij) if i 6= j, θij 6= 0

[−1, 1]×
η

2v2
1

+ 1−η
2v2

0
η
v1

+ 1−η
v0

if i 6= j, θij = 0
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where

pen′SS (θij) =

η
2v2

1
e
−
|θij |
v1 + 1−η

2v2
0
e
−
|θij |
v0

η
2v1
e
−
|θij |
v1 + 1−η

2v0
e
−
|θij |
v0

sign (θij) .

Let Z = [Zij], then the subgradient of the objective function L(Θ) is

∂L(Θ) =
n

2

(
S −Θ−1

)
+ Z.

iv. We denote the index set of diagonal entries as D := {(i, j) : i = j}. For any subset S

of {(i, j) : 1 ≤ i, j ≤ p} and p× p matrix A, we use AS to denote the submatrix of A

with entries indexed by S.

In this Appendix, we first prove the following main result.

Theorem A. Assume condition (A1) and ‖W̃‖∞ = maxij |sij − σ0
ij| ≤ C1

√
log p/n. If

(i) the prior hyper-parameters v0, v1, η and τ satisfy:

1
nv1

= C3

√
log p
n

(1− ε1), where C3 < C2, ε1 > 0,

1
nv0

> C4

√
log p
n
,

v2
1(1−η)

v2
0η
≤ ε1p

2(C2−C3)MΓ0 [C4−C3],

τ ≤ C3
n
2

√
log p
n
,

(1)

where C4 = (C1 +M2
Σ02(C1 + C3)MΓ0 + 6(C1 + C3)2dM2

Γ0M3
Σ0/M),

(ii) the spectral norm B satisfies 1/k1 + 2d(C1 + C3)MΓ0

√
log p/n < B < (2nv0)

1
2 , and

(iii) the sample size n satisfies
√
n ≥M

√
log p, where

M = max
{

2d(C1 + C3)MΓ0max
(

3MΣ0 , 3MΓ0M3
Σ0 , 2/k2

1

)
, 2C3ε1/k

2
1

}
,

then the MAP estimator Θ̃ satisfies

‖Θ̃−Θ0‖∞ < 2(C1 + C3)MΓ0

√
log p

n
.
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Before presenting our proof, we list two preliminary results as lemmas and list some

properties of the penalty function penSS(δ), which will be useful. Proofs of these lemmas

are in Appendix B.

Lemma 1. Define r := max

{
2MΓ0

(
‖W̃‖∞ + 2

n
max(1

2
pen

′
SS(δ), τ)

)
, 2(C1 + C3)MΓ0

√
log p
n

}
,

and A :=
{

Θ : n
2

(S −Θ−1)B + ZB = 0,Θ � 0, ‖Θ‖2 ≤ B
}

with B = {(i, j) : |θ0
ij| > 2(C1 +

C3)MΓ0

√
log p/n} ∪ D. If parameters r and B satisfy:

r ≤ min
{

1
3MΣ0d

, 1
3dMΓ0M3

Σ0

}
,

min |θ0
B∩Dc| ≥ r + δ,

1/k1 + dr < B,

for some δ > 0, where k1 is the lower bound on λmin(Σ0), then the set A is non-empty.

Moreover, there exists a Θ̃ ∈ A such that ‖∆‖∞ := ‖Θ̃−Θ0‖∞ ≤ r.

Lemma 2. Suppose that ‖Θ̃−Θ0‖∞ ≤ r, then

‖Θ̃−Θ0‖F ≤ r
√
p+ s, (2)∣∣∣∣∣∣∣∣∣Θ̃−Θ0

∣∣∣∣∣∣∣∣∣
∞
, ‖Θ̃−Θ0‖2 ≤ rmin{d,

√
p+ s}, and (3)

‖Θ̃−1 − Σ0‖∞ ≤M2
Σ0r +

3

2
dM3

Σ0r2. (4)

Properties of penSS(δ)

We now provide some useful results on the penalty function penSS(δ).

