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S.1 Proof for Lemma 2

Proof. Let X = (Xi,...,X,)T be a random normal vector with mean 0 and positive definite
covariance matrix A. Let Y = (Vi,...,Y,)? be a random normal vector independent of X
with mean 0 and positive semidefinite covariance matrix B having positive diagonal entries.
Then Z = X ® Y has covariances E(Z,Z;) = E(X,;Y;X,Y;) = E(X;X;)E(Y}Y;) = a;;b;;. It
follows that Cov(Z) = A ® B. To show A ® B is positive definite, suppose on the contrary
that v7 (A ® B)v = Var(v?' Z) = 0 for some v # 0. Then

0 = Var(w’Z) = E( > viXiY;;)2 —E [( > UZ-Xi}/;)Q | Y] —E[voY) A(w oY)

implies v © Y = 0 with probability 1. Since v # 0, Y; = 0 with probability 1 for some .
This contradicts the assumption b; = Var(Y;) > 0 for all 1. O

S.2 Objective Values in ANOVA Simulation Example

Table 1 summarizes the converged objective values for the two-way ANOVA example in
Section 3. Reported in table are average and standard error based on 50 simulation replicates.

S.3 Proof of Theorem 1

We need three technical Lemmas to show the global convergence result in Theorem 1.

Lemma S.1. Under Assumption 1 or 2, the log-likelihood function (1) is coercive in the
sense that the super-level set S. = {a? > 0: L(a?) > ¢} is compact for every c.

Proof. Let us first prove the assertion when all of the covariance matrices V; are positive

definite. If we set r = ||6?||; and a; = r~o? for each i, then the log-likelihood satisfies
L(o?) = - 1ln det (Zm:ozﬂ/}) - in(zm:ai‘/}>_ly.
2 2 i=1 2r i=1

1
The functions In det (Z:’il on) and yT<Z:.”:1 oz,V}) y of a are defined and continuous

on the unit simplex and hence bounded there. The dominant term —3 Inr of the loglikelihood
tends to —oo as r tends to oo.



Table 1: MM, EM, Fisher scoring, and 1lme4 converge to similar objective values.

Shown

below are average objective values for fitting a two-way ANOVA model with a = b = 5 levels

of both factors. Standard errors are given in parentheses.

0?/c? Method ¢ = # observations per combination
5 10 20 50
0.00 MM -176.67(7.94) -353.59(10.19) -713.42(14.90) -1776.40(25.02
EM -176.68(7.94) -353.60(10.18) -713.43(14.90) -1776.41(25.02

FS -176.67(7.94) -353.59(10.19
lme4 -176.67(7.94) -353.59(10.19
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0.05 MM -181.06(7.24) -365.39(10.92
EM -181.06(7.24) -365.39(10.92

FS -181.06(7.24) -365.39(10.92

lmed -181.06(7.24) -365.39(10.92
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EM -204.05(8.18) -392.35(10.94) -754.95(13.93
FS -204.05 -754.95(13.93
-754.95(13.93

-392.35(10.94

lme4 -204.05 -392.35(10.94

10.00 MM -233.65 -416.56(11.79) -777.85(15.65
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To prove the assertion under Assumption 2, consider first the case V; = I,,.

a; = 02/a? for i = 2,...,m reduces the loglikelihood to

1 - -
L(O’%, a) = —g lnaf — Eln det ( + ZO‘Z 1) — —QyT (In + Zaﬂ/;)
i=2

The middle term on the right satisfies

—% In det (In + é a,-Vi>

Setting

v, (1)

because det (I, + ", a;V;) > det I, = 1. Now let U = (U,, U,,—,) be an n x n orthogonal
matrix whose left columns U, span H and whose right columns U,,_, span H*. The identity

m m | s
"L+ av)u = <Iq+21220aqu Vv, 0 >
1=2 —

n—q



follows from the orthogonality relations UnT_qV; = UnT_qu = 0(n—q)xn- This in turn implies

(RS S R (St LA P
=2

0 I,
0 0\,
=0 0,)V
- U, UL,

Therefore the quadratic term in equation is bounded below by the positive constant
T S ! T T 2
y' (L+Y aVi) vy = v'U ULy = [Pyl > 0
i=2

Here the assumption y ¢ H guarantees the projection property Py 1y # 0.
Next we show that the loglikelihood tends to —oo when o7 tends to 0 or oo or when |||
tends to oo. The second of the two inequalities

