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S.1 Proof for Lemma 2

Proof. LetX = (X1, . . . , Xn)
T be a random normal vector with mean 0 and positive definite

covariance matrix A. Let Y = (Y1, . . . , Yn)
T be a random normal vector independent of X

with mean 0 and positive semidefinite covariance matrix B having positive diagonal entries.
Then Z = X � Y has covariances E(ZiZj) = E(XiYiXjYj) = E(XiXj)E(YiYj) = aijbij. It
follows that Cov(Z) = A�B. To show A�B is positive definite, suppose on the contrary
that vT (A�B)v = Var(vTZ) = 0 for some v 6= 0. Then

0 = Var(vTZ) = E
(∑

i

viXiYi

)2
= E

[(∑
i

viXiYi

)2
| Y
]
= E[(v � Y )TA(v � Y )]

implies v � Y = 0 with probability 1. Since v 6= 0, Yi = 0 with probability 1 for some i.
This contradicts the assumption bii = Var(Yi) > 0 for all i.

S.2 Objective Values in ANOVA Simulation Example

Table 1 summarizes the converged objective values for the two-way ANOVA example in
Section 3. Reported in table are average and standard error based on 50 simulation replicates.

S.3 Proof of Theorem 1

We need three technical Lemmas to show the global convergence result in Theorem 1.

Lemma S.1. Under Assumption 1 or 2, the log-likelihood function (1) is coercive in the
sense that the super-level set Sc = {σ2 ≥ 0 : L(σ2) ≥ c} is compact for every c.

Proof. Let us first prove the assertion when all of the covariance matrices Vi are positive
definite. If we set r = ‖σ2‖1 and αi = r−1σ2

i for each i, then the log-likelihood satisfies

L(σ2) = −n
2
ln r − 1

2
ln det

( m∑
i=1

αiVi

)
− 1

2r
yT
( m∑
i=1

αiVi

)−1
y.

The functions ln det
(∑m

i=1 αiVi

)
and yT

(∑m
i=1 αiVi

)−1
y of α are defined and continuous

on the unit simplex and hence bounded there. The dominant term−n
2
ln r of the loglikelihood

tends to −∞ as r tends to ∞.
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Table 1: MM, EM, Fisher scoring, and lme4 converge to similar objective values. Shown
below are average objective values for fitting a two-way ANOVA model with a = b = 5 levels
of both factors. Standard errors are given in parentheses.

σ2
1/σ

2
e Method c = # observations per combination

5 10 20 50

0.00 MM -176.67(7.94) -353.59(10.19) -713.42(14.90) -1776.40(25.02)
EM -176.68(7.94) -353.60(10.18) -713.43(14.90) -1776.41(25.02)
FS -176.67(7.94) -353.59(10.19) -713.42(14.90) -1776.40(25.02)

lme4 -176.67(7.94) -353.59(10.19) -713.42(14.90) -1776.40(25.02)

0.05 MM -181.06(7.24) -365.39(10.92) -722.16(15.36) -1794.26(25.96)
EM -181.06(7.24) -365.39(10.92) -722.16(15.36) -1794.26(25.96)
FS -181.06(7.24) -365.39(10.92) -722.16(15.36) -1794.26(25.96)

lme4 -181.06(7.24) -365.39(10.92) -722.16(15.36) -1794.26(25.96)

0.10 MM -185.10(6.77) -368.83(10.28) -726.21(13.35) -1813.88(20.24)
EM -185.10(6.77) -368.83(10.28) -726.21(13.35) -1813.88(20.24)
FS -185.10(6.77) -368.83(10.28) -726.21(13.35) -1813.88(20.24)

lme4 -185.10(6.77) -368.83(10.28) -726.21(13.35) -1813.88(20.24)

1.00 MM -204.05(8.18) -392.35(10.94) -754.95(13.93) -1831.11(22.63)
EM -204.05(8.18) -392.35(10.94) -754.95(13.93) -1831.12(22.63)
FS -204.05(8.18) -392.35(10.94) -754.95(13.93) -1831.11(22.63)

lme4 -204.05(8.18) -392.35(10.94) -754.95(13.93) -1831.11(22.63)

10.00 MM -233.65(7.90) -416.56(11.79) -777.85(15.65) -1862.05(28.29)
EM -233.65(7.90) -416.56(11.79) -777.85(15.65) -1862.05(28.29)
FS -233.65(7.90) -416.56(11.79) -777.85(15.65) -1862.05(28.29)

lme4 -233.65(7.90) -416.56(11.79) -777.85(15.65) -1862.05(28.29)

