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This Supplementary Material contains a review of the model-X knockoffs framework, the

proofs of Proposition 1 and Lemmas 1–2, and additional technical details and numerical

results. All the notation is the same as in the main body of the paper.

B Review of model-X knockoffs framework

The key idea of the model-X knockoffs framework is to construct the so-called model-X

knockoff variables, which concept was introduced originally in [8] and whose definition is

stated formally as follows for completeness.

Definition 1 (Model-X knockoff variables [8]) For a set of random variables x = (X1, · · · , Xp),

a new set of random variables x̃ = (X̃1, · · · , X̃p) is called a set of model-X knockoff variables

if it satisfies the following properties:
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1) For any subset S ⊂ {1, · · · , p}, we have [x, x̃]swap(S)
d
= [x, x̃], where

d
= denotes equal in

distribution and the vector [x, x̃]swap(S) is obtained by swapping Xj and X̃j for each

j ∈ S.

2) Conditional on x, the knockoffs vector x̃ is independent of response Y .

An important consequence is that the null regressors {Xj : j ∈ S1} can be swapped with their

knockoffs without changing the joint distribution of the original variables x, their knockoffs

x̃, and response Y . That is, we can obtain for any S ⊂ S1,

([x, x̃]swap(S), Y )
d
= ([x, x̃], Y ). (A.1)

Such a property is known as the exchangeability property using the terminology in [8]. For

more details, see Lemma 3.2 therein. Following [8], one can obtain a knockoffs matrix

X̃ ∈ Rn×p given observed design matrix X.

Using the augmented design matrix [X, X̃] and response vector y constructed by stacking

the n observations, [8] suggested constructing knockoff statistics Wj = wj([X, X̃],y), j ∈

{1, · · · , p}, for measuring the importance of the jth variable, where wj is some function

that satisfies the property that swapping xj ∈ Rn with its corresponding knockoff variable

x̃j ∈ Rn changes the sign of Wj ; that is,

wj([X, X̃]swap(S),y) =


wj([X, X̃],y), j /∈ S,

−wj([X, X̃],y), j ∈ S.

(A.2)

The knockoff statistics constructed above Wj = wj([X, X̃],y) satisfy the so-called sign-flip

property; that is, conditional on |Wj |’s the signs of the null Wj ’s with j 6∈ S0 are i.i.d. coin

flips (with equal chance 1/2). For the examples on valid constructions of knockoff statistics,

see [8].

Let t > 0 be a fixed threshold and define Ŝ = {j : Wj ≥ t} as the set of discovered
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variables. Then intuitively, the sign-flip property entails

∣∣∣Ŝ ∩ S1
∣∣∣ d= ∣∣{j : Wj ≤ −t} ∩ S1

∣∣ ≤ |{j : Wj ≤ −t}| .

Therefore, the FDP function can be estimated (conservatively) as

FDP =
|Ŝ ∩ S1|
|Ŝ| ∨ 1

≤ |{j : Wj ≤ −t}|
|Ŝ| ∨ 1

=: F̂DP

for each t. In light of this observation, [8] proposed to choose the threshold by resorting to

the above F̂DP. Their results are summarized formally as follows.

Result 1 ([8]) Let q ∈ (0, 1) denote the target FDR level. Assume that we choose a thresh-

old T1 > 0 such that

T1 = min

{
t > 0 :

|{j : Wj ≤ −t}|
|{j : Wj ≥ t}| ∨ 1

≤ q
}

or T1 = +∞ if the set is empty. Then the procedure selecting the variables Ŝ = {j : Wj ≥ T1}

controls the mFDR in (4) to no larger than q. Moreover, assume that we choose a slightly

more conservative threshold T2 > 0 such that

T2 = min

{
t > 0 :

1 + |{j : Wj ≤ −t}|
|{j : Wj ≥ t}| ∨ 1

≤ q
}

or T2 = +∞ if the set is empty. Then the procedure selecting the variables Ŝ = {j : Wj ≥ T2}

controls the FDR in (3) to no larger than q.

It is worth noting that Result 1 was derived under the assumption that the joint distri-

bution of the p covariates is known. In our model setting (1) and (2), however there exist

unknown parameters that need to be estimated from data. In such case, it is natural to

construct the knockoff variables and knockoff statistics with estimated distribution of the p

covariates. Such a plug-in principle usually leads to breakdown of the exchangeability prop-

erty in Definition 1, preventing us from using directly Result 1. To address this challenging

issue, we will introduce our new method in the next section and provide detailed theoretical

3



analysis for it.

It is also worth mentioning that recently, [5] provided an elegant new line of theory which

ensures FDR control of model-X knockoffs procedure under the approximate exchangeability

assumption, which is weaker than the exact exchangeability condition required in Definition

1. However, the conditions they need on estimation error of the joint distribution of x

is difficult to be satisfied in high dimensions. [10] investigated the robustness of model-X

knockoffs procedure with respect to unknown covariate distribution when covariates x follow

a joint Gaussian distribution. Their procedure needs data splitting and their proofs rely

heavily on the Gaussian distribution assumption, and thus their development may not be

suitable for economic data with limited sample size and heavy-tailed distribution. For these

reasons, our results complement substantially those in [8], [10], and [5].

C Proofs of Proposition 1 and some key lemmas

C.1 Proof of Proposition 1

Observe that the second property of Definition 1 holds naturally since X̃(θ0) is constructed

without using the information of y. Thus it remains to verify the first property of Definition

1. Since F0 and Eη0 have i.i.d. rows, let us consider the case of a single observation and

show that [x, x̃(θ0)]swap(S)
d
= [x, x̃(θ0)] for any subset S ⊂ {1, · · · , p}. By Proposition 2 of

[8], it suffices to consider the case of S = {j} for an arbitrary j ∈ {1, · · · , p}. It follows from

the definition of model (2) and the construction of x̃(θ0) that

[x, x̃(θ0)]swap({j}) = [c0 + e, c0 + eη0 ]swap({j})

= [c0 + ẽ(j), c0 + ẽ
(j)
η0 ], (A.3)
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where ẽ(j) and ẽ
(j)
η0 are defined such that [e, eη0 ]swap({j}) = [ẽ(j), ẽ

(j)
η0 ]. Since model (2)

assumes that e has i.i.d. components and eη0 is an independent copy of e, it holds that

[ẽ(j), ẽ
(j)
η0 ]

d
= [e, eη0 ]. (A.4)

Therefore, in view of (A.3) and (A.4) and the independence between (e, eη0) and c0, we have

[x, x̃(θ0)]swap({j})
d
= [c0 + e, c0 + eη0 ]

= [x, x̃(θ0)],

which completes the proof of Proposition 1.

C.2 Proof of Lemma 1

For λ fixed at C0n
−1/2 log p and each given θ, Wj(θ) = wj([X, X̃(θ)],y) depends only on

β̂aug(θ) by the LCD construction. Moreover, the Lasso solution β̂aug(θ) satisfies the Karush–

Kuhn–Tucker (KKT) conditions:

v(θ)−U(θ)β̂aug(θ) = n−1λz, (A.5)

where z = (z1, · · · , z2p)
T with zj ∈


{sgn(β̂j)} if β̂j 6= 0,

[−1, 1] if β̂j = 0,

for j = 1, · · · , 2p. (A.6)

This means that β̂aug(θ) depends on the data ([X, X̃(θ)],y)) only through U(θ) and v(θ).

Thus using notation T(θ) = vec(vech U(θ),v(θ)) with the fact that U(θ) is symmetric,

we can reparametrize wj([X, X̃(θ)],y) as wj(T(θ)) with a slight abuse of notation. Fur-

thermore, note that the thresholds T1 and T2 are both completely determined by wj(T(θ)).

Consequently, by the construction of Ŝ we can see that Ŝ depends only on T(θ), which

completes the proof of Lemma 1.
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C.3 Proof of Lemma 2

We continue to use the same λ and θ as in Lemma 1 and its proof. Recall that SA(tA)

represents the outcome of first restricting ourselves to the smaller set of variables A and

then applying IPAD to TA(θ) = tA to further select variables from A. Also recall that

A∗(θ) is the support of knockoff statistics Wj(θ). Thus the knockoff threshold T1 or T2

depends only on Wj(θ) with j ∈ A∗(θ).

On the other hand, when we restrict ourselves to A ⊃ A∗(θ) we solve the following KKT

conditions with respect to β̃ := (β̃1, · · · , β̃2|A|)
T ∈ R2|A| to get the Lasso solution:

β̃ = (UA(θ)′UA(θ))−1(vA(θ)− n−1λz̃), (A.7)

where z̃ = (z̃1, · · · , z̃2|A|)
T with z̃j ∈


{sgn(β̃j)} if β̃j 6= 0,

[−1, 1] if β̃j = 0,

for j = 1, · · · , 2|A|.