1 o 1
L(o%, @) < —glnaf — 5 Indet (In + aﬂ@) — 55 lIPweyl?
i=2 1
n 2 1 2
< —§1n01 - —QU%HPHinI

renders the claim about o? obvious. To prove the claim about a, we make the worst case
choice 0?7 = ||Py.y|? in the first inequality. It follows that

1 i n n
2 2
L(oj,a) < —§lndet <In+;0zi‘/§> —EIHHP'HLyH — 3
If oj tends to oo, then the inequality
11dt(I +Zm: V> < 11dt<I+ V) 1Xn:1(1+ Aje)
——Indet ( I, Vi) < ——Indet (I, +,;V;) = —= n N
9 g 92 J 9 £ gk

holds, where the A;;, are the eigenvalues of V. At least one of these eigenvalues is positive
because V; is nontrivial. It follows that L(o3, &) tends to —oo in this case as well.

For the general case where V; is non-singular but not necessarily I,,, let Vll/ ? be the
symmetric square root of Vi and write

Vi+ Z afv; = V11/2 (I + ZU?VEI/QVEVEUZ> V11/2.
i=2 i—2

The above arguments still apply since each Vfl/ 2V§Vf” % is nontrivial and y belongs to the
span{ Vs, ..., V,,} = S if and only if Vflﬂy belongs to Vfl/2,5’V1*1/2‘ B



Lemma S.2. The iterates possess the ascent property L(M(a?®)) > L(o ()). Further-
more, when L(M(o?)) = L(o? ) 2 fulfills the fized point condmon M(o?) = o2, and each

* *

component satisfies either (i) o2 = O or (ii) o7; > 0 and 3 L( 3 =0.

Proof. The ascent property is built into any MM algorithm. Suppose L(M(o?)) = L(o?) at
a point o € R7. Then equality must hold in the string of inequalities (3). It follows that

g(M(a?) | o?) = g(ai|0al).
g(- | %) has a unique maximum since its Hessian is diagonal with strictly negative entries,
hence M(o?) = 2. If 02, > 0, the stationarity condition
0 0
—L(c?) = —g(o?]c?) = 0
applies. The equivalence of the two displayed partial derivatives is a consequence of the fact

that the difference f(0?) — g(o? | 0?) achieves its minimum of 0 at o2 = 2. O

Lemma S.3. The distance between successive iterates ||o) — a2, converges to 0.

Proof. Suppose on the contrary that ||o2**1) — a2®||, does not converge to 0. Then one can
extract a subsequence {t}xr>1 such that
‘|0_2(tk+1) _ O_Z(tk)||2 >e>0 (2>

for all k. Let Cy be the compact super-level set {2 : L(0?) > L(a*®)}. Since the sequence
{0'2(““)}@1 is confined to Cjy, one can pass to a subsequence if necessary and assume that
o) converges to a limit o2 and that a>**1) converges to a limit 2,. Taking limits in the
relation o2+ = M (g?*)) and invoking the continuity M (o?) imply that o2, = M(a?).
Because the sequence L(a?(*)) is monotonically increasing in k& and bounded above on Cj,
it converges to a limit L,. Hence, the continuity of L(o?) implies

L(a?) = 1i]£nL(0'2(tk)) = L, = lilgnL(a'Q(t’““)) = L(o?) = L(M(c?)).

*

Lemma [S.2] therefore gives o2, = M(0?) = o2, contradicting the bound [|o? — o2,||> > €

* *

entailed by inequality (2). O
With Lemmas 5.3, we are ready to prove Theorem 1.

Proof. The sequence {aQ(t)}tZO is contained in the super-level compact set Cy defined in
Lemma and therefore admits a convergent subsequence o?*#) with limit o). As
argued in Lemma [S.3), L(a**)) = L(M(a**))). Lemma now implies that o2 is a
fixed point of the algorithm map M (o?).