• Bound on the magnitude of the first derivative of penSS(δ):

1

n
|pen′SS(δ)| =

η

2v2
1
e
−|δ|v1 + 1−η

2v2
0
e
−|δ|v0

n

(
η

2v1
e
−|δ|v1 + 1−η

2v0
e
−|δ|v0

)

= 1
nv1

+
1
n

( 1
v0
− 1
v1

)

ηv0
(1−η)v1

e
|δ|
v0
−|δ|v1 +1

< 1
nv1

(
1 +

v2
1(1−η)

v2
0η

e
|δ|
v0
−|δ|v1

)
. (5)
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Choose 1/ (nv0) > C4

√
log p/n and 1/ (nv1) < C3

√
log p/n as in Theorem A, and if

further let v2
1 (1− η) / (v2

0η) = ξpψ[C4−C3], when δ ≥ ψ
√

log p/n, then we have

v2
1(1−η)

v2
0η

e
|δ|
v0
− |δ|
v1

≤ ξpψ[C4−C3]

pψ[C4−C3]
≤ ξ. (6)

Let ξ to be sufficiently small, i.e., ξ < ε1, then we have

1

n
|pen′SS(δ)| < C3

√
log p

n
.

• Bound on the magnitude of the second derivative of penSS(δ):

With the same choice of v0 and v1 as in Theorem A, when δ ≥ ψ
√

log p/n, we have

1

2n
|pen

′′

SS(δ)| =

(
1
v0
− 1

v1

)
ηv0

(1−η)v1
e
δ
v0
− δ
v1

2n
(

ηv0

(1−η)v1
e
δ
v0
− δ
v1 + 1

)2

<

(
1
v0
− 1

v1

)
2n
(

ηv0

(1−η)v1
e
δ
v0
− δ
v1 + 1

)
<

(1− η)v1

2nv2
0ηe

δ
v0
− δ
v1

<
ξ

2nv1

(7)

<
C3

2
ξ

√
log p

n
<
C3

2
ε1

√
log p

n
, (8)

where (7) is due to (6). In addition, when n satisfies the condition (iii) in Theorem

A, (8) is always upper bounded by 1
4
k2

1.

Proof of Theorem A. Our proof is inspired by the techniques from Rothman et al. (2008)

and Ravikumar et al. (2011).

Here is the outline of the proof.

• Step 1: Construct a solution set A for the constraint problem:

arg min
Θ�0,‖Θ‖2≤B,ΘBc=0

L (Θ) ,

by defining

A =
{

Θ :
n

2

(
S −Θ−1

)
B + ZB = 0,Θ � 0, ‖Θ‖2 ≤ B

}
,
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where B = {(i, j) : |θ0
ij| > 2(C1 +C3)MΓ0

√
log p/n}∪D. For θ0

ij ∈ B∩Dc and , define

min
(
|θ0
ij|
)

as 2(C1 +C2)MΓ0

√
log p/n. We then have |θ0

ij| ≥ 2(C1 +C2)MΓ0

√
log p/n

when θ0
ij ∈ B ∩ Dc and |θ0

ij| ≤ 2(C1 + C3)MΓ0

√
log p/n when θ0

ij ∈ Bc ∩ Dc.

• Step 2: Prove A is not empty and further show that there exists Θ̃ ∈ A satisifying

‖Θ̃−Θ0‖∞ = Op

(√
log p/n

)
.

• Step 3: Finally prove that Θ̃, which is positive definite by construction, is a local

minimizer of the loss function L(Θ) by showing L(Θ) ≥ L(Θ̃) for any Θ in a small

neighborhood of Θ̃. Since L(Θ) is strictly convex when B < (2nv0)
1
2 , we then conclude

that Θ̃ is the unique minimizer such that ‖Θ̃−Θ0‖∞ = Op

(√
log p/n

)
.

At Step 2, we apply Lemma 1. First we check its conditions.

1. Consider r = 2(C1 + C3)MΓ0

√
log p/n. For θ0

ij ∈ B ∩ Dc, we have θ0
ij ≥ r + 2(C2 −

C3)MΓ0

√
log p/n. That is, the δ defined in Lemma 1 is greater or equal to 2(C2 −

C3)MΓ0

√
log p/n.

2. Recall the properties of penSS(δ). We have |pen′SS(δ)|/n < C3

√
log p/n. With the

bound of ‖W̃‖∞ and the condition on sample size n, we have

2MΓ0

(
‖W‖∞ + max

(
1

n
pen

′

SS(δ),
2

n
τ

))
≤ 2(C1 + C3)MΓ0

√
log p

n

≤ min

{
1

3MΣ0d
,

1
3
2
dMΓ0M3

Σ0

}
.

