July 22, 2019

Engineering Optimization suppl

To appear in Engineering Optimization
Vol. 00, No. 00, Month 20XX, 1-6

1.

Supplementary Document to the Paper Entitled “Unconventional
Optimization for Achieving Well-Informed Design Solutions for an
Automobile Industry”

Abhinav Gaur, AKM Khaled Talukder, Kalyanmoy Deb*,
Santosh Tiwari, Simon Xu and Don Jones

(Received 00 Month 20XX; final version received 00 Month 20XX)

Introduction

In this supplementary document, a detail description of some detail algorithmic imple-
mentations of the proposed MOTRAN procedure is presented. Moreover, a brief descrip-

tion of the NSGA-IIT Deb and Jain (2014) procedure and further results from Stage-3
optimization are provided.

2.

Description of MOTRAN Algorithm 1

A procedure to perform a local search on a given feasible solution is described in detail
here. Readers are encouraged to refer to Algorithm 1 of the main paper.

Input: The solution to be locally searched is provided as an input: w =
{wy,ws, ..., wy}. The lists 7, B, I and w are also provided. A small tolerance ctol is
used to determine the satisfaction of a constraint is also an input. It is used to relax
the lower or upper bound, as the case may be, of each constraint to establish whether
a solution is feasible.

Output: Algorithm 1 returns the final feasible locally searched solution v and the up-
dated archive of feasible solutions IT. Algorithm 1 not only adds the final improved,
feasible, and locally searched solution v to the archive I, but also adds all the inter-
mediate feasible solutions having a lower y; value than that of the original solution
w.

Lines 1-6 : Line-1 initializes a number of basic variables for the algorithm. Line-2
initializes the solution x with w. Variable n keeps a count of number of calls to the
program eval (). Variable f is a flag which is set to 1, if no feasible descent is possible
in a single discrete step of + 0.05. Line-3 starts a *while’ loop to search for a solution
which is feasible and has lowest response value for y; that could be found. Line-4
updates the variable v with the current best-known solution . Lines 5 and 6 are
self-explanatory.

*Corresponding author

A. Gaur, A.K.A Talukder and K. Deb are with Computational Optimization and Innovation (COIN) Laboratory,
Michigan State University, East Lansing, MI, 48824 USA. e-mail: {gaurabhi, talukdel, kdeb}@msu.edu

S. Tiwari, S. Xu and D. Jones are with the General Motors Vehicle Optimization Group, 30001 Van Dyke, Warren,
MI 48093 USA. e-mail: {santosh.tiwari, simon.xu, don.jones}@gm.com

July 22, 2019

Engineering Optimization suppl

Lines 7-8 Line-7 calls the procedure CV() given in Algorithm 2 to calculate the list
of normalized constraint violations g = {¢1,92,-..,9n.} and the transformed Jaco-
bian matrix G for a tolerance value of zero. The transformation is done in a way
such that G(; 4 = Oy1/0r, and G, 4 = 0gp/01y, where p € {2,3,...,n,} and
q € {1,2,...,n,}. Here g; refers to the normalized constraint violation value within
some predefined tolerance corresponding to response y;11. Constraints are modified
so that g;(x) > 0 means that the solution x does not satisfy the constraint. Line-8
increments i-th variable by §; in steps of +0.05.

Lines 9-16 In the for-loop, the jump in a variable is decided depending upon the
values of partial derivative G ;) = 0y1/0z; and the bounds of the variable x;. The
parameter J; in z; is set to 0.05 or —0.05, if it has the possibility of reducing the value
of y1 (that is, if G1; < 0, or G1; > 0, respectively) without violating the variable
bounds [; < x; < u;. Otherwise, §; is set to zero.

Lines 17-18 Line-17 checks if no jumps are possible for x to reduce y; without violating
the corresponding variable bounds and consequently breaks the while loop of Line-3
by setting flag f to one. Otherwise, the algorithm continues.