According to Ostrowski’s theorem (Lange|, 2010, Proposition 8.2.1), the set of limit points
of a bounded sequence {2}~ is connected and compact provided || a2+ — g2®)||, — 0.
If the set of fixed points is discrete, then the connected subset of limit points reduces to a
single point. Hence, the bounded sequence o*®) converges to this point. When the limit
exists, one can check that o) satisfies the KKT conditions by proving that each zero
component of a(>) has a non-positive partial derivative. Suppose on the contrary 02(00) =0
and 52 L(o?*) > 0. By continuity ;% L(o*") > 0 for all large t. Therefore, o; 2(t+1) > af(t)
for all iarge t by the observation made after equation (9). This behavior is inconsistent with

the assumption that Uf “ 0. O



S.4 Proof of Theorem 2
MM algorithm: The minorizing function for the MM algorithm is

gMM(02’U2(t))
m o 4(t)

= —ltr(ﬂ_(t)ﬂ) — %(y _ Xﬁ(t))TQ—(t) <Z 01'_2‘/;> Q—(t)(y _ Xﬁ(t)) + W

i=1

N

2
LI o)
= Z — iy Q*(t)vi) — #(y — Xﬁ(t))TQ*(t)ViQ*(t)(y _ X,@'(t)) +c®),
o

i=1 t

[\]

where .
¥ = —g In 27 — 3 Indet Q) + g

Taking derivatives, we have
4(t)

0

1
Sso(e’o?) = —otr(@ V) (y - XB)' Ve (y - xB8Y),

2 4
ot _ _ . .
7 (y = XBY)' OV Uy - xpY) i=
0 i # 7.
EM algorithm: Assume Y = X3+ > 7" Z;, where Z; ~ N(0,07V;) are independent.
Then the complete data is Z = (Z;,--+ , Z,,). From the information inequality, we have

L(yle?) > Q(a*o*V) — Q(a*M|o*V) + L(y|o*?),

0 21 2(t)

where

Liylo?) = ~Sin(en) — S lndet@ — (y — XB)'Q(y — XP),

U2<t> 40
rank(V;) Ino? + —-rank(V;) —
o?

7 )

DO = Mlz

s

s
I
—

Q(o'2|0'2(t)) = tr(Q_(t)W)]

o0

2
a;

<y—Xw%%2@wn<%y—Xﬂ%l

ol

=1

We derive this expression in Section The minorizing function

gem(o|o®™)
= Q(o*0”V) — Q(o*V|o*V) + L(y|o*™)

Lo T 520 O_4(t)
= ——Z rank(V;) Ino? + —-rank(V;) — ———tr(Q~ OV
=1 L i Z
1 — _04(”
-3 Z Ly - XBNTQ- v~y — x3Y)
o
=1 L 7
%Z _—rank(‘/}) o’ — rank(V})} ~3 [n In(27) + In det Q) + n}

i=1



of the EM algorithms depends on a2 only through Q(o?|a?®). Taking derivatives, we have

0
WﬂEM("'zW?(t))

%

_rank(V}) N rank(‘/;)af(t) _ U?(t)tr(ﬂf(t)‘/i) + Uf(t) (y — Xﬁ(t))Tﬂf(t)Viﬂf(t)(y _ X,B(t))

207 207 ’
2
o701
B ran;;(;/i)  rank(Vy)o?® o1 Wr(Q2” ”V)+a4<t>c(:; xBrQ Yy, —x3") P
o l i # .

EM vs MM: Let 0% be a common limit point of EM and MM. By Lemma, , each
component of o> is either 0 or has vanishing gradient. Therefore

o2 - rank(V})
_ o) = Y
(303)29EM(0’ 107°) |g2gaeo 20;1(00) ’
0 2| 2(c0 tr(ﬂi(oo)vi)
@ (@1e" ) lorgue = =g

and, when all the V; all non-singular,

lzm: T Gl a1

mi3 [d? g (o2(5) | 2(>))];

2 g ol (@ V)
rank(V;)

=1

Sl 3
IA

S.5 Derivation of Algorithm 4

When there are m = 2 variance components 2 = I't ® V; + I's; ® V5, repeated inver-
sion of the nd x nd covariance matrix € can be reduced to one d x d (generalized) eigen-
decomposition per iteration. The generalized eigen-decomposition of the matrix pair (V;, V3)
yields generalized eigenvalues d = (di,...,d,)T and generalized eigenvectors U such that
UTVlU D = diag(d) and UTV,U = I. Let the generalized eigen-decomposition of
(T 1P be (A®, &) such that ®OVTTVSO = A® = diag(A?) and #OTT,@" = I,.
It follows that
QY = @ WU HYAYe D+ L) (e VeoU™)
Q0 = Vg U)(A(” @D+ I, I,) (2" o U)"
det Q¥ = det(AV @ D+ I, @ I,)det(® D U Y (@ DU
= det(AY @ D+ I,® I,)det(TY @ V3)
= det(AY @ D + I, ® I,) det(TY)" det(V3).