(A.8)

Since λ is always fixed at the same value C0n
−1/2 log p, it is seen that the solution to the

above KKT conditions is identical to β̂aug
AA(θ), where the latter denotes the subvector of

β̂aug(θ) formed by stacking β̂augj1
(θ), j1 ∈ A and β̂augp+j2

(θ), j2 ∈ A all together. Therefore,

the Lasso solution to (A.7)–(A.8) and the Lasso solution to (A.5)–(A.6) have the identical

support (when viewed in the original 2p-dimensional space) and in addition, identical values

on the support. This guarantees that S{1,··· ,p}(T(θ)) and SA(TA(θ)) are identical and thus

concludes the proof of Lemma 2.

6



C.4 Lemma 3 and its proof

Lemma 3 Assume that Conditions 2–5 hold. Then with probability at least 1−O(πnp), the

estimator θ̂ = (vec(Ĉ)′, η̂′)′ lies in the shrinking set given by

Θnp =
{
θ = (vec(C)′,η′)′ :

∥∥C−C0
∥∥

max
+
∥∥η − η0

∥∥
max
≤ O(cnp)

}
,

where cnp = (n−1 log p)1/2 + (p−1 log n)1/2 and πnp = p−ν + n−ν .

Proof. We divide the proof into two parts. We prove the bound for ‖Ĉ−C0‖max in Part 1

and then for ‖η̂ − η0‖max in Part 2.

Part 1. Note that ‖Ĉ −C0‖max = maxi,j |ĉij − c0
ij |, where the maximum is taken over

i ∈ {1, · · · , n} and j ∈ {1, · · · , p}. We write f∗i = H′f0
i and λ∗j = H−1λ0

j with rotation

matrix H defined in Lemma 6 in Section D.1. From the definition of cij , it holds that

ĉij − c0
ij = (f̂i − f∗i )′λ∗j + f̂ ′i(λ̂j − λ∗j ).

From Lemma 6, we can assume ‖H‖2 + ‖H−1‖2 + ‖V‖2 + ‖V−1‖2 . 1, which occurs with

probability at least 1 − O(p−ν). We also have maxi∈{1,··· ,n} ‖f̂i‖22 . 1 a.s. by the assumed

restriction F̂′F̂/n = Ir as mentioned on p.213 of [2]. Hence, the triangle and Cauchy–Schwarz

inequalities with Conditions 2 and 3 give

max
i,j
|ĉij − cij | ≤ max

i
‖f̂i − f∗i ‖2 max

j
‖λ∗j‖2 + max

i
‖f̂i‖2 max

j
‖λ̂j − λ∗j‖2

. max
i
‖f̂i − f∗i ‖2 + max

j
‖λ̂j − λ∗j‖2. (A.9)

Then it is sufficient to derive upper bounds for maxi ‖f̂i−f∗i ‖2 and maxj ‖λ̂j−λ∗j‖2 that hold

with high probability. Using the decomposition of A.1 in [1] along with taking maximum
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over i, ` ∈ {1, · · · , n}, we can deduce

max
i
‖f̂i − f∗i ‖2

≤ ‖V−1‖2 max
i

(σ2
e/n)‖f̂i‖2 + n−1

n∑
`=1

‖f̂`‖2

∣∣∣∣∣∣p−1
p∑
j=1

(e`jeij − E[e`jeij ])

∣∣∣∣∣∣
+ n−1

n∑
`=1

‖f̂`f0
`
′‖2

∥∥∥∥∥∥p−1
p∑
j=1

λ0
jeij

∥∥∥∥∥∥
2

+ n−1
n∑
`=1

‖f̂`f0
i
′‖2

∥∥∥∥∥∥p−1
p∑
j=1

λ0
je`j

∥∥∥∥∥∥
2


. O(n−1) + max

i,`

∣∣∣∣∣∣p−1
p∑
j=1

(e`jeij − E[e`jeij ])

∣∣∣∣∣∣+ max
i

∥∥∥∥∥∥p−1
p∑
j=1

λ0
jeij

∥∥∥∥∥∥
2

. O(n−1) +R1 +R2, (A.10)

where we have used the boundedness of ‖f̂`‖2 discussed above and ‖f0
` ‖2 ≤ r1/2‖f0

` ‖max . 1 in

Condition 2 for the second inequality, and defined R1 = maxi,`

∣∣∣p−1
∑p

j=1 (e`jeij − E[e`jeij ])
∣∣∣

and R2 = maxi,k

∣∣∣p−1
∑p

j=1 λ
0
jkeij

∣∣∣. Similarly, the expression on p.165 of [1] with taking

maximum over i ∈ {1, · · · , n} and j ∈ {1, · · · , p} leads to

max
j
‖λ̂j − λ∗j‖2

≤ ‖H‖2 max
j

∥∥∥∥∥n−1
n∑
i=1

f0
i eij

∥∥∥∥∥
2

+

∥∥∥∥∥n−1
n∑
i=1

f̂i(f̂i − f∗i )′

∥∥∥∥∥
2

∥∥H−1
∥∥

2
max
j

∥∥λ0
j

∥∥
2

+ max
j

∥∥∥∥∥n−1
n∑
i=1

(f̂i − f∗i )eij

∥∥∥∥∥
2

. max
j

∥∥∥∥∥n−1
n∑
i=1

f0
i eij

∥∥∥∥∥
2

+ max
i

∥∥∥f̂i − f∗i

∥∥∥
2

+ max
i

∥∥∥f̂i − f∗i

∥∥∥
2

max
j

(
n−1

n∑
i=1

e2
ij

)1/2

= R3 + max
i
‖f̂i − f∗i ‖2(1 +R4), (A.11)

where R3 = maxj,k
∣∣n−1

∑n
i=1 f

0
ikeij

∣∣
2

and R4 = maxj

(
n−1

∑n
i=1 e

2
ij

)1/2
, and the Cauchy–

Schwarz inequality has been used to obtain the second inequality. To evaluate R4, we note

that

R2
4 ≤ max

j
E e2

ij + max
j

∣∣∣∣∣n−1
n∑
i=1

(
e2
ij − E e2

ij

)∣∣∣∣∣ .
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The first term is bounded by 2C2
e . For the second term, Lemma 7(a) in Section D.2 with p

replaced by n and the union bound give

P

(
max
j

∣∣∣∣∣n−1
n∑
i=1

(
e2
ij − E e2

ij

)∣∣∣∣∣ > u

)
≤ pmax

j
P

(∣∣∣∣∣n−1
n∑
i=1

(
e2
ij − E e2

ij

)∣∣∣∣∣ > u

)

≤ 2p exp(−nu2/C)

for all 0 ≤ u ≤ c. Thus putting u = (C(ν + 1)n−1 log p)1/2 and using condition cnp ≤

c/(r2M2C(ν + 2))1/2, we obtain R2
4 = O(1) + O((n−1 log p)1/2) = O(1) with probability at

least 1−O(p−ν). This together with the observation from (A.9)–(A.11) yields

max
i,j
|ĉij − c0

ij | . R3 +
{
R1 +R2 +O(n−1)

}
(1 +R4)

. R1 +R2 +R3 +O(n−1).

Hence the convergence rate of maxi,j |ĉij − c0
ij | is determined by the slowest term out of R1,

R2, R3, and O(n−1). We evaluate these terms by Lemma 7 in Section D.2 and the union

bound with condition cnp ≤ c/(r2M2C(ν + 2))1/2 as above. First for R1, Lemma 7(a) by

letting u1 = (C(ν + 2)p−1 log n)1/2 results in

P (R1 > u1) ≤ 2n2 exp
{
−p(ν + 2)p−1 log n

}
= O(n−ν).

Next for R2, Lemma 7(c) with u2 = (2(ν + 1)p−1 log n)1/2 gives

P (R2 > u2) ≤ 2rn exp
{
−p(ν + 1)p−1 log n

}
= O(n−ν).

Finally for R3, Lemma 7(b) with putting u3 = (C(ν + 1)n−1 log p)1/2 leads to

P (R3 > u3) ≤ 2rp exp
{
−n(ν + 1)n−1 log p

}
= O(p−ν).

Consequently, we obtain the first result ‖Ĉ−C0‖max = O(cnp), which holds with probability

at least 1−O(πnp).
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Part 2. Next we derive the convergence rate of η̂. It is sufficient to prove only the

case when η0 is a scalar (so that we write η0 = η0
1) since dimensionality m is fixed and η0

k’s

share the identical property thanks to Condition 4. Recall notation Enpek = (np)−1
∑

i,j e
k
ij .