20.00 MM -242.21(8.20) -424.68(10.11) -795.63(15.56) -1864.07(24.56)
EM -242.21(8.20) -424.68(10.11) -795.63(15.56) -1864.07(24.56)
FS -242.21(8.20) -424.68(10.11) -795.63(15.56) -1864.07(24.56)

lme4 -242.21(8.20) -424.68(10.11) -795.63(15.56) -1864.07(24.56)

To prove the assertion under Assumption 2, consider first the case V1 = In. Setting
αi = σ2

i /σ
2
1 for i = 2, . . . ,m reduces the loglikelihood to

L(σ2
1,α) = −n

2
lnσ2

1 −
1

2
ln det

(
In +

m∑
i=2

αiVi

)
− 1

2σ2
1

yT
(
In +

m∑
i=2

αiVi

)−1
y. (1)

The middle term on the right satisfies

−1

2
ln det

(
In +

m∑
i=2

αiVi

)
≤ 0

because det (In+
∑m

i=2 αiVi) ≥ det In = 1. Now let U = (Uq,Un−q) be an n×n orthogonal
matrix whose left columns Uq span H and whose right columns Un−q span H⊥. The identity

UT
(
In +

m∑
i=2

αiVi

)
U =

(
Iq +

∑m
i=2 αiU

T
q ViUq 0

0 In−q

)
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follows from the orthogonality relations UT
n−qVi = UT

n−qUq = 0(n−q)×n. This in turn implies

(
In +

m∑
i=2

αiVi

)−1
= U

(
(Iq +

∑m
i=2 αiU

T
q ViUq)

−1 0
0 In−q

)
UT

� U

(
0 0
0 In−q

)
UT

= Un−qU
T
n−q.

Therefore the quadratic term in equation (1) is bounded below by the positive constant

yT
(
In +

m∑
i=2

αiVi

)−1
y ≥ yTUn−qU

T
n−qy = ‖PH⊥y‖2 > 0.

Here the assumption y /∈ H guarantees the projection property PH⊥y 6= 0.
Next we show that the loglikelihood tends to −∞ when σ2

1 tends to 0 or∞ or when ‖α‖2
tends to ∞. The second of the two inequalities

L(σ2
0,α) ≤ −n

2
lnσ2

1 −
1

2
ln det

(
In +

m∑
i=2

αiVi

)
− 1

2σ2
1

‖PH⊥y‖2

≤ −n
2
lnσ2

1 −
1

2σ2
1

‖PH⊥y‖2

renders the claim about σ2
1 obvious. To prove the claim about α, we make the worst case

choice σ2
i = ‖PH⊥y‖2 in the first inequality. It follows that

L(σ2
0,α) ≤ −1

2
ln det

(
In +

m∑
i=2

αiVi

)
− n

2
ln ‖PH⊥y‖2 −

n

2
.

If αj tends to ∞, then the inequality

−1

2
ln det

(
In +

m∑
i=2

αiVi

)
≤ −1

2
ln det

(
In + αjVj

)
= −1

2

n∑
k=1

ln(1 + αjλjk)

holds, where the λjk are the eigenvalues of Vj. At least one of these eigenvalues is positive
because Vj is nontrivial. It follows that L(σ2

0,α) tends to −∞ in this case as well.
For the general case where V1 is non-singular but not necessarily In, let V

1/2
1 be the

symmetric square root of V1 and write

V1 +
m∑
i=2

σ2
iVi = V

1/2
1

(
I +

m∑
i=2

σ2
iV
−1/2
1 ViV

−1/2
1

)
V

1/2
1 .

The above arguments still apply since each V −1/21 ViV
−1/2
1 is nontrivial and y belongs to the

span{V2, . . . ,Vm} = S if and only if V −1/21 y belongs to V −1/21 SV
−1/2
1 .
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Lemma S.2. The iterates possess the ascent property L(M(σ2(t))) ≥ L(σ2(t)). Further-
more, when L(M(σ2

∗)) = L(σ2
∗), σ2

∗ fulfills the fixed point condition M(σ2
∗) = σ

2
∗, and each

component satisfies either (i) σ2
∗i = 0 or (ii) σ2

∗i > 0 and ∂
∂σ2

i
L(σ2

∗) = 0.