Lines 19-21 A jump matrix A is created from & such that A, = J; where
p € {L1,2,...,n,.} and g € {1,2,...,n}. Line-21 calculates the Hadamard product of
transformed Jacobian G and jump matrix A and stores it in the matrix ©. O 4 refers
to the possible change in y; because of §, change in x4 of x. Similarly, ©, 4 refers to
the possible change in normalized constraint g, because of jump J, in variable x, of
x. Here, p€ {2,3,...,n,} and ¢ € {1,2,...,n}.

Lines 22-31 Line-22 initializes the list & = {£1,&2,...,&,, } with zeros. In lines 23-25,
the variable &; stores the possible value of average normalized constraint violation over
all constraints due to a jump of §; in variable z; of ®. Lines 26-31 find the index i* of
variable jump §; in x; that corresponds to having the maximum potential of reducing
response value y; by an amount of 6%, while still being feasible.

Lines 32-83 Lines 32-33 terminate the procedure, if there is no i* in {1,2,...,n,}
with a corresponding 6* < 0. If a jump with a potential to reduce y; while maintaining
feasibility is found, then the algorithm continues.

Lines 84-end Line 35-36 create a new variable & from x by adding a jump of §;
to variable x; of x. Line 37-38 call the evaluator to make an actual evaluation on
& to obtain corresponding responses ¢ and increases the total function evaluations
H by one. Line-39 calls the procedure CV() (Algorithm 2) to obtain corresponding
normalized constraint violation values g within the desired tolerance ctol. Line-40
checks if the response g1 of solution & is indeed smaller than y; of solution & and
whether the solution & has a zero total constraint violation. If both conditions are
found to be true, then solution « is updated in Line-41 and subsequently added to the
archive II. If the aforementioned conditions are not met, then flag variable f is set
to one to break the while loop of line-3. Subsequently, the algorithm returns the best
solution found, v, and the updated archive II to the calling program.

Description of Algorithm 2

A procedure to calculate normalized constraint violation and the normalized Jacobian
from the response values of a solution is described here. Readers are encouraged to refer
to Algorithm 2 of the main paper.

e Input: For some solution, say @ = {z1,z2,..., %y, }, the corresponding response vec-

tor y = {y1,y2,...,Yn,} and the Jacobian matrix J (size n, X n,) are provided to
Algorithm 2 as input. Recall that n, = 145 is the number of variables and n, = 147

July 22, 2019

Engineering Optimization suppl

is the number of responses. Furthermore, the parameters 7, 8 and ctol are same as
described in Section 2.

e Qutput: Algorithm 2 returns the normalized constraint violation g and normalized
Jacobian G as output.

e Lines 1-3: Line-1 initializes a number of basic variables for the algorithm. Line-2
initializes the normalized constraint violation vector g with 0 and normalized Jacobian
G with Jacobain J respectively. Line-3 is the beginning of a for loop that calculates
different components of g and G for each of the n, constraints.

e Lines 4-8: For some i*" constraint, these lines check if the constraint has an upper
bound or a lower bound. If the constraint has an upper bound, the flag m is set to 1,
else to —1.

e Lines 9-13: Line-9 then checks if the absolute value of the i** constraint bound is
greater than one. If it is, then the value of the i*" constraint is normalized as shown
in Line-10. Note that the i*" constraint value is based on (i + 1) response value ;1
as response vector y has 147 components, the first of which is just an objective and
no constraint is based off of it. Line-11 to Line-13 represent a for loop to normalize
the i*" row values of Jacobian J.

e Lines 14-19: If the absolute value of the i*" constraint bound is < 1, then constraint
and Jacobian normalization is as shown in Line-15 to Line-18.

o Lines 20-25: Line-20 subtracts the allowed tolerance ctol on each normalized con-
straint value. Line-21 to Line-23 assign the normalized constraint value of g; to be 0 if
ith constraint value is less than zero, that is, it is feasible within the specified tolerance
limit. Line-24 marks the end of the for loop started in Line-3. Line-25 then returns
the normalized constraint violation g and normalized Jacobian G.

