SUPPLEMENTARY MATERIAL

Appendix A: Proofs of the Main Theorems

For convenience, we introduce the following additional notation that will be used throughout

the Appendix.

i. Let W denote the difference between the sample covariance matrix S and the true

11

iii.

covariance matrix XY = (@0)_1 and A the difference between an estimate © and the

true precision matrix ©°. That is,

Let R (A) denote the difference between n©~'/2, the gradient of nlogdet(©)/2, and

W:
A:

its first-order Taylor expansion at ©°:

R(A)

Recall our objective function

L(©) = g(tr(S@) ~log det(@)> + % D
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denote the penalty terms on 6;; (i # j) and 6,;, respectively.

Let Z;; denote the subgradient of the penalty term with respect to 6;;:
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Let Z = [Z;;], then the subgradient of the objective function L(©) is

AL(©) = g (S—0+2

We denote the index set of diagonal entries as D := {(i,j) : ¢ = j}. For any subset S
of {(i,7) : 1 <i,j < p} and p X p matrix A, we use As to denote the submatrix of A

with entries indexed by S.

In this Appendix, we first prove the following main result.

Theorem A. Assume condition (A1) and |W||s = max; |si; — op| < Cry/logp/n. If

(i) the prior hyper-parameters vy, v1,n and T satisfy:

(

n%}l = 03,/1057’(1 —&1), where C3 < Cy,e1 > 0,
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where C4 = (Cl + M§02(Cl + Cg)MpO + 6(01 + Cg)QdMgoMgo/M),
(ii) the spectral norm B satisfies 1/ky + 2d(Cy + C3)Mroy/log p/n < B < (2nvo)2, and
(111) the sample size n satisfies \/n > M+/log p, where

M = max {2d(c1 + Cy) Mpomax (3M20, 3 Mo M3, 2/kf> 2052, /k:f},

then the MAP estimator © satisfies

) 1
16 — 09| < 2(C. + C3) Myoy/ Oflp.



Before presenting our proof, we list two preliminary results as lemmas and list some

properties of the penalty function pengg(d), which will be useful. Proofs of these lemmas

)

are in Appendix B.

Lemma 1. Define r := max {ZMFO <||I/T/||OO + 2 max(3pengg(9), 7')) 2(Cy + C3) Mro
and A:={0:3(S—071);+2Z5=10,0>0,|0]s < B} with B={(i,j) : |0%] > 2(C1 +
C3)Mroy/logp/n} UD. If parameters r and B satisfy:
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: 1 1
r < min
= {3M20d’ 3dMpo M, } )

min [03pe| > 7 + 9,

1/]€1—|—d7’<B,

for some & > 0, where ky is the lower bound on Auin(X°), then the set A is non-empty.

Moreover, there exists a © € A such that |A]| oo = e — O <7

Lemma 2. Suppose that ||© — ©°|| < r, then

16 — ©°%r <rvp + s, (2)
)Hé-@om 16 — s < rmin{d, /p 75}, and (3)
~ 3
07! — X000 < MEor + 5dMgor?. (4)
Properties of pengg(d)

We now provide some useful results on the penalty function pengg(d).

e Bound on the magnitude of the first derivative of pengg(9):
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Choose 1/ (nvg) > Cyy/logp/n and 1/ (nvy) < C3+/logp/n as in Theorem A, and if

further let v? (1 —n) / (v3n) = &p¥1=%l when 6 > 1)+/log p/n, then we have
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Let £ to be sufficiently small, i.e., £ < 1, then we have

1 , lo
= |pen’ss ()] < Cyy/ —22.
n n

e Bound on the magnitude of the second derivative of pengg(d):

With the same choice of vy and v; as in Theorem A, when 6 > ¥\/log p/n, we have
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where (7) is due to (6). In addition, when n satisfies the condition (i77) in Theorem

A, (8) is always upper bounded by k1.

and Ravikumar et al. (2011).

