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SUPPLEMENTARY MATERIALS FOR  
Latent Variable Approach to Gaussian Process Modeling with 

Qualitative and Quantitative Factors 

These supplementary materials contain a number of additional examples comparing 

the predictive performance of the LVGP model with other methods and investigating 

its ability to discover the correct LV mapping structure. They also contain further 

details on some of the examples considered in Section 4. Here, we first test the four 

covariance models considered in Section 4 on two mathematical functions that have 

been used in the literature as benchmark problems involving qualitative factors (Deng 

et al. 2017; Swiler et al. 2014). We also include descriptions of the three additional 

engineering examples (in addition to the beam bending example) for which 

performance results are summarized in Figures 4 and 5 of the paper, which are popular 

examples from the literature for assessing surrogate models with numerical inputs. In 

these examples, we have converted some of the numerical input variables to qualitative 

factors. This has the benefit of providing a second means of assessing the effectiveness 

of the LVGP covariance model. Namely, since the qualitative factors in this case are 

truly due to some underlying numerical variables, and since we know what values of 

the numerical variable correspond to the factor levels, we can compare the true values 

with our estimated LV values. Unless otherwise noted, we use the same simulation 

setup as described in Section 4 of the paper.  

Math Function 1 

The first mathematical test function is adapted from Swiler et al. (2014) and has 

one qualitative variable 𝑡𝑡 with five levels, and two continuous variables 𝑥𝑥1, 𝑥𝑥2 ∈ [0,1]. 
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This function has regions where the response behaviors at different qualitative levels 

are very similar. The different levels of 𝑡𝑡 are associated with the coefficients of the 

second term in the following definition of the function; 

𝑦𝑦(𝒙𝒙, 𝑡𝑡) =  

⎩
⎪
⎨

⎪
⎧

7 sin(2𝜋𝜋𝑥𝑥1 − 𝜋𝜋) + sin(2𝜋𝜋𝑥𝑥2 − 𝜋𝜋)          𝑖𝑖𝑖𝑖 𝑡𝑡 = 1
7 sin(2𝜋𝜋𝑥𝑥1 − 𝜋𝜋) + 13 sin(2𝜋𝜋𝑥𝑥2 − 𝜋𝜋)    𝑖𝑖𝑖𝑖 𝑡𝑡 = 2
7 sin(2𝜋𝜋𝑥𝑥1 − 𝜋𝜋) + 1.5 sin(2𝜋𝜋𝑥𝑥2 − 𝜋𝜋)   𝑖𝑖𝑖𝑖 𝑡𝑡 = 3
7 sin(2𝜋𝜋𝑥𝑥1 − 𝜋𝜋) + 9.0 sin(2𝜋𝜋𝑥𝑥2 − 𝜋𝜋)   𝑖𝑖𝑖𝑖 𝑡𝑡 = 4
7 sin(2𝜋𝜋𝑥𝑥1 − 𝜋𝜋) + 4.5 sin(2𝜋𝜋𝑥𝑥2 − 𝜋𝜋)   𝑖𝑖𝑖𝑖 𝑡𝑡 = 5

. (S1) 

The levels of 𝑡𝑡  therefore have a true ordering 1-3-5-4-2, which is obtained by 

comparing the coefficients of the second terms in (S1). To fit the four GP models, a 

different training set of size 70 is generated for each of the 30 replicates, using maximin 

LHDs for the quantitative variables 𝑥𝑥1 and 𝑥𝑥2 with the levels of 𝑡𝑡 randomly assigned. 

The left panel of Figure S1 shows the prediction accuracy over the 10,000 hold-out 

points via boxplots of the 30 RRMSE values across the 30 replicates. The median 

values of the RRMSE for the ADD_UC, UC, MC, and LVGP models are 0.181, 0.103, 

0.134, and 0.015, respectively. Thus, our LVGP model achieved an average RRMSE 

that was roughly an order of magnitude smaller than for the other models in this 

example.  

In addition to more accurate response predictions, our LVGP model can provide 

valuable insight into the effects of the qualitative factor on the response. For example, 

the left panel of Figure S2 displays the estimated 2D LVs for a typical replicate for this 

example. Even though the 2D LVs were estimated, their MLE values fell almost exactly 

on a straight line. The straight line corresponds to the 𝑧𝑧1 axis, since 𝒛𝒛(1) is restricted 

to the origin, and 𝒛𝒛(2) is restricted to falling on the 𝑧𝑧1 axis. This result is desirable, 
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since the qualitative variable truly corresponds to a 1D LV in this example, as discussed 

above. Moreover, the estimated LVs are correctly ordered as 1-3-5-4-2 with levels 1 

and 3 positioned very close to each other. This is very consistent with (S1), in which 

the response surfaces at level 1 and 3 have the smallest differences. The response 

surface at level 2 has the most substantial differences with the surface at level 1, and 

our estimated 𝒛𝒛(2) is correctly positioned as the farthest from the origin. It should be 

noted that the estimated LVs do have non-zero values in the 𝑧𝑧2 coordinate, although 

they are so small that they are visually indiscernible. 