6



To update the fixed effects B given th) and th), the general least squares criterion is
1
5 lvee(Y - XB)|"Q Oyec(Y — X B)]

= %[Vec(Y - XB) (@Yo U)AY®D+ I, I,) (®Y @ U) vec(Y — X B)]

= %Vec[UT(Y ~ XB)®""(AY @ D+ I, ® I,) 'vec[UT(Y — X B)®")]

= %[Vec(UTYCP(t)) — (@Y QUT X )vecB]T(AY @ D+ I, I,)™"
Tvec(UTY @) — (@Y7 @ UT X )vecB].

Minimization of this criterion reduces to a weighted least squares problem for the trans-
formed responses Y = UTY, transformed predictor matrix X = UTX, and observation
weights (A}, D, + 1)~'. To update I‘ ™ and Fg), we need to evaluate the matrices M; and

th)R(t)T‘/}R(t)an that appear in the stationarity condition (13).
Evaluation of M;: Note the (j,k)-th entry of M; is tr(€2, ®) V;), where Qj_k(t) is the
(7, k)-th block of

Q0 = @YeU)AYe D+ I;®I,) (@Y o U),

which can be expressed as

Z@ ‘oUW D+ 1,)7'U".

Therefore M, has entries

(M) = te(Visy, )

d
- u[u DU Z oo UMD + 1) 'U" |

_ [iqu DD +1,)" ]

=1
d

= Z ¢zk [ ()D+In)_1]7

=1
and M, has entries

(M) = tr(VaQ;")

_ [ U-TU-! Z(b]lgblk AI9D 4+ 1,)" 1UT]

- [Z¢ D+ 1)

=1
d

_ quﬂ oDtr(AY D + I,)7".



Collectively we have
My = @diag{tr[DO’D + 1) | }o®T

M, — é(t)diag[tr()\l(t)D+In)’1]<I>(t)T.

Evaluation of I'" ROTV,ROT": Write
th)R(t)T‘/lR(t)l“gt) _ ]\]'111]\]'1
I\gt)R(t)T‘/QR(t)I‘gt) _ N2TN27
where
N, = DV?U'RYP OTANOP-O)
N, = U RO OTH—()
To further simplify, note

vec N
(@ WTAYS~Y @ DU )vecRY
= (@ WAV~ @ DV2U- )Q_(t)vec(Y XB(t))
= (@ WAV~ o DV2U1) (W ®U)(A @D+ I;®I,) 4®Y @ U)'vec(Y — X BY)
(@~ WTAD @ DY) (AW ®D+Id®I) vec(UT(Y — XBY)®W)
(@ WTAY @ D'?)vec[UT(Y — XBY)@Y @ (dAV” +1,17)]
= vec {DV?[(UT(Y — XBD)®") @ (dAD" +1,11)]AO®-O}
where © denotes a Hadamard quotient. Thus,
N, = DY{[(Y = XBM®M o (dADT + 1,17 AOP~O),
d

and similarly

N, = {[(Y = XB"®Y] ¢ (dA"" + 1,171~

S.6 EM Algorithm for the Multivariate Response Model

In this section we review the derivation of the EM algorithm for the multivariate response
model (Glanz and Carvalho, [2013; Reinsel, [1984)). If the response matrix Y can be written as
thesumY = XB+ Z; +- - -+ Z,, of independent random matrices with vec Z; ~ N (0, €2;),
then vecY ~ N(vec(X3), ), where @ = 5", ©,. Under the matrix normal assumption,
Q, =T, ®V,. Asin the text, the p x d coefficient matrix B collects the fixed effects, the
I'; are unknown d X d covariance matrices, and the V; are known n X n covariance matrices.

The complete data log-likelihood for the unobserved Z; is

m

1+ 1
-5 ; Indett Q; — 3 Z, vec(Z;) ¥ vec(Z;),

i=1

8



where det™€2; denotes the pseudo-determinant of €; and Qj the pseudo-inverse of €2;. To
compute the surrogate function for the EM algorithm, one needs the conditional expectations

E(vec Z; | Y,09) = QY0 Wyec(y — XBY) = EY
and the conditional covariances
Cov(vec Z; | Y,09) = QP —QPq-0a" = F9

where 0 is the parameter vector. These are employed to compute the conditional second
moments

E(vec Z;vec Z! | Y,09) = FY 4+ EYENT = GY.

)

Here the random vector Z; should be replaced by Z,, — X B ®) when i = m.