Proof. The ascent property is built into any MM algorithm. Suppose L(M(σ2
∗)) = L(σ2

∗) at
a point σ2

∗ ∈ Rm
+ . Then equality must hold in the string of inequalities (3). It follows that

g(M(σ2
∗) | σ2

∗) = g(σ2
∗ | σ2

∗).

g(· | σ2
∗) has a unique maximum since its Hessian is diagonal with strictly negative entries,

hence M(σ2
∗) = σ

2
∗. If σ2

∗i > 0, the stationarity condition
∂

∂σ2
i

L(σ2
∗) =

∂

∂σ2
i

g(σ2
∗ | σ2

∗) = 0

applies. The equivalence of the two displayed partial derivatives is a consequence of the fact
that the difference f(σ2)− g(σ2 | σ2

∗) achieves its minimum of 0 at σ2 = σ2
∗.

Lemma S.3. The distance between successive iterates ‖σ2(t+1) − σ2(t)‖2 converges to 0.

Proof. Suppose on the contrary that ‖σ2(t+1)−σ2(t)‖2 does not converge to 0. Then one can
extract a subsequence {tk}k≥1 such that

‖σ2(tk+1) − σ2(tk)‖2 ≥ ε > 0 (2)

for all k. Let C0 be the compact super-level set {σ2 : L(σ2) ≥ L(σ2(0))}. Since the sequence
{σ2(tk)}k≥1 is confined to C0, one can pass to a subsequence if necessary and assume that
σ2(tk) converges to a limit σ2

∗ and that σ2(tk+1) converges to a limit σ2
∗∗. Taking limits in the

relation σ2(tk+1) = M(σ2(tk)) and invoking the continuity M(σ2) imply that σ2
∗∗ = M(σ2

∗).
Because the sequence L(σ2(tk)) is monotonically increasing in k and bounded above on C0,
it converges to a limit L∗. Hence, the continuity of L(σ2) implies

L(σ2
∗) = lim

k
L(σ2(tk)) = L∗ = lim

k
L(σ2(tk+1)) = L(σ2

∗∗) = L(M(σ2
∗)).

Lemma S.2 therefore gives σ2
∗∗ = M(σ2

∗) = σ2
∗, contradicting the bound ‖σ2

∗ − σ2
∗∗‖2 ≥ ε

entailed by inequality (2).

With Lemmas S.1-S.3, we are ready to prove Theorem 1.

Proof. The sequence {σ2(t)}t≥0 is contained in the super-level compact set C0 defined in
Lemma S.3 and therefore admits a convergent subsequence σ2(tk) with limit σ2(∞). As
argued in Lemma S.3, L(σ2(∞)) = L(M(σ2(∞))). Lemma S.2 now implies that σ2(∞) is a
fixed point of the algorithm map M(σ2).

According to Ostrowski’s theorem (Lange, 2010, Proposition 8.2.1), the set of limit points
of a bounded sequence {σ2(t)}t≥0 is connected and compact provided ‖σ2(t+1)−σ2(t)‖2 → 0.
If the set of fixed points is discrete, then the connected subset of limit points reduces to a
single point. Hence, the bounded sequence σ2(t) converges to this point. When the limit
exists, one can check that σ2(∞) satisfies the KKT conditions by proving that each zero
component of σ2(∞) has a non-positive partial derivative. Suppose on the contrary σ2(∞)

i = 0

and ∂
∂σ2

i
L(σ2(∞)) > 0. By continuity ∂

∂σ2
i
L(σ2(t)) > 0 for all large t. Therefore, σ2(t+1)

i > σ
2(t)
i

for all large t by the observation made after equation (9). This behavior is inconsistent with
the assumption that σ2(t)

i → 0.
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S.4 Proof of Theorem 2

MM algorithm: The minorizing function for the MM algorithm is

gMM(σ2|σ2(t))

= −1

2
tr(Ω−(t)Ω)− 1

2
(y −Xβ(t))TΩ−(t)

(
m∑
i=1

σ
4(t)
i

σ2
i

Vi

)
Ω−(t)(y −Xβ(t)) + c(t)

=
m∑
i=1

−σ
2
i

2
tr(Ω−(t)Vi)−

σ
4(t)
i

2σ2
i

(y −Xβ(t))TΩ−(t)ViΩ
−(t)(y −Xβ(t)) + c(t),

where
c(t) = −n

2
ln 2π − 1

2
ln detΩ(t) +

n

2
.