Math Function 2 

The second function used for comparing the four models is from Deng et al. (2017) 

with 𝑝𝑝 = 5  quantitative variables and 𝑞𝑞 = 5  qualitative factors, each having three 

levels:  

𝑦𝑦 = ∑ 𝑥𝑥𝑖𝑖(𝑡𝑡6−𝑖𝑖−2)
80

5
𝑖𝑖=1 + ∏ cos �𝑥𝑥𝑖𝑖

√𝑖𝑖
� sin �50(𝑡𝑡6−𝑖𝑖−2)

√𝑖𝑖
�5

𝑖𝑖=1 , (S2)  

where −100 ≤ 𝑥𝑥𝑖𝑖 ≤ 100, for 𝑖𝑖 = 1, … ,𝑝𝑝, and 𝑡𝑡𝑗𝑗 (𝑗𝑗 = 1, … ,5) are the five qualitative 

factors, each having three levels {1, 2, 3}. We generated a maximin LHD of size 𝑛𝑛 =

100 as the training set for the 𝑥𝑥𝑖𝑖’s in each of the 30 replicates, with the levels of the 

𝑡𝑡𝑗𝑗 ’s randomly assigned. The qualitative factors affect the response 𝑦𝑦  in a nearly 

additive manner, and as a result, the additive GP model outperforms the UC and MC 

models, as seen in the right panel of Figure S1. However, our proposed model works 

even better than the additive GP model, having the lowest median RRMSE value of 

0.045, which is roughly four times smaller than the additive GP model’s RRMSE of 

0.185. The estimated LVs associated with 𝑡𝑡1  are shown in Figure S2 for a typical 
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replicate, for which the three levels are approximately equally spaced along the 𝑧𝑧1 axis 

and correctly ordered as 1-2-3, which again agrees very closely with the true underlying 

numerical 𝑡𝑡𝑗𝑗 in (S2). The estimated LVs for 𝑡𝑡2 to 𝑡𝑡6 were in similar agreement and are 

not shown in Figure S2. 

 
Figure S1: Boxplots of RRMSE over 30 replicates for the two mathematical functions 
with design sizes of 𝑛𝑛 = 70 and 100, respectively. Our LVGP approach outperforms 

the other three methods. Note that the y-axis is in log scale. 

 
Figure S2: Estimated 2D LVs 𝒛𝒛 = (𝑧𝑧1, 𝑧𝑧2) representing the levels of the qualitative 
factors in the two mathematical test functions for typical replicates: the values of 𝑧𝑧2 

are nearly zero for both examples, indicating the true 1D latent structure was correctly 
identified; and the estimated spacing of between the latent values match with the 

settings in each example. 
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Borehole Example 

A commonly-used function to study computer simulation surrogate modeling is the 

borehole function, 𝑦𝑦 = 2𝜋𝜋𝑇𝑇𝑢𝑢(𝐻𝐻𝑢𝑢 − 𝐻𝐻𝑙𝑙) �log � 𝑟𝑟
𝑟𝑟𝑤𝑤
� �1 + 2 𝐿𝐿𝑇𝑇𝑢𝑢

log� 𝑟𝑟
𝑟𝑟𝑤𝑤
�𝑟𝑟𝑤𝑤2𝐾𝐾𝑤𝑤

+ 𝑇𝑇𝑢𝑢
𝑇𝑇𝑙𝑙
��

−1

, where 

the 8 inputs are (𝑇𝑇𝑢𝑢, 𝑟𝑟, 𝑟𝑟𝑤𝑤,𝐻𝐻𝑢𝑢,𝑇𝑇𝑙𝑙,𝐻𝐻𝑙𝑙, 𝐿𝐿,𝐾𝐾𝑤𝑤) . See Morris et al. (1993) for a full 

description of the variables. We treat 𝑟𝑟𝑤𝑤 and 𝐻𝐻𝑙𝑙 as qualitative factors with three and 

four levels, respectively. The qualitative factor levels for this and the subsequent 

examples are listed in Table S2 . 