Letting δij = c0
ij−ĉij , we have êij = xij−ĉij = eij+δij . For an arbitrary fixed k ∈ {1, · · · ,m},

the binomial expansion entails

∣∣∣Enpêk − E ek
∣∣∣ =

∣∣∣Enp(e+ δ)k − E ek
∣∣∣

=

∣∣∣∣∣Enp(ek − E ek) + Enp
k−1∑
`=0

(
k

`

)
e`δk−`

∣∣∣∣∣
≤
∣∣∣Enp(ek − E ek)

∣∣∣+
k−1∑
`=0

(
k

`

)
max
i,j
|δij |k−`Enp|e|`

.
∣∣∣Enp(ek − E ek)

∣∣∣+O

(
max
i,j
|δij |

) k−1∑
`=0

Enp|e|`. (A.12)

For all k ∈ {1, · · · ,m}, the strong law of large numbers with Theorem 2.5.7 in [9] entails

|Enpek − E ek| = o((np)−1/2 log(np)) a.s. under Condition 4. Furthermore, the second term

of (A.12) is O(cnp) with probability at least 1 − O(πnp) from Part 1 and the same law of

large numbers. Consequently, we obtain

∣∣∣Enpêk − E ek
∣∣∣ . cnp.

Therefore by the construction of η̂1 and local Lipschitz continuity of h1 in Condition 4, we

see that

∣∣η̂1 − η0
1

∣∣ = |h1 (Enpê, · · · ,Enpêm)− h1 (E e, · · · ,E em)|

. max
k∈{1,··· ,m}

∣∣∣Enpêk − E ek
∣∣∣

with probability at least 1−O(πnp). This completes the proof of Lemma 3.
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C.5 Lemma 4 and its proof

Lemma 4 Assume that Conditions 1–4 hold. Then with probability at least 1−O(πnp), the

following statements hold

(a) sup
|A|≤k,θ∈Θnp

∥∥UA(θ)− E[UA(θ0)]
∥∥

max
= O

(
k1/2c̃np

)
,

(b) sup
|A|≤k,θ∈Θnp

∥∥vA(θ)− E[vA(θ0)]
∥∥

max
= O

(
s3/2c̃np

)
,

where Θnp was defined in Lemma 3 and c̃np = n−1/2 log p + p−1/2 log n. Consequently, we

have

sup
|A|≤k,θ∈Θnp

∥∥TA(θ)− E[TA(θ0)]
∥∥

max
= O

((
k1/2 + s3/2

)
c̃np

)
.

Proof. To complete the proof of (a), we verify the following

(a–i) sup
|A|≤k,θ∈Θnp

∥∥UA(θ)−UA(θ0)
∥∥

max
. k1/2c̃np,

(a–ii)
∥∥U(θ0)− E[U(θ0)]

∥∥
max

. (n−1 log p)1/2.

From (a–i) and (a–ii), we can conclude that

sup
|A|≤k,θ∈Θnp

∥∥UA(θ)− E[UA(θ0)]
∥∥

max

≤ sup
|A|≤k,θ∈Θnp

∥∥UA(θ)−UA(θ0)
∥∥

max
+ sup
|A|≤k

∥∥UA(θ0)− E[UA(θ0)]
∥∥

max

≤ sup
|A|≤k,θ∈Θnp

∥∥UA(θ)−UA(θ0)
∥∥

max
+
∥∥U(θ0)− E[U(θ0)]

∥∥
max

. k1/2c̃np,

which yields result (a).

We begin with showing (a–i); this is the uniform extension of Lemma 8(a) in Section

D.3 over |A| ≤ k. In fact, the proof is almost the same, with the only difference that bound
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(A.23) should be replaced with the bound derived in Lemma 9(c); that is,

max
|A|≤k

∥∥∥n−1/2EA

∥∥∥
2
. 1 ∨

(
kn−1 log p

)1/2
, (A.13)

which holds with probability at least 1 − O(p−ν). Notice that
(
kn−1 log p

)1/2 ≤ log1/2 p.

Therefore, even if we use (A.13) instead of (A.23) in the proof of Lemma 8(a) we can still

derive the same convergence rate k1/2c̃np as in Lemma 8(a), and hence (a–i) holds with

probability at least 1−O(πnp).

For (a–ii), we see that

∥∥U(θ0)− E[U(θ0)]
∥∥

max
≤
∥∥n−1X′X− E[n−1X′X]

∥∥
max

+
∥∥∥n−1X̃(θ0)′X̃(θ0)− E[n−1X̃(θ0)′X̃(θ0)]

∥∥∥
max

+ 2
∥∥∥n−1X′X̃(θ0)− E[n−1X′X̃(θ0)]

∥∥∥
max

=: W1 +W2 + 2W3. (A.14)

We derive the bounds for each of these terms. First, W1 is bounded as

W1 ≤
∥∥∥n−1C0′C0 − E[n−1C0′C0]

∥∥∥
max

+
∥∥n−1E′E− En−1E′E

∥∥
max

+ 2
∥∥n−1E′C0

∥∥
max

=: W1,1 +W1,2 +W1,3.

Under Condition 3, we deduce

W1,1 = max
j,`∈{1,··· ,p}

∣∣∣∣∣∣
r∑

k,m=1

λ0
jkλ

0
`mn

−1
n∑
i=1

(
f0
ikf

0
im − E f0

ikf
0
im

)∣∣∣∣∣∣
≤ rM2 max

j,`∈{1,··· ,p}

∣∣∣∣∣n−1
n∑
i=1

(
f0
ikf

0
im − E f0

ikf
0
im

)∣∣∣∣∣ .
From Lemma 7(d) with Condition 2 and the union bound, we have

P

(
max

j,`∈{1,··· ,p}

∣∣∣∣∣n−1
n∑
i=1

(
f0
ikf

0
im − E f0

ikf
0
im

)∣∣∣∣∣ > u

)

≤ p2 max
j,`∈{1,··· ,p}

P

(∣∣∣∣∣n−1
n∑
i=1

(
f0
ikf

0
im − E f0

ikf
0
im

)∣∣∣∣∣ > u

)
≤ 2p2 exp

(
−nu2/C

)
.

Hence, letting u = (C(ν + 2)n−1 log p)1/2 above yields the bound W1,1 . (n−1 log p)1/2 with

12



probability at least 1−O(p−ν). Next for W1,2, we can find from Lemma 7(a) with p replaced

by n and the union bound that

P
(∥∥n−1E′E− En−1E′E

∥∥
max

> u
)
≤ p2 max

j,`
P

(∣∣∣∣∣n−1
n∑
i=1

(eijei` − E eijei`)

∣∣∣∣∣ > u

)

≤ 2p2 exp
(
−nu2/C

)
.

Letting u = (C(ν + 2)n−1 log p)1/2 and using n−1 log p ≤ c2/(C(ν + 2)), we obtain W1,2 .

(n−1 log p)1/2 with probability at least 1−O(p−ν). Next for W1,3, the union bound gives

P
(∥∥∥n−1E′F0Λ0′

∥∥∥
max

> u
)

= P

(
max

j,`∈{1,··· ,p}

∣∣∣∣∣n−1
r∑

k=1

n∑
i=1

eijf
0
ikλ

0
`k

∣∣∣∣∣ > u

)

≤ P

(
r max
j,`∈{1,··· ,p}

max
k∈{1,··· ,r}

∣∣∣∣∣n−1
n∑
i=1

eijf
0
ik

∣∣∣∣∣ ∣∣λ0
`k

∣∣ > u

)

≤ rp max
k∈{1,··· ,r}

max
j∈{1,··· ,p}

P

(∣∣∣∣∣n−1
n∑
i=1

eijf
0
ik

∣∣∣∣∣ > u/(rM)

)
.

Lemma 7(b) states that for all 0 ≤ u/(rM) ≤ c/(rM) it holds that

P

(∣∣∣∣∣n−1
n∑
i=1

eijf
0
ik

∣∣∣∣∣ > u/(rM)

)
≤ 2 exp

{
−nu2/(Cr2M2)

}
.

Therefore, if we put u = rM(C(ν + 1)n−1 log p)1/2 using n−1 log p ≤ c2/(r2M2C(ν + 1)),

the upper bound of the probability is further bounded by 2rp−ν . Thus we obtain W13 .

(n−1 log p)1/2 with probability at least 1−O(p−ν). Consequently, the bound of W1 is

W1 ≤W1,1 +W1,2 +W1,3 . (n−1 log p)1/2

with probability at least 1−O(p−ν). Note that we have the same result for W2 since it has

the same distribution as W1. Finally, W3 is bounded as

W3 ≤
∥∥∥n−1C0′C0 − E[n−1C0′C0]

∥∥∥
max

+
∥∥n−1E′Eη0

∥∥
max

+
∥∥n−1E′C0

∥∥
max

+
∥∥∥n−1E′η0C

0
∥∥∥

max
=: W1,1 +W3,1 +W1,3 +W3,2.

The upper bound of W3,1 turns out to be O((n−1 log p)1/2) that holds with probability at

13



least 1−O(p−ν). We check this claim. Using the union bound and the inequality of Lemma

7(a) with p replaced by n and putting u = (C(ν + 2)n−1 log p)1/2 yield

P
(∥∥n−1E′Eη0

∥∥
max

> u
)
≤ p2 max

j,`
P

(∣∣∣∣∣n−1
n∑
i=1

(
eijeη0,i`

)∣∣∣∣∣ > u

)
≤ 2p−ν .