Thus, conditions for Lemma 1 are all satisfied. By Lemma 1, we conclude that there

exists a solution Θ̃ ∈ A satisfying

‖Θ̃−Θ0‖∞ = ‖∆‖∞ ≤ 2(C1 + C3)MΓ0

√
log p

n
.

That is, the solution Θ̃ we constructed is Op

(√
log p/n

)
from the truth in entrywise l∞

norm.

At Step 3, we need to show that the solution Θ̃ we constructed is indeed a local minimizer

of the objective function L(Θ). It suffices to show that

G(∆1) = L(Θ̃ + ∆1)− L(Θ̃) ≥ 0
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for any ∆1 with ‖∆1‖∞ ≤ ε. Re-organize G(∆1) as follows:

G(∆1) =
n

2

(
tr
(

∆1

(
S − Θ̃−1

))
−
(

log |Θ̃ + ∆1| − log |Θ̃|
)

+ tr
(

∆1Θ̃−1
))

−
∑
i<j

log

(
η

2v1

e
−
|θ̃ij+∆1ij |

v1 +
1− η
2v0

e
−
|θ̃ij+∆1ij |

v0

)
+
∑
i<j

log

(
η

2v1

e
−
|θ̃ij |
v1 +

1− η
2v0

e
−
|θ̃ij |
v0

)
+ τ

∑
i

(
θ̃ii + ∆1 − θ̃ii

)
= (I) + (II) + (III),

where

(I) =
n

2

(
tr
(

∆1

(
S − Θ̃−1

))
−
(

log |Θ̃ + ∆1| − log |Θ̃|
)

+ tr
(

∆1Θ̃−1
))

,

(II) = −1

2

∑
i<j

log

(
η

2v1

e
−
|θ̃ij+∆1ij |

v1 +
1− η
2v0

e
−
|θ̃ij+∆1ij |

v0

)
+

1

2

∑
i<j

log

(
η

2v1

e
−
|θ̃ij |
v1 +

1− η
2v0

e
−
|θ̃ij |
v0

)
,

(III) = τ
∑
i

(
θ̃ii + ∆1ii − θ̃ii

)
= τ∆1ii.

Bound (I) as follows.

log |Θ̃ + ∆1| − log |Θ̃|

= tr
(

∆1Θ̃−1
)
− vec (∆1)T

∫ 1

0

(1− v)
(

(Θ̃−1 + v∆1)−1 ⊗ (Θ̃−1 + v∆1)−1dv
)

vec(∆1)

≤ tr
(

∆1Θ̃−1
)
− 1

4
k2

1‖∆1‖2
F .

where the last inequality can be shown with the same proof for Theorem 1 in Rothman

et al. (2008) with
√
n ≥ 4(C1 + C3)dMΓ0/k2

1

√
log p. Thus,

(I) ≥ n

2

(
tr
(

∆1

(
S − Θ̃−1

))
+

1

4
k2

1‖∆1‖2
F

)
=

n

2

(∑
i,j

(
∆1ij

(
sij − Θ̃−1

ij

))
+

1

4
k2

1‖∆1‖2
F

)
.

6



Next consider (II). For any (i, j) /∈ B, θ̃ij = 0, |θ̃ij + ∆1ij| = |∆1ij|, and therefore

− log

(
η

2v1

e
−
|θ̃ij+∆1ij |

v1 +
1− η
2v0

e
−
|θ̃ij+∆1ij |

v0

)
+ log

(
η

2v1

e
−
|θ̃ij |
v1 +

1− η
2v0

e
−
|θ̃ij |
v0

)

= log

(
η

2v1
e
− |0|
v1

)
+
(

1−η
2v0
e
− |0|
v0

)
(

η
2v1
e
−
|∆1ij |
v1

)
+
(

1−η
2v0
e
−
|∆1ij |
v0

)
=
|∆1ij|
v0

− log
(v0ηe

|∆1ij |
v0
−
|∆1ij |
v1 + v1(1− η)

v0η + v1(1− η)

)
.