4. NSGA-III Procedure

The NSGA-IIT algorithm (Deb and Jain 2014) starts with a parent population of ran-
domly created solutions. The size of the population can be set as equal to the number
of desired Pareto-optimal solutions. To begin with, a set of well-distributed set of ref-
erence directions (Das and Dennis 1998) originating from the origin are pre-specified in
the first coordinate system of the m-dimensional objective space (m is the number of
objectives). One generation of NSGA-III procedure works as follows. An offspring pop-
ulation of the same size as the parent population size is created by using algorithm’s
operators, which can be customized using problem information to have a more efficient
application. The populations are combined to form a merged population. First, all ob-
jective values of the merged population members are normalized so that the resulting
non-dominated solutions lie within [0,1]. This allows the population members to be com-
pared with pre-specified reference lines. Each population member is associated with its
nearest reference line and in turn, all associated members of each reference line are identi-
fied and grouped together. The merged population is then ranked according to increasing
levels of constraint non-domination (Deb 2001; Deb et al. 2002) using all m objectives
and constraints. Since level 1 solutions are infinitely better than subsequent levels, all so-
lutions are accepted level-wise starting from level 1, until no more levels can be accepted
to fill the new population slots. Note that only half of the merged population can be
accepted to make the overall process a systematic algorithm. The last level of solutions
which could not be accepted as a whole to meet the population size requirement are then
considered for the final niching operator to select a well-diversed set of remaining popu-
lation members. For each reference line, its nearest associated member is chosen for this
purpose. It is important to mention that in large-objective problems, almost all merged
population members lie on level 1 of non-domination after a few generations, and the

July 22, 2019

Engineering Optimization suppl

Saving in v,
Saving in y

0 € B 0
0 0.1 0.2 0.3
Avg. Constraint Viol. (%

(a) (b)

0 0.1 0.2 0.3
) Avg. Constraint Viol. (%)

Figure 1.: Saving in objective y; versus average constraint violation shown for the two
niched solutions.

final niching operator becomes the main selection operator of the NSGA-III procedure.
Due to the emphasis of non-dominated solutions and well-diversified solutions through
individual picking of closely adhered solutions of a set of well-distributed reference lines,
NSGA-III is able to converge with a good distribution of non-dominated and trade-off
solutions at the end of a simulation run.

5. Further Stage-3 Results

For the two solutions having y; = 168.78 and 168.93 (obtained from the Stage-1 multi-
objective optimization), Stage-3 is applied one at a time. Figures 1 show the respective
bi-objective trade-off solutions. Interestingly, in both cases, a large gain in y;-objective is
possible without any sacrifice of the constraint satisfaction. Thus, in addition to finding
trade-off solutions between constraint relaxation and objective gain, Stage-3 also acts as
an additional local search operator in the vicinity of the chosen Stage-1 solution. Similar
trade-off behavior in both these cases can also be observed from the figures.

6. Conclusions

Along with the description and results presented in the main paper, this supplementary
document provides more information and results in favor of the proposed MOTRAN
procedure. It is ready to be applied to other similar engineering design optimization
problems, primarily for exploring different feasible designs so that a more informative
and holistic optimal design can be achieved.

Acknowledgment

This research was supported by General Motors. The views presented here do not nec-
essarily reflect those of the sponsor whose support is gratefully acknowledged.

July 22, 2019 Engineering Optimization suppl

References

Das, 1., and J.E. Dennis. 1998. “Normal-Boundary Intersection: A new method for generating
the Pareto surface in nonlinear multicriteria optimization problems.” SIAM Journal of Opti-
mization 8 (3): 631-657.

Deb, K. 2001. Multi-objective optimization using evolutionary algorithms. Chichester, UK: Wiley.

Deb, K., S. Agrawal, A. Pratap, and T. Meyarivan. 2002. “A fast and Elitist multi-objective
Genetic Algorithm: NSGA-I1.” IEEFE Transactions on Evolutionary Computation 6 (2): 182—
197.

Deb, K., and H. Jain. 2014. “An Evolutionary Many-Objective Optimization Algorithm Using
Reference-point Based Non-dominated Sorting Approach, Part I: Solving Problems with Box
Constraints.” IEEE Transactions on Evolutionary Computation 18 (4): 577-601.