Finally, W3,2 is found to have the same bound as W1,3 because Eη0 is an independent copy

of E. Consequently, with probability at least 1−O(p−ν), we obtain

∥∥U(θ0)− E[U(θ0)]
∥∥

max
. (n−1 log p)1/2.

This completes the proof of (a) since p−ν/πnp = O(1).

Next we show (b) by verifying the following

(b–i) sup
|A|≤k,θ∈Θnp

∥∥vA(θ)− vA(θ0)
∥∥

max
. s3/2c̃np,

(b–ii)
∥∥v(θ0)− E[v(θ0)]

∥∥
max

. s(n−1 log p)1/2.

Similar to the proof of (a), we need to modify the proof of Lemma 8(b) in Section D.3 for

obtaining the uniform bound with respect to A, but the obtained result is already uniform

over the choice of A. Thus the same upper bound holds and (b–i) follows. Next we show

(b–ii). It holds that

∥∥v(θ0)− Ev(θ0)
∥∥

max

≤
∥∥n−1X′y − En−1X′y

∥∥
max

+
∥∥∥n−1X̃(θ0)′y − En−1X̃(θ0)′y

∥∥∥
max

≤
∥∥(n−1X′X− En−1X′X

)
β
∥∥

max
+
∥∥n−1X′ε− En−1X′ε

∥∥
max

+
∥∥∥(n−1X̃(θ0)′X− E[n−1X̃(θ0)′X]

)
β
∥∥∥

max
+
∥∥∥n−1X̃(θ0)′ε− E[n−1X̃(θ0)′ε]

∥∥∥
max

=: Z1 + Z2 + Z3 + Z4.

14



These terms can be bounded by the results obtained in the proof of (a–ii). We see that

Z1 ≤ s1/2
∥∥n−1X′XS0 − En−1X′XS0

∥∥
max
‖βS0‖2 . sW1 . s(n−1 log p)1/2

with probability at least 1−O(p−ν). Next we deduce

Z2 ≤
∥∥∥n−1Λ0F0′ε

∥∥∥
max

+
∥∥n−1E′ε

∥∥
max

.

The first and second terms can be bounded by the same ways as W1,3 and W3,1 in the proof

of (a) above with E and Eη0 replaced by ε, respectively. Then the first term dominates the

second and hence Z2 . (n−1 log p)1/2 with probability at least 1−O(p−ν). Similarly, we can

obtain

Z3 ≤ s1/2
∥∥∥n−1X̃(θ0)′XS0 − En−1X̃(θ0)′XS0

∥∥∥
max
‖βS0‖2 . sW3 . s(n−1 log p)1/2

with probability at least 1−O(p−ν). Note that Z4 has the same bound as Z2. Consequently,

collecting terms leads to the result, Z1 + · · ·+ Z4 . s(n−1 log p)1/2 with probability at least

1−O(p−ν). This proves (b–ii) and concludes the proof of Lemma 4.

C.6 Lemma 5 and its proof

Lemma 5 Assume that all the conditions of Theorem 2 hold. Then with probability at least

1−O(πnp), the Lasso solution in (19) satisfies

sup
θ∈Θnp

∥∥∥β̂aug(θ)− βaug
∥∥∥

2
= O(s1/2λ),

sup
θ∈Θnp

∥∥∥β̂aug(θ)− βaug
∥∥∥

1
= O(sλ),

where λ = c1n
1/2 log p with c1 some positive constant.
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Proof. Let δ(:= δ(θ)) := β̂aug(θ)− βaug. We start with introducing two inequalities

sup
θ∈Θnp

∥∥∥n−1[X, X̃(θ)]′ε
∥∥∥

max
≤ 2−1λ, (A.15)

inf
θ∈Θnp, δ∈V

δ′U(θ)δ/‖δ‖22 ≥ σ2
e(1 + o(1)), (A.16)

where λ = c1n
−1/2 log p for some positive constant c1 and

V =
{
δ ∈ R2p : ‖δS1‖1 ≤ 3‖δS0‖1, ‖δ‖0 ≤ k

}
. (A.17)

It is well known that the rate of convergence of the Lasso estimator can be obtained provided

that (A.15) and (A.16) hold. Thus we show that these two inequalities actually hold with

high probability in Step 1, and then derive the convergence rate using (A.15) and (A.16) in

Step 2.

Step 1. We check whether (A.15) and (A.16) actually hold with high probability. We

first verify (A.15). By the proofs of Lemmas 8 and 4, we have

sup
θ∈Θnp

∥∥∥n−1[X, X̃(θ)]′ε
∥∥∥

max

≤
∥∥n−1X′ε

∥∥
max

+ sup
θ∈Θnp

∥∥∥n−1X̃(θ)′ε− n−1X̃(θ0)′ε
∥∥∥

max
+
∥∥∥n−1X̃(θ0)′ε

∥∥∥
max

.

The first and third terms can both be upper bounded by O(n−1/2 log p) with probability at

least 1−O(p−ν), following the same lines for deriving bound for Z2 in the proof of Lemma 4.

To evaluate the second term, we can use the argument about V2 and its upper bound (A.24)

in the proof of Lemma 8. That bound still holds with the same rate O(n−1/2 log p) even if

we take A = {1, · · · , p}. Thus we conclude that (A.15) is true for the given λ by choosing

an appropriate positive large constant c1, with probability at least 1−O(πnp).

Next to verify (A.16), we derive the population lower bound first and then show that the
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difference is negligible. From the construction, we have

E[n−1X̃(θ0)
′
X̃(θ0)] = E[n−1X′X] = Λ0ΣfΛ

0′ + σ2
eIp,

E[n−1X̃(θ0)
′
X] = E[n−1X′X̃(θ0)] = Λ0ΣfΛ

0′.

Using these equations, we obtain the lower bound

inf
δ∈V

δ′ E
[
U(θ0)

]
δ/‖δ‖22 = inf

δ∈V
δ′

Λ0ΣfΛ
0′ + σ2

eIp Λ0ΣfΛ
0′

Λ0ΣfΛ
0′ Λ0ΣfΛ

0′ + σ2
eIp

 δ/‖δ‖22

= inf
δ∈V

δ′


1 1

1 1

⊗Λ0ΣfΛ
0′ + σ2

eI2p

 δ/‖δ‖22
≥ σ2

e . (A.18)

Because δ ∈ V is sparse and satisfies |B| ≤ k for B := supp(δ), it holds that δ′U(θ0)δ =

δ′BUB(θ0)δB and δ′ E
[
U(θ0)

]
δ = δ′B E

[
UB(θ0)

]
δB. Hence from Lemma 4 together with

the condition on dimensionality, we obtain

sup
|B|≤k,θ∈Θnp

∥∥UB(θ)− E[UB(θ0)]
∥∥

max
= O

(
k1/2c̃np

)
= o(s−1) (A.19)

with probability at least 1−O(πnp). Thus using (A.19), we have for any δ ∈ V,

δ′ E[U(θ0)]δ − δ′U(θ)δ = δ′B
{
E[UB(θ0)]−UB(θ)

}
δB

≤ ‖δ‖21 sup
|B|≤k,θ∈Θnp

∥∥UB(θ)− E[UB(θ0)]
∥∥

max
= (‖δS0‖1 + ‖δS1‖1)2 o(s−1)

. ‖δS0‖21o(s−1) ≤ ‖δS0‖22o(1) ≤ ‖δ‖22o(1).

Rearranging the terms with (A.18) yields

inf
θ∈Θnp, δ∈V

δ′U(θ)δ/‖δ‖22 ≥ inf
δ∈V

δ′ E[U(θ0)]δ/‖δ‖22 − |o(1)| ≥ σ2
e − |o(1)|,
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resulting in (A.16). In consequence, two inequalities (A.15) and (A.16) hold with probability

at least 1−O(πnp).

Step 2. This part is well known in the literature (e.g., [12]) so we briefly give the proof

omitting the details. Because the objective function is given by

β̂aug(θ) = arg min
b∈R2p

n−1
∥∥∥y − [X, X̃(θ)]b

∥∥∥2

2
+ λ‖b‖1,

the global optimality of the Lasso estimator implies

(2n)−1
∥∥∥y − [X, X̃(θ)]β̂aug(θ)

∥∥∥2

2
+ λ

∥∥∥β̂aug(θ)
∥∥∥

1

≤ (2n)−1
∥∥∥y − [X, X̃(θ)]βaug

∥∥∥2

2
+ λ ‖βaug‖1 ,

where the true parameter vector βaug was defined in the proof of Theorem 2. Note that

supθ∈Θnp
‖δ(θ)‖0 ≤ k by the assumption. Expanding the inequality and collecting terms

with (A.15) yield

2−1δ′U(θ)δ ≤
∥∥∥n−1ε′[X, X̃(θ)]

∥∥∥
max
‖δ‖1 + λ‖δ‖1 ≤ (3/2)λ‖δ‖1. (A.20)

On the other hand, applying Lemma 1 of [12] to our model reveals that δ ∈ V. Thus we can

use (A.16), (A.20), and (A.17) to get

‖δ‖22(σ2
e + o(1)) ≤ 3λ‖δ‖1 = 3λ (‖δS1‖1 + ‖δS0‖1) ≤ 12λ‖δS0‖1.