Taking derivatives, we have

∂

∂σ2
i

gMM(σ2|σ2(t)) = −1

2
tr(Ω−(t)Vi) +

σ
4(t)
i

2σ4
i

(y −Xβ(t))TΩ−(t)ViΩ
−(t)(y −Xβ(t)),

∂2

∂σ2
i ∂σ

2
j

gMM(σ2|σ2(t)) =

{
−σ

4(t)
i

σ6
i
(y −Xβ(t))TΩ−(t)ViΩ

−(t)(y −Xβ(t)) i = j

0 i 6= j.

EM algorithm: Assume Y =Xβ +
∑m

i=1Zi, where Zi ∼ N(0, σ2
iVi) are independent.

Then the complete data is Z = (Zi, · · · ,Zm). From the information inequality, we have

L(y|σ2) ≥ Q(σ2|σ2(t))−Q(σ2(t)|σ2(t)) + L(y|σ2(t)),

where

L(y|σ2) = −n
2
ln(2π)− 1

2
ln detΩ− 1

2
(y −Xβ)TΩ−1(y −Xβ),

Q(σ2|σ2(t)) = −1

2

m∑
i=1

[
rank(Vi) lnσ

2
i +

σ
2(t)
i

σ2
i

rank(Vi)−
σ
4(t)
i

σ2
i

tr(Ω−(t)Vi)

]

−1

2

m∑
i=1

[
σ
4(t)
i

σ2
i

(y −Xβ(t))TΩ−(t)ViΩ
−(t)(y −Xβ(t))

]
.

We derive this expression in Section S.6. The minorizing function

gEM(σ|σ2(t))

= Q(σ2|σ2(t))−Q(σ2(t)|σ2(t)) + L(y|σ2(t))

= −1

2

m∑
i=1

[
rank(Vi) lnσ

2
i +

σ
2(t)
i

σ2
i

rank(Vi)−
σ
4(t)
i

σ2
i

tr(Ω−(t)Vi)

]

−1

2

m∑
i=1

[
σ
4(t)
i

σ2
i

(y −Xβ(t))TΩ−(t)ViΩ
−(t)(y −Xβ(t))

]

−1

2

m∑
i=1

[
−rank(Vi) lnσ2(t)

i − rank(Vi)
]
−

2

[
n ln(2π) + ln detΩ(t) + n

]
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of the EM algorithms depends on σ2 only through Q(σ2|σ2(t)). Taking derivatives, we have

∂

∂σ2
i

gEM(σ2|σ2(t))

= −rank(Vi)

2σ2
i

+
rank(Vi)σ

2(t)
i − σ4(t)

i tr(Ω−(t)Vi) + σ
4(t)
i (y −Xβ(t))TΩ−(t)ViΩ

−(t)(y −Xβ(t))

2σ4
i

,

∂2

∂σ2
i ∂σ

2
j

gEM(σ2|σ2(t))

=

 rank(Vi)

2σ4
i
− rank(Vi)σ

2(t)
i −σ4(t)

i tr(Ω−(t)
Vi)+σ

4(t)
i (y−Xβ(t)

)TΩ−(t)
ViΩ

−(t)
(y−Xβ(t)

)

σ6
i

i = j

0 i 6= j.

EM vs MM: Let σ2(∞) be a common limit point of EM and MM. By Lemma S.2, each
component of σ2(∞) is either 0 or has vanishing gradient. Therefore

∂2

(∂σ2
i )

2
gEM(σ2|σ2(∞)) |σ2=σ2(∞) = −rank(Vi)

2σ
4(∞)
i

,

∂2

(∂σ2
i )

2
gMM(σ2|σ2(∞)) |σ2=σ2(∞) = −tr(Ω−(∞)Vi)

σ
2(∞)
i

and, when all the Vi all non-singular,

1

m

m∑
i=1

[d2gMM(σ2(∞)|σ2(∞))]ii
[d2gEM(σ2(∞)|σ2(∞))]ii

=
2

m

m∑
i=1

σ
2(∞)
i tr(Ω−(∞)Vi)

rank(Vi)

=
2

m
≤ 1.