Here is the outline of the proof.

e Step 1: Construct a solution set A for the constraint problem:

arg min L(©),
©0>0,]|8]2<B,0p:=0

by defining

A:{@Zg(S—@_I)B+ZB:076>'07||@||2SB}7
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Proof of Theorem A. Our proof is inspired by the techniques from Rothman et al. (2008)



where B = {(4, ) : 163;] > 2(Cy + Cs)Mpo+/log p/n}UD. For 6); € BND and , define

min (|0%]) as 2(Cy 4 C2) Mroy/log p/n. We then have |0%| > 2(Cy + Co) Mro+/log p/n
when 6, € BND and |0);| < 2(Cy + Cs)Mroy/log p/n when 6); € B°ND°.
e Step 2: Prove A is not empty and further show that there exists © € A satisifying

16 - €%l = 0, (VIogp/n).

e Step 3: Finally prove that ©, which is positive definite by construction, is a local

minimizer of the loss function L(©) by showing L(©) > L(©) for any © in a small
neighborhood of ©. Since L(©) is strictly convex when B < (2nuy)2, we then conclude
that © is the unique minimizer such that ||© — ©°||, = O, <\/10g p/n>

At Step 2, we apply Lemma 1. First we check its conditions.

1. Consider r = 2(Cy + Cs)Mpoy/logp/n. For 6); € BN D, we have 6); > r 4 2(C5 —
C3)Mro/logp/n. That is, the § defined in Lemma 1 is greater or equal to 2(Cy —

C3)Mro+/log p/n.

2. Recall the properties of pengg(d). We have |pen’ss(d)|/n < Csy/logp/n. With the

bound of |||« and the condition on sample size n, we have

1,2 1
2 Mo (HWHOO + max (Epenss(é), ET» < 2(Cy + Cs)Myoy/ in

1 1
< i .
= mm{3M@dngwM§}

Thus, conditions for Lemma 1 are all satisfied. By Lemma 1, we conclude that there

exists a solution © € A satisfying

~ lo
16 = 000 = | Alloe < 2(Cy + C5) Mroy | —2L.

n

That is, the solution © we constructed is O, <\/10g p/ n) from the truth in entrywise [,
norm.
At Step 3, we need to show that the solution © we constructed is indeed a local minimizer

of the objective function L(©). It suffices to show that
G(A) =LO+A)-LO)>0
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for any A; with ||A;|le < €. Re-organize G(A;) as follows:

G(Ay) = g(” (A1 <S — é_1>> - <10g 10 + Ay| — log |(:)|> +tr <A1(:)_1) )

105+ 1 — 105+
— 10g ie : vy ! + ne . v .
2?]1 21}0

i<j
n _Iiij\ 1_77 _\iz‘jl ~ -
+;10g(2—2}16 L+ 00 ¢ " +7'zi:<9ii+ﬁ1—9u'>
= (I) + (II) + (I11),
where
() = g(tr <A1 (S — (:)_1>> — <10g ](:) + Ay| —log \(:)]) + tr <A1C:)_l) ),
1 n o _ 1055 +81,51 1—n 1055+
I = —— 1 — v v
(1) 2zog<2v1€ ot )
1<)
’r] _‘ezjl 1 J— _lé’L]‘
— 1 [ Ul v
—|—2; og<2vle + 200 e v |,

(III) = 7 Z (é” + Ay — ézz) = T4
Bound (I) as follows.

log |© + A| — log O]
1
= tr (Alé_1> — vec (Al)T/ (1—0v) ((é_l +vA) @ (07 + UAl)_ldU> vec(Aq)
0

~ 1
< o (8067) = kA F

where the last inequality can be shown with the same proof for Theorem 1 in Rothman

et al. (2008) with v/n > 4(C} + C3)dMyo/k?+/log p. Thus,

0 > 2 (A (5-67)) + gRA2)

= 2 (2 (s - 65)) + I ),

2y



Next consider (IT). For any (i,7) ¢ B, 6;; =0, |6;; + Ay = |Aq], and therefore

n 104 +A1 451 1— n 18i A1 n 16451 1— 77 16451
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= 2l e (Uone o = +Ul(1—77)>
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For any (i,7) € B and i # j, applying Taylor expansion, for some v € (0, 1), we have
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Combining the results above, we have

n ~_ 1
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i=j,cB
1 " ~
+ = Z (penSS 3) A+ 2pen35(9ij —i—vAlij)Al?j)
z;ﬁj eB

(A1 1A14]