Since |S0| = s and ‖δS0‖1 ≤ s1/2‖δS0‖2, it holds that ‖δ‖2 ≤ 12s1/2λ/(σ2
e + o(1)). Since

‖δS0‖2 ≤ ‖δ‖2, we obtain the desired bound ‖δ‖1 ≤ 48sλ/(σ2
e + o(1)). This bound holds

uniformly over θ ∈ Θnp, which completes the proof of Lemma 5.
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D Additional technical lemmas and their proofs

D.1 Lemma 6 and its proof

Lemma 6 Denote by V ∈ Rr×r a diagonal matrix with its entries the r largest eigenval-

ues of (np)−1XX′ and define H = (Λ0′Λ0/p)(F0′F̂/n)V−1. Assume that Conditions 2–5

hold. Then ‖H‖2 + ‖H−1‖2 + ‖V‖2 + ‖V−1‖2 is bounded from above by some constant with

probability at least 1−O(p−ν).

Proof. Let λk[A] denote the kth largest eigenvalue of square matrix A throughout the proof.

Because ‖Λ0′Λ0/p‖2 ≤M and

‖F0′F̂/n‖2 ≤ ‖n−1/2F0‖2‖n−1/2F̂‖2

≤ (rn)1/2‖n−1/2F0‖max

(
λ1[n−1F̂′F̂]

)1/2
≤ r1/2M

by Conditions 2–3, and F̂′F̂/n = Ir, we have

‖H‖2 ≤
∥∥∥Λ0′Λ0/p

∥∥∥
2

∥∥∥F0′F̂/n
∥∥∥

2

∥∥V−1
∥∥

2
.
∥∥V−1

∥∥
2
,

where ‖V−1‖2 is equal to the reciprocal of the rth largest eigenvalue of (np)−1XX′. Similarly,

under Conditions 2–3 we also have

∥∥H−1
∥∥

2
≤ ‖V‖2

∥∥∥(F0′F̂/n)−1
∥∥∥

2

∥∥∥(Λ0′Λ0/p)−1
∥∥∥

2
. ‖V‖2

∥∥∥(F0′F̂/n)−1
∥∥∥

2
,

where ‖V‖2 is equal to the largest eigenvalue of (np)−1XX′ and the inverse matrix in the

upper bound is well defined by [1]. To see if ‖(F0′F̂/n)−1‖2 is bounded from above, it suffices

to bound the minimum eigenvalue of F0′F̂F̂′F0/n2 away from zero uniformly in n. Regarding

r eigenvalues of the matrix, Sylvester’s law of inertia (e.g., [11], Theorem 4.5.8) entails that

all the r eigenvalues are positive for all n. Moreover, by Proposition 1 of [1] we know that

the limiting matrix of F̂′F0/n is nonsingular under Conditions 2 and 5. Therefore, we can

conclude that lim infn→∞ λ
r[F0′F̂F̂′F0/n2] > 0 a.s., and hence ‖H−1‖2 . ‖V‖2 follows.
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To complete the proof, it is sufficient to show that the maximum and rth largest eigen-

values of (np)−1XX′ are bounded from above and away from zero, respectively, for all large

n and p. By the definition of the spectral norm and triangle inequality, we have

{
λ1
[
(np)−1XX′)

]}1/2
=
∥∥∥(np)−1/2X

∥∥∥
2
≤
∥∥∥(np)−1/2F0Λ0′

∥∥∥
2

+
∥∥∥(np)−1/2E

∥∥∥
2

≤
∥∥∥n−1/2F0

∥∥∥
2

∥∥∥p−1/2Λ0
∥∥∥

2
+
∥∥∥(np)−1/2E

∥∥∥
2
.

By Conditions 2 and 3, the first term is a.s. bounded by a constant as discussed above. The

second term is O((n ∧ p)−1/2) = o(1) with probability at least 1 − 2 exp(−|O(n ∨ p)|) by

Lemma 9(a) under Condition 4. Therefore, the largest eigenvalue of (np)−1XX′ is bounded

from above by some constant with probability at least 1− 2 exp(−|O(n ∨ p)|).

Next we bound the rth largest eigenvalue of (np)−1XX′ away from zero. Since the matrix

is symmetric, Weyl’s inequality (e.g., [11], Theorem 4.3.1) yields

λr
[
(np)−1XX′

]
= λr

[
(np)−1

{
F0Λ0′Λ0F0′ +

(
EΛ0F0′ + F0Λ0′E′

)
+ EE′

}]
≥ λr

[
(np)−1F0Λ0′Λ0F0′

]
+ λn

[
(np)−1

(
EΛ0F0′ + F0Λ0′E′

)]
+ λn

[
(np)−1EE′

]
.

(A.21)

The third term of lower bound (A.21) is obviously nonnegative. For the first term of

lower bound (A.21), let V denote a subspace of Rn. Because F0Λ0′Λ0F0′ is symmetric,

the Courant–Fischer min-max Theorem (e.g., [11], Theorem 4.2.6) yields

λr
[
(np)−1F0Λ0′Λ0F0′

]
= max
V:dim(V)=r

min
v∈V\{0}

{
(np)−1 v′F0Λ0′Λ0F0′v

v′v

}

≥ max
V:dim(V)=r

min
v∈V\{0}

(
n−1 v′F0F0′v

v′v

)
min

F0′v∈Rr\{0}

(
p−1 v′F0Λ0′Λ0F0′v

v′F0F0′v

)

= λr
[
n−1F0F0′

]
λr
[
p−1Λ0′Λ0

]
= λr

[
n−1F0′F0

]
λr
[
p−1Λ0′Λ0

]
≥ λr [Σf ]λr

[
p−1Λ0′Λ0

]
−
∥∥∥n−1F0′F0 −Σf

∥∥∥
2

≥ λr [Σf ]λr
[
p−1Λ0′Λ0

]
− r

∥∥∥n−1F0′F0 −Σf

∥∥∥
max

.

20



In this lower bound, the first term is bounded away from zero by Conditions 2–3. Meanwhile,

to evaluate the second term we use Lemma 7(d) in Section D.2, which together with the union

bound establishes

P
(∥∥∥n−1F0′F0 −Σf

∥∥∥
max

> u
)
≤ r2 max

k,`∈{1,··· ,r}
P

(∣∣∣∣∣n−1
n∑
i=1

(
f0
ikf

0
i` − E f0

ikf
0
i`

)∣∣∣∣∣ > u

)

≤ 2r2 exp(−nu2/C)

for any 0 ≤ u ≤ c. Thus the second one turns out to be O((n−1 log p)1/2) = o(1) with

probability at least 1 − O(p−ν) once we set u = (Cνn−1 log p)1/2 and assume n−1 log p ≤

c2/(Cν) without loss of generality. Therefore, the first term of lower bound (A.21) is bounded

away from zero eventually. For the second term of (A.21), since the spectral norm gives the

upper bound of the spectral radius we have

∣∣∣λn [(np)−1
(
EΛ0F0′ + F0Λ0′E′

)]∣∣∣ ≤ ∥∥∥(np)−1
(
EΛ0F0′ + F0Λ0′E′

)∥∥∥
2

≤ 2
∥∥∥(np)−1/2E

∥∥∥
2

∥∥∥p−1/2Λ0
∥∥∥

2

∥∥∥n−1/2F0
∥∥∥

2

= O
(

(n ∧ p)−1/2
)
O(1)O(1) = o(1),

which holds with probability at least 1− 2 exp(−|O(n ∨ p)|) by Lemma 9(a) in Section B.4.

As a consequence, the desired result holds with probability at least 1 − O(p−ν) and this

concludes the proof of Lemma 6.

D.2 Lemma 7 and its proof

Lemma 7 Assume that Conditions 2–4 hold. Then there exist some positive constants c

and C such that the following inequalities hold

(a) For all `, i ∈ {1, · · · , n} and 0 ≤ u ≤ c, we have

P

∣∣∣∣∣∣p−1
p∑
j=1

(e`jeij − E[e`jeij ])

∣∣∣∣∣∣ > u

 ≤ 2 exp
(
−pu2/C

)
.
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(b) For all k ∈ {1, · · · , r}, j ∈ {1, · · · , p}, and 0 ≤ u ≤ c, we have

P

(∣∣∣∣∣n−1
n∑
i=1

f0
ikeij

∣∣∣∣∣ > u

)
≤ 2 exp

(
−nu2/C

)
.