S.5 Derivation of Algorithm 4

When there are m = 2 variance components Ω = Γ1 ⊗ V1 + Γ2 ⊗ V2, repeated inver-
sion of the nd × nd covariance matrix Ω can be reduced to one d × d (generalized) eigen-
decomposition per iteration. The generalized eigen-decomposition of the matrix pair (V1,V2)
yields generalized eigenvalues d = (d1, . . . , dn)

T and generalized eigenvectors U such that
UTV1U = D = diag(d) and UTV2U = I. Let the generalized eigen-decomposition of
(Γ

(t)
1 ,Γ

(t)
2 ) be (Λ(t),Φ(t)) such that Φ(t)TΓ

(t)
1 Φ(t) = Λ(t) = diag(λ(t)) and Φ(t)TΓ2Φ

(t) = Id.
It follows that

Ω(t) = (Φ−(t) ⊗U−1)T (Λ(t) ⊗D + Id ⊗ In)(Φ−(t) ⊗U−1)
Ω−(t) = (Φ(t) ⊗U)(Λ(t) ⊗D + Id ⊗ In)−1(Φ(t) ⊗U )T

detΩ(t) = det(Λ(t) ⊗D + Id ⊗ In) det(Φ−(t) ⊗U−1)T (Φ−(t) ⊗U−1)
= det(Λ(t) ⊗D + Id ⊗ In) det(Γ(t)

2 ⊗ V2)

= det(Λ(t) ⊗D + Id ⊗ In) det(Γ(t)
2 )n det(V2)

d.
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To update the fixed effects B given Γ
(t)
1 and Γ

(t)
2 , the general least squares criterion is

1

2
[vec(Y −XB)]TΩ−(t)[vec(Y −XB)]

=
1

2
[vec(Y −XB)]T (Φ(t) ⊗U)(Λ(t) ⊗D + Id ⊗ In)−1(Φ(t) ⊗U)T [vec(Y −XB)]

=
1

2
vec[UT (Y −XB)Φ(t)]T (Λ(t) ⊗D + Id ⊗ In)−1vec[UT (Y −XB)Φ(t)]

=
1

2
[vec(UTY Φ(t))− (Φ(t)T ⊗UTX)vecB]T (Λ(t) ⊗D + Id ⊗ In)−1

·[vec(UTY Φ(t))− (Φ(t)T ⊗UTX)vecB].

Minimization of this criterion reduces to a weighted least squares problem for the trans-
formed responses Ỹ = UTY , transformed predictor matrix X̃ = UTX, and observation
weights (λ

(t)
k di + 1)−1. To update Γ

(t)
1 and Γ

(t)
2 , we need to evaluate the matrices Mi and

Γ
(t)
i R

(t)TViR
(t)Γ

(t)
i that appear in the stationarity condition (13).

Evaluation of Mi: Note the (j, k)-th entry of Mi is tr(Ω
−(t)
jk Vi), where Ω

−(t)
jk is the

(j, k)-th block of

Ω−(t) = (Φ(t) ⊗U)(Λ(t) ⊗D + Id ⊗ In)−1(Φ(t) ⊗U)T ,

which can be expressed as

Ω
−(t)
jk =

d∑
l=1

φ
(t)
jl φ

(t)
lk U(λ

(t)
l D + In)

−1UT .

Therefore M1 has entries

(M1)jk = tr(V1Ω
−(t)
ij )

= tr
[
U−TDU−1

d∑
l=1

φ
(t)
jl φ

(t)
lk U(λ

(t)
l D + In)

−1UT
]

= tr
[ d∑
l=1

φ
(t)
jl φ

(t)
lkD(λ

(t)
l D + In)

−1
]

=
d∑
l=1

φ
(t)
jl φ

(t)
lk tr

[
D(λ

(t)
l D + In)

−1
]
,

and M2 has entries

(M2)jk = tr(V2Ω
−(t)
ij )

= tr
[
U−TU−1

d∑
l=1

φ
(t)
jl φ

(t)
lk U(λ

(t)
l D + In)

−1UT
]

= tr
[ d∑
l=1

φ
(t)
jl φ

(t)
lk (λ

(t)
l D + In)

−1
]

=
d∑
l=1

φ
(t)
jl φ

(t)
lk tr(λ

(t)
l D + In)

−1.
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Collectively we have

M1 = Φ(t)diag
{
tr
[
D(λ

(t)
l D + In)

−1
]}

Φ(t)T

M2 = Φ(t)diag
[
tr(λ

(t)
l D + In)

−1
]
Φ(t)T .