For any (i, j) ∈ B and i 6= j, applying Taylor expansion, for some v ∈ (0, 1), we have

− log

(
η

2v1

e
−
|θ̃ij+∆1ij |

v1 +
1− η
2v0

e
−
|θ̃ij+∆1ij |

v0

)
+ log

(
η

2v1

e
−
|θ̃ij |
v1 +

1− η
2v0

e
−
|θ̃ij |
v0

)
= penSS

′(θ̃ij)∆1ij +
1

2
penSS

′′
(
θ̃ij + v∆1ij

)
∆1

2
ij.

Combining the results above, we have

G(∆1) ≥n
2

(∑
i,j

(
∆1ij(sij − Θ̃−1

ij )
)

+
1

4
k2

1‖∆1‖2
F

)
+
∑
i=j,∈B

τ∆1ii

+
1

2

∑
i 6=j,∈B

(
pen

′

SS(θ̃ij)∆1ij +
1

2
pen

′′

SS(θ̃ij + v∆1ij)∆1
2
ij

)

− 1

2

∑
/∈B

−|∆1ij|
v0

+ log
(v0ηe

|∆1ij |
v0
−
|∆1ij |
v1 + v1(1− η)

v0η + v1(1− η)

)
= (A) + (B) + (C),

where

(A) =
n

2

( ∑
(i,j)∈B

∆1ij(sij − Θ̃−1
ij +

2

n
Zij)

)
,

(B) =
n

2

 ∑
(i,j)/∈B

∆1ij(sij − Θ̃−1
ij )− 1

n

(
−
|∆1ij|
v0

+ log
v0ηe

|∆1ij |
v0
−
|∆1ij |
v1 + v1(1− η)

v0η + v1(1− η)

) ,

(C) =
n

8
k2

1‖∆1‖2
F +

∑
i 6=j,∈B

1

4
penSS

′′
(
θ̃ij + v∆1ij

)
∆1

2
ij.

Next, we show that all three terms, (A), (B), and (C), are non-negative.

• (A) = 0 because of the way Θ̃ is constructed.
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• (C) ≥ 0 by the property of penSS
′′(δ) stated before.

• For term (B), we will first bound sij − Θ̃−1
ij :

|sij − Θ̃−1
ij | ≤ |sij − σ0

ij|+ |Θ̃−1
ij − σ0

ij|

≤ C1

√
log p

n
+M2

Σ02 (C1 + C3)MΓ0

√
log p

n
+

3

2
dM3

Σ0

(
2(C1 + C3)MΓ0

√
log p

n

)2

≤
(
C1 +M2

Σ02 (C1 + C3)MΓ0 + 6 (C1 + C3)2 dM2
Γ0M3

Σ0/M
)√ log p

n
,

where the second line is due to Lemma 2.

Next, we bound the fraction after the log function in (B). For simplicity, denote it by

f(∆1ij). Since 1/v0 − 1/v1 > 0, f(∆1ij) is a monotone function of ∆1ij and f(∆1ij)

goes to 1 as ∆1ij goes to 0. That is, f(∆1ij) can be arbitrary close to 0, when ∆1ij is

sufficiently small. Therefore the second term after summation can be arbitrary close

to ∆1ij/(nv0).

So if choosing 1/(nv0) > C1 + M2
Σ02(C1 + C3)MΓ0 + 6(C1 + C3)

2dM2
Γ0M3

Σ0/M and

ε > 0 sufficiently small, we have (B)>0 when ‖∆1‖∞ ≤ ε.

Combining the results above, we have shown that there always exists a small ε > 0, such

that G(∆1) ≥ 0 for any ‖∆1‖∞ ≤ ε. That is, Θ̃ is a local minimizer. So we have proved

Theorem A.

Proof of Theorem 2. Cai et al. (2011) have shown that the sample noise W̃ can be

bounded by
√

log p
n

times a constant with high probability for both exponential tail and

polynomial tail (see the proofs of their Theorem 1 and 4). That is,

• When condition (C1) holds,

‖W̃‖∞ ≤ η−1
1 (2 + τ0 + η−1

1 K2)

√
log p

n

with probability greater than 1− 2p−τ0 .
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• When condition (C2) holds,

‖W̃‖∞ ≤
√

(θ0
max + 1)(4 + τ0)

log p

n
, θ0

max = max
ij

θij,

with probability greater than 1−O(n−δ0/8 + p−τ0/2).