OTL Example 

The midpoint voltage of a transformerless (OTL) circuit function is 𝑦𝑦 =

𝐵𝐵 (𝑉𝑉𝑏𝑏1+0.74)(𝑅𝑅𝑐𝑐2+9)
𝐵𝐵(𝑅𝑅𝑐𝑐2+9)+𝑅𝑅𝑓𝑓

+ 11.35 𝑅𝑅𝑓𝑓
𝐵𝐵(𝑅𝑅𝑐𝑐2+9)+𝑅𝑅𝑓𝑓

+ 0.74𝐵𝐵 𝑅𝑅𝑓𝑓
𝑅𝑅𝑐𝑐1

 𝑅𝑅𝑐𝑐2+9
𝐵𝐵(𝑅𝑅𝑐𝑐2+9)+𝑅𝑅𝑓𝑓

, where 𝑉𝑉𝑏𝑏1 = 12𝑅𝑅𝑏𝑏2/

(𝑅𝑅𝑏𝑏1 + 𝑅𝑅𝑏𝑏2), and the inputs are (𝑅𝑅𝑏𝑏1,𝑅𝑅𝑏𝑏2,𝑅𝑅𝑓𝑓 ,𝑅𝑅𝑐𝑐1,𝑅𝑅𝑐𝑐2,𝐵𝐵). See Ben-Ari and Steinberg 

(2007) for details. We treat 𝑅𝑅𝑓𝑓 and 𝐵𝐵  as qualitative factors having 4 and 6 levels, 

respectively.  

Piston Example 

This example models the cycle time for a piston moving within a cylinder as 𝑦𝑦 =

2𝜋𝜋�
𝑀𝑀

𝑘𝑘+𝑆𝑆2𝑃𝑃0𝑉𝑉0
𝑉𝑉2

𝑇𝑇𝛼𝛼
𝑇𝑇0

, where 𝑉𝑉 = 𝑆𝑆
2𝑘𝑘 �𝐴𝐴

2 + 4𝑘𝑘 𝑃𝑃0
𝑇𝑇0
𝑇𝑇  and 𝐴𝐴 = 𝑃𝑃0𝑆𝑆 + 19.62𝑀𝑀 − 𝑘𝑘𝑉𝑉0

𝑆𝑆
. The 

inputs are (𝑀𝑀, 𝑆𝑆,𝑉𝑉0,𝑘𝑘,𝑃𝑃0,𝑇𝑇𝑎𝑎,𝑇𝑇0). See Sacks et al. (1989) for details. We treat the two 

variables 𝑃𝑃0 and 𝑘𝑘 as qualitative factors each having 3 and 5 levels, respectively. 
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Table S1: Quantitative input ranges for the four engineering examples 

Bending Borehole OTL circuit Piston 

𝐿𝐿 ∈ [10, 20] 𝑟𝑟 ∈ [100,50000] 𝑅𝑅𝑏𝑏1 ∈ [50,150] 𝑀𝑀 ∈ [30,60] 

ℎ ∈ [1, 2] 𝑇𝑇𝑢𝑢 ∈ [63070,115600] 𝑅𝑅𝑏𝑏2 ∈ [25,70] 𝑆𝑆 ∈ [0.005, 0.020] 
 𝐻𝐻𝑢𝑢 ∈ [990, 1110] 𝑅𝑅𝑐𝑐𝑐𝑐 ∈ [1.2, 2.5] 𝑉𝑉0 ∈ [0.002, 0.010] 

 𝑇𝑇𝑙𝑙 ∈ [63.1, 116] 𝑅𝑅𝑐𝑐2 ∈ [0.25, 1.20] 𝑇𝑇𝑎𝑎 ∈ [290,296] 
 𝐿𝐿 ∈ [1120,1680]  𝑇𝑇0 ∈ [340,360] 
 𝐾𝐾𝑤𝑤 ∈ [9855, 12045]   

 

Table S2: Qualitative factors and their levels for the four engineering examples 

 Bending Borehole OTL circuit Piston  

Level 𝑡𝑡 𝑡𝑡1 = 𝑟𝑟𝑤𝑤 𝑡𝑡2 = 𝐻𝐻𝑙𝑙 𝑡𝑡1 = 𝑅𝑅𝑓𝑓 𝑡𝑡2 = 𝐵𝐵 𝑡𝑡1 = 𝑃𝑃0 𝑡𝑡2 = 𝑘𝑘 

1 Circular 0.05 700 0.5 50 9000 1000 
2 Square 0.10 740 1.2 100 10000 2000 
3 I-shape 0.15 780 2.1 150 11000 3000 
4 Hollow Circular  820 2.9 200  4000 
5 Hollow Square    250  5000 
6 H-shape    300   

 

Table S1 lists the ranges of all quantitative input variables in the four engineering 

examples (beam bending, borehole, OTL circuit, Piston), and Table S2 displays the 

qualitative factors and their levels. The performance results are summarized in Figures 

4 and 5 of the paper.  