Evaluation of Γ
(t)
i R

(t)TViR
(t)Γ

(t)
i : Write

Γ
(t)
1 R

(t)TV1R
(t)Γ

(t)
1 = NT

1 N1

Γ
(t)
2 R

(t)TV2R
(t)Γ

(t)
2 = NT

2 N2,

where

N1 = D1/2U−1R(t)Φ−(t)TΛ(t)Φ−(t)

N2 = U−1R(t)Φ−(t)TΦ−(t).

To further simplify, note

vecN1

= (Φ−(t)TΛ(t)Φ−(t) ⊗D1/2U−1)vecR(t)

= (Φ−(t)TΛ(t)Φ−(t) ⊗D1/2U−1)Ω−(t)vec(Y −XB(t))

= (Φ−(t)TΛ(t)Φ−(t) ⊗D1/2U−1)(Φ(t) ⊗U)(Λ(t) ⊗D + Id ⊗ In)−1(Φ(t) ⊗U)Tvec(Y −XB(t))

= (Φ−(t)TΛ(t) ⊗D1/2)(Λ(t) ⊗D + Id ⊗ In)−1vec(UT (Y −XB(t))Φ(t))

= (Φ−(t)TΛ(t) ⊗D1/2)vec[UT (Y −XB(t))Φ(t) � (dλ(t)T + 1n1
T
d )]

= vec {D1/2[(UT (Y −XB(t))Φ(t))� (dλ(t)T + 1n1
T
d )]Λ

(t)Φ−(t)},

where � denotes a Hadamard quotient. Thus,

N1 = D1/2{[(Ỹ − X̃B(t))Φ(t)]� (dλ(t)T + 1n1
T
d )}Λ(t)Φ−(t),

and similarly

N2 = {[(Ỹ − X̃B(t))Φ(t)]� (dλ(t)T + 1n1
T
d )}Φ−(t).

S.6 EM Algorithm for the Multivariate Response Model

In this section we review the derivation of the EM algorithm for the multivariate response
model (Glanz and Carvalho, 2013; Reinsel, 1984). If the response matrix Y can be written as
the sum Y =XB+Z1+ · · ·+Zm of independent random matrices with vecZi ∼ N(0,Ωi),
then vecY ∼ N(vec(Xβ),Ω), where Ω =

∑m
i=1 Ωi. Under the matrix normal assumption,

Ωi = Γi ⊗ Vi. As in the text, the p × d coefficient matrix B collects the fixed effects, the
Γi are unknown d× d covariance matrices, and the Vi are known n× n covariance matrices.
The complete data log-likelihood for the unobserved Zi is

−1

2

m∑
i=1

ln det+ Ωi −
1

2

m∑
i=1

, vec(Zi)
TΩ+

i vec(Zi),

8



where det+Ωi denotes the pseudo-determinant of Ωi and Ω+
i the pseudo-inverse of Ωi. To

compute the surrogate function for the EM algorithm, one needs the conditional expectations

E(vecZi | Y ,θ(t)) = Ω
(t)
i Ω−(t)vec(Y −XB(t)) = E

(t)
i

and the conditional covariances

Cov(vecZi | Y ,θ(t)) = Ω
(t)
i −Ω

(t)
i Ω−(t)Ω

(t)
i = F

(t)
i ,

where θ is the parameter vector. These are employed to compute the conditional second
moments

E(vecZi vecZ
T
i | Y ,θ(t)) = F

(t)
i +E

(t)
i (E

(t)
i )T = G

(t)
i .

Here the random vector Zi should be replaced by Zm −XB(t) when i = m.
One can readily check that Ω+

i = Γ+
i ⊗V +

i = Γ−1i ⊗V +
i for Γi invertible. Since the pseudo-

determinant of a positive semidefinite matrix equals the product of its positive eigenvalues,
the formulas

det+ Ωi = (det Γi)
ri(det+ Vi)

si

ln det+ Ωi = ri ln detΓi + si ln det
+ Vi

apply, where ri = rank(V +
i ) and si = rank(Γ+

i ). In the M step of the EM algorithm, one
maximizes the surrogate

−1

2

m∑
i=1

ri ln det Γi −
1

2

m∑
i=1

tr[(Γ−1i ⊗ V +
i )G

(t)
i ]. (3)

For Γi unstructured, we substitute Λi = Γ−1i and maximize with respect to Λi. Fortunately,
the next lemma can be invoked.