One can readily check that 2 = T/ ®@V,* = T';'®@V;* for IT'; invertible. Since the pseudo-
determinant of a positive semidefinite matrix equals the product of its positive eigenvalues,
the formulas

det™ Q; = (det T;)"(dett V;)*
Indet™ Q;, = r;IndetT; + s;Indet™ V,

apply, where r; = rank(V;") and s; = rank(I';"). In the M step of the EM algorithm, one
maximizes the surrogate

1 & 1 ¢
—p 2 nilndet Tim g 3wyt o V&) (3
1=1 =1

For I'; unstructured, we substitute A; =T"; ! and maximize with respect to A,. Fortunately,
the next lemma can be invoked.

Lemma S.4. If the matrices A, B, and C are d x d, n X n, and dn X dn respectively, then

tr[(A® B)C'] = t{(I;®1,)"[(1,1} @ B)o C)(I;®1,)A"}.
Proof. This trace identity is essentially proved in the text. O]
Lemma yields
wl(A @ VG = u{(li®1)"[(11] © V") © (1, L,)A:}.

The stationarity condition
1 1
0 = snAl — S(Le1) (11 e Vi) o 6o 1.).
now entails the update

1
Y = —(1,e1,)"[1a] 0 Vi o GY)(I;® 1,).

3
K3



In the case m = 1, the single update reduces to
ré = 1(Y ~- XBYTvH(Yy - XBY),
r
which matches the earlier result of (Glanz and Carvalho| (2013). When T is the scalar o2,

Ez(t) — O_?(t)‘/iﬂf(t) (y . Xﬂ(t))
FO — 20y 20y 0,20y,

K3 3

One recovers the representation (3) by substituting these quantities in equation (3)) and
invoking the identities V;V;'V; = V; and tr(V;V;") = rank(V;) and the cyclic permutation
property of the trace.

S.7 Proof of Lemma 3

Proof. Direct substitution shows that Y solves the equivalent equation XBX = A. To
show uniqueness, suppose Y 1AY ! = B and Z7'!AZ~! = B. The equations

(Bl/QYBl/Q)Q — B1/2YBYB1/2 — B1/2AB1/2
(31/2ZB1/2)2 _ Bl/QZBZBl/Z — Bl/QABl/Z

imply B'/?Y B'/? = BY/2Z B'/? by virtue of the uniqueness of symmetric square root. Since
B~1/2 is positive definite, Y = Z. O

S.8 Proof of Proposition 2

Proof. Tf V; has strictly positive diagonal entries, then so does 1,1% ® V;, and the Hadamard
product (1417 ® V;) © Q=" is positive definite by Schur’s lemma. Since the matrix I; ® 1,,
has full column rank d, the matrix M; is also positive definite. Finally, if no column of R®
lies in the null space of V;, and T'™ is positive define, then I‘Et)R(t)TViR(t)I‘Et) is positive
definite. The second claim follows by induction and Lemma 3. O

S.9 Proof of Lemma 4

Proof. Under the hypotheses, the representations AT = (ATA)TAT = (ATA)'AT and
B+ = BT(BBT)™! are well known. The choice BTAT = BT(BBT) (AT A)~' AT satisfies
the four equations characterizing the pseudo-inverse of AB. O

S.10 Proof of Lemma 5

Proof. Suppose A has spectral decomposition ), Aiu;u]. The matrix P = 3 o uu]
projects onto the range of A and therefore also projects onto the range of B. It follows that
PB = B and by symmetry that BP = B. This allows us to write

(B+el)(A+el) ' (B+el)
= BP(A+el)'PB+¢BP(A+el) ' +e(A+el)'PB+E(A+el) ™

10



Solution Path
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Figure 1: Solution path of the lasso penalized variance component model (17) indicates the
top genes in an association study of 200 genes and the complex trait height.

The last three of these terms vanish as € | 0; the first term tends to the claimed limit. These
assertions follow from the expressions

1
-1 _ -1 _ -1 _ T
P(A+e)'P = P(A+ed)™' = (A+ed)'P = A§.>O: pwmalil

2

and (A +el)™ ' =Y. uul. O

7 )\’L+€ 1

S.11 Proof of Lemma 6

Proof. In fact, both matrices have range equal to the range of Z. The matrices Z and Z R/?
clearly have the same range. Furthermore, the matrices ZR'? and ZRY?>R'?Z" also have
the same range. O]

S.12 Lasso solution path

Figure [I] displays the lasso solution path for the QTL example in Section 7.
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