(c) For all k ∈ {1, · · · , r}, i ∈ {1, · · · , n}, and u ≥ 0, we have

P

∣∣∣∣∣∣p−1
p∑
j=1

λ0
jkeij

∣∣∣∣∣∣ > u

 ≤ 2 exp
(
−pu2/C

)
.

(d) For all k, ` ∈ {1, · · · , r} and 0 ≤ u ≤ c, we have

P

(∣∣∣∣∣n−1
n∑
i=1

(
f0
ikf

0
i` − E[f0

ikf
0
i`]
)∣∣∣∣∣ > u

)
≤ 2 exp

(
−nu2/C

)
.

Proof. (a) To obtain the first result, we rely on the Hanson–Wright inequality. Let ξ =

(ξ1, · · · , ξm)′ ∈ Rm denote a random vector whose components are independent copies of

e ∼ subG(C2
e ). Then the inequality states that for any (nonrandom) matrix A ∈ Rm×m,

P
(∣∣ξ′Aξ − E ξ′Aξ

∣∣ > u
)
≤ 2 exp

{
−C̃H min

(
u2

K4‖A‖2F
,

u

K2‖A‖2

)}
, (A.22)

where K is a positive constant such that supk≥1 k
−1/2(E |e|k)1/k ≤ K and C̃H is a positive

constant. In our setting, we can take K = 3C2
e (e.g., Lemma 1.4 of [13]). Using this

inequality, we first prove the case when ` = i. If we set m = p and A = diag(p−1, · · · , p−1),

then we have

∣∣ξ′Aξ − E ξ′Aξ
∣∣ =

∣∣∣∣∣∣p−1
p∑
j=1

(ξ2
j − E ξ2

j )

∣∣∣∣∣∣ d=
∣∣∣∣∣∣p−1

p∑
j=1

(
e2
ij − E[e2

ij ]
)∣∣∣∣∣∣

for all i. Moreover, we obtain ‖A‖2F = p−1 and ‖A‖2 = p−1 in this case. The assumed

condition 0 < u ≤ 9C2
e = K2 entails that u2/K4 ≤ u/K2 so the result follows from (A.22)

with C̃H replaced by CH = 81C4
e/C̃H .

Similarly, we prove the case when ` 6= i. We set m = p + 1 and A = (a1, · · · ,ap+1),

where a1 = (0, p−1, · · · , p−1)′ and aj = 0 for j = 2, · · · , p+ 1. That is, the entries of A are

all zero except that the second to (p + 1)th components in the first column vector are p−1.
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Under this setting, we observe that

∣∣ξ′Aξ − E ξ′Aξ
∣∣ =

∣∣∣∣∣∣p−1
p+1∑
j=2

ξ1ξj

∣∣∣∣∣∣ d=
∣∣∣∣∣∣p−1

p∑
j=1

e`jeij

∣∣∣∣∣∣
for all ` 6= i. Moreover, we obtain ‖A‖2F = ‖A‖2 = p−1 in this case. Therefore, the same

bound holds as in the case of ` = i from (A.22) again. Consequently, for any 0 ≤ u ≤ 9C2
e

we have

P

∣∣∣∣∣∣p−1
p∑
j=1

(e`jeij − E[e`jeij ])

∣∣∣∣∣∣ > u

 ≤ 2 exp
(
−pu2/CH

)
.

(b) We prove the second assertion by Bernstein’s inequality for the sum of a martingale

difference sequence (e.g., Theorem 3.14 in [6]). Fix k = 1 and j = 1. Define Fi−1 as

the σ-field generated from {f0
`1 : ` = i, i − 1, · · · }. Then (f0

i1ei1,Fi) forms a martingale

difference sequence because E |f0
i1ei1| < ∞ and E[f0

i1ei1|Fi−1] = 0 under Conditions 2 and

4. Since the sub-Gaussianity of ei1 implies E e2
i1 ≤ 4C2

e (e.g., Lemma 1.4 of [13]), we have

Vi := E
[
f0 2
ik e

2
ij | Fi−1

]
≤ 4C2

eM
2, and hence

∑n
i=1 Vi ≤ 4nC2

eM
2 a.s. due to boundedness

|f0
i1| ≤ M a.s. On the other hand, by the sub-Gaussianity of eij and boundedness of |f0

i1|

again we observe that for all p ≥ 3 and i ∈ {1, · · · , n},

E
[
(0 ∨ f0

i1ei1)p | Fi−1

]
≤Mp(2C2

e )p/2pΓ(p/2) ≤ p!(2CeM)p−2Vi/2,

where Γ denotes the Gamma function and we have used the estimates pΓ(p/2) ≤ p! and

2p/2−2 ≤ 2p−2/2 for p ≥ 3 in the last inequality. Then an application of Theorem 3.14 in [6]

by putting x = u, y = 4M2C2
e , and c = 2MCe in their notation gives the one-sided result.

Making twice the bound yields

P

(∣∣∣∣∣n−1
n∑
i=1

f0
ikeij

∣∣∣∣∣ > u

)
≤ 2 exp

(
− nu2

8M2C2
e + 4MCeu

)
.

For all 0 ≤ u ≤ MC2
e , the upper bound is further bounded by 2 exp(nu2/(12M2C2

e )). We
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set CI = 12M2C2
e . Consequently, for any 0 ≤ u ≤MC2

e we have

P

(∣∣∣∣∣n−1
n∑
i=1

f0
ikeij

∣∣∣∣∣ > u

)
≤ 2 exp

(
−nu2/CI

)
.

(c) We prove the third inequality. Note that

P
(∣∣λ0

jkeij
∣∣ > u

)
≤ 2 exp

{
− u2

2λ02
jkC

2
e

}
≤ 2 exp

{
− u2

2M2C2
e

}
.

This implies that λ0
jkeij is a sequence of i.i.d. subG(M2C2

e ). Thus the result is obtained

directly by Bernstein’s inequality for the sum of independent sub-Gaussian random variables.

Consequently, for any u ≥ 0 putting CJ = M2C2
e leads to

P

∣∣∣∣∣∣p−1
p∑
j=1

λ0
jkeij

∣∣∣∣∣∣ > u

 ≤ 2 exp
(
−pu2/CJ

)
.

(d) We show the last inequality. Note that for each k, (fik)i ∼ i.i.d. subG(M2) since

|f0
ik| ≤ M a.s. by Lemma 1.8 of [13] under Condition 2. Thus the remaining is the same as

(a). Set CK = 81M4/C̃H here. Then for any 0 ≤ u ≤ 9M2, we have

P

(∣∣∣∣∣n−1
n∑
i=1

(
f0
ikf

0
i` − E[f0

ikf
0
i`]
)∣∣∣∣∣ > u

)
≤ 2 exp

(
−nu2/CK

)
.

Finally the obtained inequalities hold even if the constant in the upper bound is replaced

with arbitrary fixed constant C such that C ≥ max{CH , CI , CJ , CK}. Similarly, we can also

restrict the range of u for each inequality to be 0 ≤ u ≤ c for arbitrary fixed constant c that

satisfies 0 < c ≤ min(9C2
e ,MC2

e , 9M
2). This completes the proof of Lemma 7.
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D.3 Lemma 8 and its proof

Lemma 8 Assume that Conditions 1–4 hold. Then for any set A satisfying |A| ≤ k, the

following statements hold with probability at least 1−O(πnp)

(a) sup
θ∈Θnp

∥∥UA(θ)−UA(θ0)
∥∥

max
= O

(
k1/2c̃np

)
,

(b) sup
θ∈Θnp

∥∥vA(θ)− vA(θ0)
∥∥

max
= O

(
s3/2c̃np

)
,

where Θnp was defined in Lemma 3 and c̃np = n−1/2 log p + p−1/2 log n. Consequently, we

have

sup
θ∈Θnp

∥∥TA(θ)−TA(θ0)
∥∥

max
= O

((
k1/2 + s3/2

)
c̃np

)
.

Proof. We first state some results that are useful in the proof. Since ‖n−1/2F0‖2 = O(1) a.s.

by Condition 2 and ‖k−1/2Λ0
A‖2 = O(1) for any A such that |A| ≤ k under Condition 3, we

first have

∥∥∥n−1/2C0
A

∥∥∥
2
≤
∥∥∥n−1/2F0

∥∥∥
2
k1/2

∥∥∥k−1/2Λ0
A

∥∥∥
2
. k1/2.