Lemma S.4. If the matrices A, B, and C are d× d, n× n, and dn× dn respectively, then

tr[(A⊗B)CT ] = tr{(Id ⊗ 1n)
T [(1d1

T
d ⊗B)�C](Id ⊗ 1n)A

T}.

Proof. This trace identity is essentially proved in the text.

Lemma S.4 yields

tr[(Λi ⊗ V +
i )G

(t)
i ] = tr{(Id ⊗ 1n)

T [(1d1
T
d ⊗ V +

i )�G(t)
i ](Id ⊗ 1n)Λi}.

The stationarity condition

0 =
1

2
riΛ

−1
i −

1

2
(Id ⊗ 1n)

T [(1d1
T
d ⊗ V +

i )�G(t)
i ](Id ⊗ 1n).

now entails the update

Γ
(t+1)
i =

1

ri
(Id ⊗ 1n)

T [(1d1
T
d ⊗ V +

i )�G(t)
i ](Id ⊗ 1n).
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In the case m = 1, the single update reduces to

Γ(t+1) =
1

r
(Y −XB(t))TV +(Y −XB(t)),

which matches the earlier result of Glanz and Carvalho (2013). When Γi is the scalar σ2
i ,

E
(t)
i = σ

2(t)
i ViΩ

−(t)(y −Xβ(t))

F
(t)
i = σ

2(t)
i Vi − σ2(t)

i ViΩ
−(t)σ

2(t)
i Vi.

One recovers the representation (3) by substituting these quantities in equation (3) and
invoking the identities ViV +

i Vi = Vi and tr(ViV
+
i ) = rank(Vi) and the cyclic permutation

property of the trace.

S.7 Proof of Lemma 3

Proof. Direct substitution shows that Y solves the equivalent equation XBX = A. To
show uniqueness, suppose Y −1AY −1 = B and Z−1AZ−1 = B. The equations

(B1/2Y B1/2)2 = B1/2Y BY B1/2 = B1/2AB1/2

(B1/2ZB1/2)2 = B1/2ZBZB1/2 = B1/2AB1/2

implyB1/2Y B1/2 = B1/2ZB1/2 by virtue of the uniqueness of symmetric square root. Since
B−1/2 is positive definite, Y = Z.

S.8 Proof of Proposition 2

Proof. If Vi has strictly positive diagonal entries, then so does 1d1
T
d ⊗Vi, and the Hadamard

product (1d1Td ⊗Vi)�Ω−(t) is positive definite by Schur’s lemma. Since the matrix Id ⊗ 1n
has full column rank d, the matrix Mi is also positive definite. Finally, if no column of R(t)

lies in the null space of Vi, and Γ(t) is positive define, then Γ
(t)
i R

(t)TViR
(t)Γ

(t)
i is positive

definite. The second claim follows by induction and Lemma 3.

S.9 Proof of Lemma 4

Proof. Under the hypotheses, the representations A+ = (ATA)+AT = (ATA)−1AT and
B+ = BT (BBT )−1 are well known. The choiceB+A+ = BT (BBT )−1(ATA)−1AT satisfies
the four equations characterizing the pseudo-inverse of AB.

S.10 Proof of Lemma 5

Proof. Suppose A has spectral decomposition
∑

i λiuiu
T
i . The matrix P =

∑
λi>0 uiu

T
i

projects onto the range of A and therefore also projects onto the range of B. It follows that
PB = B and by symmetry that BP = B. This allows us to write

(B + εI)(A+ εI)−1(B + εI)

= BP (A+ εI)−1PB + εBP (A+ εI)−1 + ε(A+ εI)−1PB + ε2(A+ εI)−1.

10



Figure 1: Solution path of the lasso penalized variance component model (17) indicates the
top genes in an association study of 200 genes and the complex trait height.

The last three of these terms vanish as ε ↓ 0; the first term tends to the claimed limit. These
assertions follow from the expressions

P (A+ εI)−1P = P (A+ εI)−1 = (A+ εI)−1P =
∑
λi>0

1

λi + ε
uiu

T
i

and ε2(A+ εI)−1 =
∑

i
ε2

λi+ε
uiu

T
i .

S.11 Proof of Lemma 6

Proof. In fact, both matrices have range equal to the range of Z. The matrices Z and ZR1/2

clearly have the same range. Furthermore, the matrices ZR1/2 and ZR1/2R1/2ZT also have
the same range.

S.12 Lasso solution path

Figure 1 displays the lasso solution path for the QTL example in Section 7.
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