With the results above on ‖W̃‖∞ and Theorem A, we have proven Theorem 2.

Appendix B: Other Proofs

Proof of Lemma 1. Show both |∆B‖∞ and ‖∆Bc‖∞ are bounded by r. Thus, ‖∆‖∞ ≤ r.

1. By construction,

‖∆Bc‖∞ ≤ 2(C1 + C3)MΓ0

√
log p/n ≤ r.

2. The proof for ‖∆B‖∞ ≤ r is inspired by Ravikumar et al. (2011). Define G(ΘB) =

n
(
−Θ−1

B + SB
)
/2 + ZB. By definition, the set of ΘB that satisfies G(ΘB) = 0 is the

set A. Consider a mapping F from R|B| → R|B|:

F (vec (∆B)) =
2

n

(
− Γ0−1

BBvec
(
G
(
Θ0
B + ∆B

)) )
+ vec (∆B) . (9)

By construction, F (vec (∆B)) = vec (∆B) if and only if G (Θ0
B + ∆B) = G (ΘB) = 0.

Let B (r) denote the `∞ ball in R|B|. If we could show that F (B (r)) ⊆ B (r), then

because F is continuous and B (r) is convex and compact, by Brouwer’s fixed point

theorem, there exists a fixed point vec(∆B) ∈ B(r). Thus ‖∆B‖∞ ≤ r.

Let ∆ ∈ Rp×p denote the zero-padded matrix, equal to ∆B on B and zero on Bc.

F (vec (∆B)) =
2

n

(
− Γ0−1

BBvec
(
G
(
Θ0
B + ∆B

)) )
+ vec (∆B)

= −Γ0−1
BB

( (
−(Θ0 + ∆)−1

B + SB
)

+
2

n
ZB

)
+ vec (∆B)

= −Γ0−1
BB

(
−
(
Θ0 + ∆

)−1

B + Θ0
B
−1 −Θ0

B
−1

+ SB) +
2

n
ZB

)
+ vec (∆B)

= Γ0−1
BBvec

(
Θ0−1

∆Θ0−1

∆JΘ0−1
)
B
− Γ0−1

BB

(
vec

(
WB +

2

n
ZB

))
.
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Denote

I = Γ0−1
BBvec

(
Θ0−1

∆Θ0−1

∆JΘ0−1
)
B

II = Γ0−1
BB

(
vec

(
WB +

2

n
ZB

))
.

Then F (vec (∆B)) ≤ ‖I‖∞ + ‖II‖∞. So it suffices to show ‖I‖∞ + ‖II‖∞ ≤ r.

For the first relationship, we have

‖I‖∞ ≤
∣∣∣∣∣∣∣∣∣Γ0−1

BB

∣∣∣∣∣∣∣∣∣
∞
‖vec(Θ0−1

∆Θ0−1

∆JΘ0−1

)B‖∞

≤MΓ0‖R(∆)‖∞

≤ 3

2
dMΓ0M3

Σ0‖∆‖2
∞,

where the last inequality is due to ‖∆‖∞ ≤ r ≤ 1/(3MΣ0d) and Lemma 5 from

Ravikumar et al. (2011). Since r ≤ 1/(3dMΓ0M3
Σ0), we further have ‖I‖∞ ≤ r/2.

By assumption, min |θ0
B∩Dc | ≥ r + δ, thus when ‖∆‖∞ ≤ r, min |θB∩Dc | ≥ δ, since

pen
′
SS (|θ|) is monotonic decreasing, we have ‖ZB∩Dc‖∞ ≤ 1

2
pen

′
SS(δ). Thus, for the

second relationship, we have

‖II‖∞ ≤ Γ0−1
BB

(
‖W‖∞ +

2

n
max

(
1

2
pen

′

SS(δ), τ

))
≤MΓ0

(
‖W‖∞ +

2

n
max

(
1

2
pen

′

SS(δ), τ

))
≤ r/2

by assumption.

Thus, there exists a point Θ̃ such that ‖Θ̃−Θ0‖∞ ≤ r.