Next Lemma 9(b) in Section B.4 gives directly

∥∥∥n−1/2Eη0A

∥∥∥
2
. 1 (A.23)

with probability at least 1−O(p−ν). By Condition 4, we also deduce

P

(
sup

η∈Θnp

∥∥Eη −Eη0

∥∥
max

> u

)
≤ npmax

i,j
P

(
sup

η∈Θnp

∣∣eηij − eη0ij

∣∣ > u

)

≤ npmax
i,j

P
(
|Z| > u/(M1/2c1/2

np )
)

≤ 2np exp
(
−u2/

(
c2
eMcnp

))
for any u ≥ 0. Thus setting u = 2ceM

1/2c
1/2
np log1/2(np) with some large enough positive
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constant M , we obtain that with probability at least 1−O((np)−ν),

sup
η∈Θnp

∥∥Eη −Eη0

∥∥
max

. cnp log1/2(np) = O(c̃np).

We will use these results and Lemma 10 in Section B.5 in the proofs below.

To prove (a), we have

∥∥UA(θ)−UA(θ0)
∥∥

max
≤
∥∥∥n−1X̃A(θ)′X̃A(θ)− n−1X̃A(θ0)′X̃A(θ0)

∥∥∥
max

+ 2
∥∥∥n−1X′AX̃A(θ)− n−1X′AX̃A(θ0)

∥∥∥
max

=: U1 + U2.

Observe that U1 is further bounded as

U1 ≤
∥∥∥n−1C′ACA − n−1C0

A
′
C0
A

∥∥∥
max

+
∥∥∥n−1E′ηAEηA − n−1E′η0AEη0A

∥∥∥
max

+ 2
∥∥∥n−1E′ηACA − n−1E′η0AC0

A

∥∥∥
max

=: U11 + U12 + U13.

By Lemma 10, it is easy to see that

U11 ≤
∥∥∥n−1

(
CA −C0

A
)′ (

CA −C0
A
)∥∥∥

max
+ 2

∥∥∥n−1C0
A
′ (

CA −C0
A
)∥∥∥

max

≤ n−1/2
∥∥CA −C0

A
∥∥

max

∥∥CA −C0
A
∥∥

2
+ 2

∥∥∥n−1/2C0
A

∥∥∥
2

∥∥CA −C0
A
∥∥

max

. k1/2
∥∥C−C0

∥∥2

max
+ k1/2

∥∥C−C0
∥∥

max

= O
(
k1/2c2

np + k1/2cnp

)
= O

(
k1/2cnp

)
,

where the last estimate follows from Lemma 3. Similarly, we deduce

U12 ≤
∥∥∥n−1

(
EηA −Eη0A

)′ (
EηA −Eη0A

)∥∥∥
max

+ 2
∥∥∥n−1E′η0A

(
EηA −Eη0A

)∥∥∥
max

≤ n−1/2
∥∥EηA −Eη0A

∥∥
max

∥∥EηA −Eη0A
∥∥

2
+ 2

∥∥∥n−1/2Eη0A

∥∥∥
2

∥∥EηA −Eη0A
∥∥

max

. k1/2
∥∥Eη −Eη0

∥∥2

max
+
∥∥Eη −Eη0

∥∥
max

= O
(
k1/2c̃2

np + c̃np

)
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and

U13 ≤
∥∥∥n−1

(
EηA −Eη0A

)′ (
CA −C0

A
)∥∥∥

max

+
∥∥∥n−1E′η0A

(
CA −C0

A
)∥∥∥

max
+
∥∥∥n−1C0

A
′
(
EηA −E0

η0A

)∥∥∥
max

≤ k1/2
∥∥Eη −Eη0

∥∥
max

∥∥C−C0
∥∥

max

+
∥∥∥n−1/2Eη0A

∥∥∥
2

∥∥C−C0
∥∥

max
+
∥∥∥n−1/2C0

A

∥∥∥
2

∥∥∥Eη −E0
η0

∥∥∥
max

= O
(
k1/2c̃npcnp + cnp + k1/2c̃np

)
= O

(
k1/2c̃np

)
.

Combining these bounds of U11–U13, we have

U1 ≤ U11 + U12 + U13 . k1/2c̃np.

This holds uniformly in θ ∈ Θnp with probability at least 1 − O(πnp) by Lemma 3 and the

discussion above. Next we obtain

U2 ≤
∥∥∥n−1C0

A
′
(CA −C0

A)
∥∥∥

max
+
∥∥∥n−1C0

A
′
(EηA −Eη0A)

∥∥∥
max

+
∥∥n−1E′A(CA −C0

A)
∥∥

max
+
∥∥n−1E′A(EηA −Eη0A)

∥∥
max

≤
∥∥∥n−1/2C0

A

∥∥∥
2

∥∥CA −C0
A
∥∥

max
+
∥∥∥n−1/2C0

A

∥∥∥
2

∥∥EηA −Eη0A
∥∥

max

+
∥∥∥n−1/2Eη0A

∥∥∥
2

∥∥CA −C0
A
∥∥

max
+
∥∥∥n−1/2Eη0A

∥∥∥
2

∥∥Eη −Eη0

∥∥
max

= O
(
k1/2cnp + k1/2c̃np + cnp + c̃np

)
= O

(
k1/2c̃np

)
.

This also holds uniformly in θ ∈ Θnp with probability at least 1−O(πnp) by Lemma 3 and

the discussion above. Consequently, it holds that

sup
θ∈Θnp

∥∥UA(θ)−UA(θ0)
∥∥

max
. k1/2c̃np

with probability at least 1−O(πnp).
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To prove (b), we have

∥∥vA(θ)− vA(θ0)
∥∥

max
≤
∥∥∥n−1X̃A(θ)′y − n−1X̃A(θ0)′y

∥∥∥
max

≤
∥∥∥n−1X̃A(θ)′Xβ − n−1X̃A(θ0)′Xβ

∥∥∥
max

+
∥∥∥n−1X̃A(θ)′ε− n−1X̃A(θ0)′ε

∥∥∥
max

=: V1 + V2.

First, because Xβ = XS0βS0 we see that

V1 ≤ s1/2
∥∥∥n−1X̃A(θ)′XS0 − n−1X̃A(θ0)′XS0

∥∥∥
max
‖βS0‖2

. s
∥∥∥n−1X̃A(θ)′XS0 − n−1X̃A(θ0)′XS0

∥∥∥
max

.

Recall that |S0| = s and s ≤ n ∧ p. By a similar bound of U2, the norm just above can be

bounded further as

∥∥∥n−1/2C0
S0

∥∥∥
2

∥∥CA −C0
A
∥∥

max
+
∥∥∥n−1/2C0

S0

∥∥∥
2

∥∥EηA −Eη0A
∥∥

max

+
∥∥∥n−1/2Eη0S0

∥∥∥
2

∥∥CA −C0
A
∥∥

max
+
∥∥∥n−1/2Eη0S0

∥∥∥
2

∥∥EηA −Eη0A
∥∥

max

. s1/2
∥∥C−C0

∥∥
max

+ s1/2
∥∥Eη −Eη0

∥∥
max

+
∥∥C−C0

∥∥
max

+
∥∥Eη −Eη0

∥∥
max

= O
(
s1/2cnp + s1/2c̃np + cnp + c̃np

)
= O

(
s1/2c̃np

)
.

Thus we have

V1 . ss1/2c̃np = s3/2c̃np

with probability at least 1−O(πnp). Next the same procedure yields

V2 ≤
∥∥∥X̃A(θ)− X̃A(θ0)

∥∥∥
max

∥∥∥n1/2ε
∥∥∥

2

.
∥∥C−C0

∥∥
max

+
∥∥Eη −Eη0

∥∥
max

. c̃np, (A.24)

where ‖n1/2ε‖2 = (E ε2)1/2 + o(1) a.s. by the law of large numbers for independent random
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variables. Since the results hold uniformly in θ ∈ Θnp, combining them leads to

sup
θ∈Θnp

∥∥vA(θ)− vA(θ0)
∥∥

max
. s3/2c̃np

with probability at least 1−O(πnp). This concludes the proof of Lemma 8.

B.4 Lemma 9 and its proof

Lemma 9 Assume that Condition 4 holds. Then the following statements hold

(a) We have

P
(∥∥∥(n ∨ p)−1/2E

∥∥∥
2
. 1
)
≥ 1− 2 exp(−|O(n ∨ p)|);

(b) For any fixed set A with |A| ≤ k ≤ n, we have

P
(∥∥∥n−1/2EA

∥∥∥
2
. 1
)
≥ 1− 2p−ν ;

(c) For all k ≤ n, we have

P
(

max
|A|≤k

∥∥∥n−1/2EA

∥∥∥
2
. 1 ∨

(
n−1k log p

)1/2) ≥ 1− 2p−ν ,

where ν > 0 is a predetermined constant.