——Z 11]| Og (U()T]e vg 01 +U1(1—77)>

von + v1(1 —n)

where
2
< E Alz] Szg ij EZU>>7
(i,7)EB

| | 121451 1A1441 ( )
n ~_ 1 ANPY vone o 1o 4u(l—n
B)=—= E A8 — 05! ——(— 2+ log )
= (i) ¢B wilts =0T, Yo vor) + vi (1 =)

n 1 7
(C) :gk;fHAlH% + Z ZpenSS" <9z‘j + UAIZ‘J’) Al?j'
i#j,eB

Next, we show that all three terms, (A), (B), and (C), are non-negative.

e (A) = 0 because of the way © is constructed.
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e (C) > 0 by the property of pengg”(d) stated before.

e For term (B), we will first bound s;; — (:);jlz

s — O, < |sij — ol + 105" — oy

2
1 1 3 1
< Oy /% + M2,2(C + C5) Myoy/ in + SdM (2(01 + C3) Myoy / O§p>

|
< (C1 + M2o2 (Cy + C3) Mro + 6 (Ch + Cs)* dMpo Mo /M) Ofbp’

where the second line is due to Lemma 2.

Next, we bound the fraction after the log function in (B). For simplicity, denote it by
f(Ay;;). Since 1/vg — 1/v1 > 0, f(Ay;;) is a monotone function of Ay;; and f(Ay;;)
goes to 1 as Ay;; goes to 0. That is, f(Ay;;) can be arbitrary close to 0, when Ay;; is
sufficiently small. Therefore the second term after summation can be arbitrary close
to Ay;;/(nvo).

So if choosing 1/(nvg) > Cy + M2,2(Cy + C3)Mro + 6(Cy + Cs)*dMz, M2, /M and

e > 0 sufficiently small, we have (B)>0 when [|A;|l« <.

Combining the results above, we have shown that there always exists a small € > 0, such
that G(A;) > 0 for any ||A | < e. That is, © is a local minimizer. So we have proved
Theorem A. O

Proof of Theorem 2. Cai et al. (2011) have shown that the sample noise W can be

bounded by /%2 times a constant with high probability for both exponential tail and

n

polynomial tail (see the proofs of their Theorem 1 and 4). That is,

e When condition (C1) holds,

~ _ _ [logp
||W||oo <m 1(2 + 7o+ 1K2) n

with probability greater than 1 — 2p~".



e When condition (C2) holds,

max max

~ 1
e < [0+ D+ 70 B2 8, = s,
n 2]
with probability greater than 1 — O(n=%/8 4 p=70/2),

With the results above on ||[W||o and Theorem A, we have proven Theorem 2. O

Appendix B: Other Proofs
Proof of Lemma 1. Show both |Ag||o and |[Ape||« are bounded by r. Thus, ||Alle < 7.

1. By construction,

|1Age|loo < 2(Cy 4 C5)Mron/logp/n < r.

2. The proof for ||Ag|le < 7 is inspired by Ravikumar et al. (2011). Define G(03) =
n (—@gl + SB) /2 + Zp. By definition, the set of O that satisfies G(©g) = 0 is the
set A. Consider a mapping F from R8I — RI8I:

F (vec (Ag)) = %( ~ T0hvee (G (04 + Ar)) ) + vee (Ag) ()

By construction, F (vec (Ag)) = vec (Ap) if and only if G (0% + Ag) = G (05) = 0.

Let B (r) denote the /., ball in R8I, If we could show that F (B (r)) C B (r), then

because F' is continuous and B (r) is convex and compact, by Brouwer’s fixed point

theorem, there exists a fixed point vec(Ag) € B(r). Thus ||Aslle < 7.

Let A € RP*P denote the zero-padded matrix, equal to Ag on B and zero on B°.

1

F (vec(Ag)) = %( — IMggvec (G (O + Ag)) ) + vec (Ap)

_ 2
- _FOBé< (—(©° +A)z" + S5) + EZB> + vec (Ap)

. 4 e 2
= T — (0" +A), + 647 — 0% +85) + ~Zs ) + vec (M)

. o . 2
= I vec (@0 'AGY AJO" >3 . <vec (WB + EZB>) .