Example with a 10-D {𝒗𝒗𝟏𝟏(𝑡𝑡),𝒗𝒗𝟐𝟐(𝑡𝑡),𝒗𝒗𝟑𝟑(𝑡𝑡), …} that Cannot be Reduced to a 2-D 𝒛𝒛(𝑡𝑡)  

Throughout, we have used a two-dimensional LV 𝒛𝒛(𝑡𝑡) for each qualitative factor, 

based in part on sufficient dimension reduction arguments that a two-dimensional 𝒛𝒛(𝑡𝑡) 

should provide a reasonable approximation of the effects of the underlying 
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{𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), 𝑣𝑣3(𝑡𝑡), …} for many qualitative factors. This was illustrated with the beam 

bending example, in which {𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), 𝑣𝑣3(𝑡𝑡), …,𝑣𝑣2000(𝑡𝑡)} is very high-dimensional, 

but their collective effect on the response is captured via the single one-dimensional 

combination 𝐼𝐼(𝑡𝑡) = 𝐼𝐼�𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), 𝑣𝑣3(𝑡𝑡), … , 𝑣𝑣2000(𝑡𝑡)�.  

The following example is a modification of Math Function 2 in which there are ten 

underlying numerical variables {𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), 𝑣𝑣3(𝑡𝑡), …,𝑣𝑣10(𝑡𝑡)} associated with a single 

qualitative factor 𝑡𝑡, but their effects cannot be captured exactly by a two-dimensional 

𝒛𝒛(𝑡𝑡). The response function is 

𝑦𝑦�𝒙𝒙, 𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), … 𝑣𝑣10(𝑡𝑡)� = ∑ 𝑥𝑥𝑖𝑖𝑣𝑣11−𝑖𝑖
4000

10
𝑖𝑖=1 + ∏ cos �𝑥𝑥𝑖𝑖

√𝑖𝑖
� sin �𝑣𝑣11−𝑖𝑖

√𝑖𝑖
� ,10

𝑖𝑖=1  (S3)  

where −100 ≤ 𝑥𝑥𝑖𝑖 ≤ 100, and −50 ≤ 𝑣𝑣𝑖𝑖 ≤  50, 𝑖𝑖 = 1, … ,10. The qualitative factor 𝑡𝑡 

has 5 levels, and we used the following mapping between 𝑡𝑡  and 

{𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), … 𝑣𝑣10(𝑡𝑡)} . We randomly generated all 50 values for 

{𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), … 𝑣𝑣10(𝑡𝑡): 𝑡𝑡 = 1,2, … ,5}  uniformly within [−50, 50] . We used 20 

replicates, and on each replicate, a different set of 50 values for 

{𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), … 𝑣𝑣10(𝑡𝑡): 𝑡𝑡 = 1,2, … ,5} were generated.  For the design of experiment, 

on each replicate we generated a different size-n LHD in the  {𝑥𝑥1,𝑥𝑥2,… 𝑥𝑥10} space and 

then assigned the level for 𝑡𝑡 for each of the 𝑛𝑛 runs by randomly sampling one of its five 

levels. The BNGP model was fit to the same data as the LVGP model but using the 

underlying numerical {𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), … 𝑣𝑣10(𝑡𝑡)} instead of 𝑡𝑡. As discussed in Section 4 

of the paper, the BNGP method uses knowledge (of {𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), … 𝑣𝑣10(𝑡𝑡)}) that is 

not used by the LVGP method. Figure S3 shows the RRMSE comparison of the two 

models with different numbers of starting points for hyperparameter estimation (24 and 
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120) and training design sizes (𝑛𝑛 = 80 and 100). Even though the LVGP model uses a 

two-dimensional 𝒛𝒛(𝑡𝑡), it achieved similar errors as the benchmark BNGP model and 

was evidently a reasonable approximation. The fact that the LVGP model performed 

as well as the BNGP model in this special situation that we contrived to be unfavorable 

to the LVGP model is strong evidence of its effectiveness. 

 

Figure S3: RRMSE comparison for the example in (S3) across 20 replicates. The two 
columns represent 24 and 120 starting points for hyperparameter estimation, while the 

two rows represent design sizes 𝑛𝑛 = 80 and 100. Even though this example was 
contrived to be unfavorable to the LVGP model, in all cases it achieved similar errors 
as the BNGP approach that uses the underlying numerical {𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡), … 𝑣𝑣10(𝑡𝑡)}. 
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