Proof. Result (a) is obtained by Theorem 5.39 of [14]. Moreover, by the same theorem there

exist some positive constants c and C such that for any A with |A| ≤ k ≤ n and every t ≥ 0,

P
(
σ−1
e ‖n−1/2EA‖2 > 1 + C + n−1/2t

)
≤ 2 exp

(
−ct2

)
,

where σ2
e = E e2. Therefore, result (b) is immediately obtained by putting t2 = c−1ν log p

since n−1/2t = o(1) and exp
(
−ct2

)
= p−ν in this case.
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For (c), taking the union bound leads to

P
(
σ−1
e max
|A|≤k

‖n−1/2EA‖2 > 1 + C + n−1/2t

)
≤
(
p

k

)
max
|A|≤k

P
(
σ−1
e ‖n−1/2EA‖2 > 1 + C + n−1/2t

)
≤ 2pk exp

(
−ct2

)
.

Set t2 = c−1(ν + k) log p in this inequality. Then we have n−1/2t = O
(
(n−1k log p)1/2

)
and

2pk exp
(
−ct2

)
≤ 2pk exp (−(ν + k) log p) = 2p−ν ,

which gives result (c) and completes the proof of Lemma 9.

B.5 Lemma 10 and its proof

Lemma 10 For matrices A ∈ Rk1×n and B ∈ Rn×k2, we have ‖AB‖max ≤ n1/2‖A‖2‖B‖max

and ‖AB‖max ≤ n1/2‖A‖max‖B‖2.

Proof. For any matrix M = (mij) ∈ Rk×n, let ‖M‖∞,∞ denote the induced `∞-norm. First,

we have

‖M‖∞,∞ := sup
v∈Rn\{0}

‖Mv‖max

‖v‖max
≤ sup

v∈Rn\{0}

‖Mv‖2
‖v‖2

‖v‖2
‖v‖max

≤ n1/2‖M‖2.

Therefore, by a simple calculation we see that

‖AB‖max = ‖ vec(AB)‖max = ‖(Ik2 ⊗A) vec(B)‖max

=
‖(Ik2 ⊗A) vec(B)‖max

‖ vec(B)‖max
‖ vec(B)‖max

≤ ‖Ik2 ⊗A‖∞,∞‖ vec(B)‖max = ‖A‖∞,∞‖B‖max ≤ n1/2‖A‖2‖B‖max.

The second assertion follows from applying this inequality to B′A′. This concludes the proof

of Lemma 10.
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E Additional numerical details and results

E.1 Estimation procedure

In implementing the IPAD algorithm suggested in Section 2, we use the PCp1 criterion

proposed in [2] to estimate the number of factors r. With an estimated number of factors

r̂, we use the principle component method discussed in Section 3.2 to obtain an estimate Ĉ

of matrix C0. Denote by Ê = (êij) = X − Ĉ. Recall that in the construction of knockoff

variables, the distribution of E needs to be estimated. Throughout our simulation studies,

we misspecify the model and treat the entries of E as i.i.d. Gaussian random variables.

Under this working model assumption, the only unknown parameter is the variance which

can be estimated by the following maximum likelihood estimator

σ̂2 = (np)−1
n∑
i=1

p∑
j=1

ê2
ij .

Then the knockoffs matrix X̂ is constructed using (8) with the entries of Eη̂ drawn indepen-

dently from N (0, σ̂2). For the two comparison methods BCKnockoff and HD-BCKnockoff,

we follow the implementation in [3] and [4], respectively. Thus it is seen that neither BC-

Knockoff nor HD-BCKnockoff uses the factor structure in X when constructing the knockoff

variables.

In Designs 1–3, with the constructed empirical knockoffs matrix X̂ we apply the Lasso

method to fit the model with y the response vector and [X, X̂] the augmented design matrix.

The value of the regularization parameter λ is chosen by the tenfold cross-validation. Then

the LCD discussed in Section 2.2 is used in the construction of knockoff statistics. In Design

4, we assume the nonlinear relationship between the response and the covariates. In this

case, random forest is used for estimation of the model. To construct the knockoff statistics,

we use the variable importance measure of mean decrease accuracy (MDA) introduced in

[7]. This measure is based on the idea that if a variable is unimportant, then rearranging its
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values should not degrade the prediction accuracy. The MDA for the jth variable, denoted

as M̂DAj , measures the amount of increase in prediction error when the values of the jth

variable in the out-of-sample prediction are permuted randomly. Then intuitively, M̂DAj

will be small and around zero if the jth variable is unimportant in predicting the response.

For each original variable xj , we compute Wj statistic as |M̂DAj | − |M̂DAj+p|, j = 1, · · · , p.

E.2 Simulation study

To evaluate the performance of IPAD approach in terms of empirical FDR and power with

real economic data, we set up one additional Monte Carlo simulation study. In this design,

we use the transformed macroeconomic variables described above as the design matrix X,

but simulate response y from the model in Design 1 in Section 4.1. We set the number

of true signals, the amplitude of signals, and the target FDR level to s = 10, A = 4, and

q = 0.2, respectively.

Table 1 shows the results for IPAD and HD-BCKnockoff approaches. As expected, HD-

BCKnockoff can control FDR but suffers from lack of power. On the other hand, IPAD has

empirical FDR slightly higher than the target level (q = 0.2) while its power is reasonably

high. These results are consistent with our theory in Section 3 because IPAD only controls

FDR asymptotically. Additional reason for having slightly higher FDR than the target

level can be deviation of the design matrix from our factor model assumption. Overall

this simulation study indicates that IPAD can control FDR at around the target level with

reasonably high power when we use the macroeconomic data set. In the next section, using

the same data set we will compare the forecasting performance of IPAD with that of some

commonly used forecasting methods in the literature.
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Table 1: Real data simulation results with (n, p) = (195, 109)

FDR Power FDR+ Power+ R2

c = 0.2

IPAD 0.278 0.812 0.223 0.796 0.747
HD-BCKnockoff 0.096 0.009 0.010 0.002 0.758

c = 0.3

IPAD 0.280 0.757 0.221 0.723 0.665
HD-BCKnockoff 0.149 0.121 0.027 0.036 0.678

c = 0.5

IPAD 0.286 0.661 0.215 0.571 0.560
HD-BCKnockoff 0.119 0.009 0.008 0.001 0.554

E.3 Methods of comparison in empirical analysis

We compare the following different methods in the empirical analysis presented in Section

5, where each method is implemented in a same way as IPAD for one-step ahead prediction.

1) Autoregression of order one (AR(1)). Assume that

yt = α0 + ρyt−1 + εt,

where yt is regressed on yt−1, and α0 and ρ are the AR(1) coefficients that need to

be estimated. With the ordinary least squares estimates α̂0 and ρ̂, the one-step ahead

prediction based on this model is ŷT+1 = α̂0 + ρ̂yT .

2) Factor augmented AR(1) (FAR). We first extract m factors f1, · · · , fm form the 109

transformed macroeconomic variables by principal component analysis (PCA). Denote

by f̃t ∈ Rm the factor vector at time t extracted from the rows of matrix [f1, · · · , fm] ∈

Rn×m. Then we regress yt on yt−1 and f̃t−1 and fit the following model

yt = α0 + ρyt−1 + γ ′f̃t−1 + εt

with γ ∈ Rm. The number of factors m is determined using the PCp1 criterion in [2].

Similar to AR(1) model, one-step ahead forecast of yt at time T is

ŷT+1 = α̂0 + ρ̂yT + γ̂ ′f̃T .
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3) Lasso method. The yt is regressed on yt−1, f̃t−1, and the 108 transformed macroeco-

nomic variables zt−1 ∈ R108 at time t− 1

yt = α0 + ρyt−1 + γ ′f̃t−1 + δ′zt−1 + εt,

where f̃t is the same as in the FAR(1) model, and α0, ρ, and δ ∈ R108 are regression

coefficients that need to be estimated. The coefficients are estimated by Lasso method

with regularization parameter chosen by the cross-validation. With the estimated Lasso

coefficient vector β̂Lasso, one-step ahead forecast of yt at time T is

ŷT+1 = β̂′LassoxT ,

where xT is the augmented predictor vector at time T .

4) IPAD method. We regress yt on the augmented vector (yt−1, z
′
t−1)′. The lagged variable

yt−1 is assumed to be always in the model. To account for this, we implement IPAD

in three steps. First, we regress yt on yt−1 and obtain the residuals ey,t. Second, we

regress each of the 108 variables in zt−1 on yt−1 and obtain the residual vector ez,t−1.

At last, we fit model (1)–(2) using the IPAD approach by treating ey,t as the response

and ez,t−1 as predictors, which returns us a set of selected variables (a subset of the

108 macroeconomic variables). With the set of variables Ŝ selected by IPAD, we fit

the following model by the least-squares regression

yt = α0 + ρyt−1 + δ′z
t−1,Ŝ + εt, (A.25)

where z
t,Ŝ stands for the subvector of zt corresponding to the set of variables Ŝ selected

by IPAD at time t. Since Ŝ from IPAD is random due to the randomness in generating

knockoff variables, we apply the IPAD procedure 100 times and compute the average

of these 100 one-step ahead predictions based on (A.25) and use the mean value as the
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final predicted value of yT+1.
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