Denote

I = Fogévec (@OilA@OilAJ@ml)

. 2
I = I, (Vec (WB + —ZB)> .
n

Then F (vec (Ag)) < ||I]joo + [|11]|co- So it suffices to show ||I||oc + [|I1]|ee < 7.

B

For the first relationship, we have
IWoe < ||[T5 | _llvee(©”” 20 2767 )5

< Mrol|[ R(A) ]l
3
< SdMpo M| Al%,
where the last inequality is due to [|A|lec < r < 1/(3Msxod) and Lemma 5 from
Ravikumar et al. (2011). Since r < 1/(3dMroM3,), we further have ||I]| < 7/2.

By assumption, min |0 .| > 7 + 0, thus when ||Al|. < 7, min|fz~pe| > 4, since

pengg (|0]) is monotonic decreasing, we have || Zznpe

o < ipengg(d). Thus, for the

second relationship, we have
- 2 1
0L e < T (I [l + = macx ( Spen’ss(6).7 ) )
2 1 /
< Mro | [[W]|oo + — max §P9n55(5)77 <r/2
n
by assumption.

Thus, there exists a point © such that |© — ©°||, < 7.
Because |0l < [|© — 09|, + [|0°]|; and ||© — @], < H]é . eom < dr, we have
19|l < < $Anin(6Y), we have Amin(©) > 0.S0 it is

inside A by assumption. That is, A is non empty. H

Proof of Lemma 2. Since there are only p 4+ s nonzero entries, we prove (2):

10— = | > (6, —0%)°<rVp+s.

(4,)€Sg
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Since there are at most d nonzero entries in each column of © and © is symmetric,
16-6: < ||6-e| <ra
oo

In addition, since the ¢, /¢, operator norm is bounded by Frobenius norm, we prove (3).
We skip the proof for (4), which is nearly identical to Corollary 4 in Ravikumar et al.
(2008). O

Proof of Theorem /. (Selection consistency)

Recall

Dij ( von [ )
lo lo — +
s 1— Dij & Ul(l - 77) U1 Vo
<_ log vl =mn) _ 105 !%I)O

VoM U1 Vo

e When 6}; = 0, by constructor, f;; = 0. Then with our choice of v;(1 — 1)/ (von),

logl_ ij—) 0
e When 6}; # 0, we have
g 0. 0.
log Pij  _ <log von 1651 X | z]l)
1 — pij U1<]. — 7]) U1 Vo

O L ) o)

Vo

vi(l —
> — lOg I(Tnn) + (04 — Cg) (KO — 2(01 + Cg)MFO) logp

Then with our choice of v1(1 —n)/(von),

Dij
— Pij

log — +00.

[]

Proof of Theorem 5. The estimate of the precision matrix is symmetric due to construc-

tion.
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Next we show that the estimate is ensured to be positive definite. Assume ©®), the t-th
update of the estimate is positive definite. Apparently, this assumption is satisfied with
t = 0 since the initial estimate ©©) is positive definite.

Then it suffices to show that det(©¢+1) = 0. WLOG, assume we update the last column

of © in the (¢ + 1)-th iteration. Using Schur complements, we have
det (01+1) = det (O ) (6™ - 5™ 0] 05

Because det(©®) = 0, we have det <@Y1) ) > (. Further, the updating rule of our algorithm

ensures that

t+1 t+1)T ~ ()7L 5(t+1 1
(6857 =0l O 0™ = —y > 0.
Wao

Thus, det (©¢+V) > 0. O

Appendix C: Checking ||O]|; < B.

Algorithm 1 involves checking the spectral norm constraint ||©||s < B after every column
update of ©. Computing ||©]|2 can be computationally intensive, however, since we only
change one column (and corresponding one row) at a time, the constraint can be checked
without calculating ||©||; every time. Suppose we know |[[©® ||, (or an upper bound) at the
previous step, and denote A®) := @(+D) — Q1) to be the difference between the estimates
after one column update. In order to check the bound, it is sufficient to make sure that
10W]|; + |A® ||y < B. Tt is easy to check this constraint because ||A®]], is a rank two
matrix with its maximum eigenvalue available in closed form. Only when ||©® ||y + ||A]l2

exceeds B, we will need to recalculate ||©¢FV]|, again.
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