Because ‖Θ̃‖2 ≤ ‖Θ̃ − Θ0‖2 + ‖Θ0‖2 and ‖Θ̃ − Θ0‖2 ≤
∣∣∣∣∣∣∣∣∣Θ̃−Θ0

∣∣∣∣∣∣∣∣∣
∞
≤ dr, we have

‖Θ̃‖2 ≤ 1/k1 + dr < B. Because dr < 1
3MΣ0

< 1
3
λmin(Θ0), we have λmin(Θ̃) > 0.So it is

inside A by assumption. That is, A is non empty.

Proof of Lemma 2. Since there are only p+ s nonzero entries, we prove (2):

‖Θ̃−Θ0‖F =

√ ∑
(i,j)∈Sg

(θ̃ij − θ0
ij)

2 ≤ r
√
p+ s.
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Since there are at most d nonzero entries in each column of Θ and Θ is symmetric,

‖Θ̃−Θ0‖2 ≤
∣∣∣∣∣∣∣∣∣Θ̃−Θ0

∣∣∣∣∣∣∣∣∣
∞
≤ rd.

In addition, since the `∞/`∞ operator norm is bounded by Frobenius norm, we prove (3).

We skip the proof for (4), which is nearly identical to Corollary 4 in Ravikumar et al.

(2008).

Proof of Theorem 4. (Selection consistency)

Recall

log
pij

1− pij
=
(

log
v0η

v1(1− η)
− |θ̃ij|

v1

+
|θ̃ij|
v0

)
=
(
− log

v1(1− η)

v0η
− |θ̃ij|

v1

+
|θ̃ij|
v0

)
.

(10)

• When θ0
ij = 0, by constructor, θ̃ij = 0. Then with our choice of v1(1− η)/ (v0η),

log
pij

1− pij
→ −∞.

• When θ0
ij 6= 0, we have

log
pij

1− pij
=
(

log
v0η

v1(1− η)
− |θij|

v1

+
|θij|
v0

)
≥
(
− log

v1(1− η)

v0η
+

(
1

v0

− 1

v1

)(
|θ0
ij| − |θ0

ij − θij|
))

≥ − log
v1(1− η)

v0η
+ (C4 − C3) (K0 − 2(C1 + C3)MΓ0) log p.

(11)

Then with our choice of v1(1− η)/(v0η),

log
pij

1− pij
→ +∞.

Proof of Theorem 5. The estimate of the precision matrix is symmetric due to construc-

tion.
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Next we show that the estimate is ensured to be positive definite. Assume Θ(t), the t-th

update of the estimate is positive definite. Apparently, this assumption is satisfied with

t = 0 since the initial estimate Θ(0) is positive definite.

Then it suffices to show that det(Θ(t+1)) � 0. WLOG, assume we update the last column

of Θ in the (t+ 1)-th iteration. Using Schur complements, we have

det
(
Θ(t+1)

)
= det

(
Θ

(t)
11

)(
θ

(t+1)
22 − θ(t+1)T

12 Θ
(t)−1

11 θ
(t+1)
12

)
.

Because det(Θ(t)) � 0, we have det
(

Θ
(t)
11

)
> 0. Further, the updating rule of our algorithm

ensures that (
θ

(t+1)
22 − θ(t+1)T

12 Θ
(t)−1

11 θ
(t+1)
12

)
=

1

w
(t+1)
22

> 0.

Thus, det
(
Θ(t+1)

)
> 0.

Appendix C: Checking ‖Θ‖2 ≤ B.

Algorithm 1 involves checking the spectral norm constraint ‖Θ‖2 ≤ B after every column

update of Θ. Computing ‖Θ‖2 can be computationally intensive, however, since we only

change one column (and corresponding one row) at a time, the constraint can be checked

without calculating ‖Θ‖2 every time. Suppose we know ‖Θ(t)‖2 (or an upper bound) at the

previous step, and denote ∆(t) := Θ(t+1) −Θ(t) to be the difference between the estimates

after one column update. In order to check the bound, it is sufficient to make sure that

‖Θ(t)‖2 + ‖∆(t)‖2 < B. It is easy to check this constraint because ‖∆(t)‖2 is a rank two

matrix with its maximum eigenvalue available in closed form. Only when ‖Θ(t)‖2 + ‖∆‖2

exceeds B, we will need to recalculate ‖Θ(t+1)‖2 again.
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