
Supplementary Material for �Clustering of Longitudinal

Interval-Valued Data via Mixture Distribution under

Covariance Separability�

1 Preliminary: parameter estimation in structured co-

variance matrices

Consider the following scalar function of a q × q positive symmetric matrix Σ = Σ(θ)
parametrized by θ

h(θ; a, z1, . . . ,zn) = a log |Σ|+ tr(Σ−1S), (1)

where a > 0 and S =
n∑
i=1

ziz
T
i is a matrix derived from n vectors zi of size q, which typically

appears in the pro�led likelihood of the covariance matrix Σ under Gaussianity. When
temporal structure is posed on Σ such as in CS and AR models, the optimization function
is much more simpli�ed as described in what follows.

The modi�ed Cholesky decomposition of the covariance model from an AR(1) model is
the core of the computation, which is given by

Σ−1AR = σ−2LTL =
1

σ2(1− ρ2)



√
1− ρ2 0 0 · · · 0
−ρ 1 0 · · · 0
...

...
. . .

...
...

0 · · · −ρ 1 0
0 · · · 0 −ρ 1


T 

√
1− ρ2 0 0 · · · 0
−ρ 1 0 · · · 0
...

...
. . .

...
...

0 · · · −ρ 1 0
0 · · · 0 −ρ 1


where the (i, j)-th component of ΣAR = ΣAR(σ2, ρ) is σ2ρ|i−j| with |ρ| < 1. However,
we may let σ2 = 1 since we do not lose any generality by �xing the (1, 1)-th component
of ΣAR by 1 due to U ⊗ V = (aU) ⊗ (a−1V ) for a 6= 0. Therefore, if the likelihood is
calculated over n copies of a Gaussian random variable z = (z1, . . . , zq)

T, then the covariance
estimation involves the optimization problem that minimizes (1) with θ = ρ. Using the above
decomposition, we have

hAR(ρ ; a, z1, . . . ,zn) = a(q−1) log(1−ρ2)+(1−ρ2)−1
n∑
i=1

{
z2i1(1−ρ2)+

q∑
j=2

(zij−ρzi,j−1)2
}
,
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and thus, its �rst and second derivatives with respect to ρ are

∂hAR/∂ρ = −2a(q − 1)ρ

1− ρ2
− 2(1 + ρ2)

(1− ρ2)2
n∑
i=1

q∑
j=2

zijzi,j−1 +
2ρ

(1− ρ2)2
n∑
i=1

q∑
j=2

(z2ij + z2i,j−1),

and

∂2hAR/∂ρ
2 = −2a(q − 1)(1 + ρ2)

(1− ρ2)2
−4(3 + ρ2)

(1− ρ2)3
n∑
i=1

q∑
j=2

zijzi,j−1+
2(1 + 3ρ2)

(1− ρ2)3
n∑
i=1

q∑
j=2

(z2ij+z
2
i,j−1),

respectively.
From a compound symmetry model

ΣCS(ρ) = (1− ρ)I + ρ11T,

which is parametrized only by ρ (i.e., σ2 = 1) based on the same previous reasoning, we can
obtain

hCS(ρ ; a, z1, . . . ,zn) = a
{
q log(1− ρ) + log

(
1 +

qρ

1− ρ
)}

+(1− ρ)−1
{

n∑
i=1

zT
i zi −

ρ

1 + (q − 1)ρ

n∑
i=1

(zT
i 1)2

}
,

and its derivatives,

∂hCS/∂ρ =
a(q − 1)

1 + (q − 1)ρ
− a(q − 1)

1− ρ
+

n∑
i=1

zT
i zi

(1− ρ)2
−

n∑
i=1

(zT
i 1)2

{
1 + (q − 1)ρ2

}
(1− ρ)2

{
1 + (q − 1)ρ

}2
and

∂2hCS/∂ρ
2 = − a(q − 1)2

{1 + (q − 1)ρ}2
− a(q − 1)

(1− ρ)2
+

2
n∑
i=1

zT
i zi

(1− ρ)3
−

2
n∑
i=1

(zT
i 1)2 p3(ρ)

(1− ρ)3
{

1 + (q − 1)ρ
}3 ,

where p3(ρ) = −(q − 1)(1 − ρ)2 −
{

1 + (q − 1)ρ}
{

1 + (q − 1)ρ2}. Note that ρ should be in
the interval

(
− (q − 1)−1, 1

)
to have all positive eigenvalues of ΣCS(ρ). The minimization

problem associated with h for each covariance matrix can be solved iteratively using well-
known constrained optimization techniques, one of which we use here is the log-barrier
method.

2 The EM algorithm with temporally structured V

It can be seen that the only change in the EM algorithm under di�erent covariance mod-
els given in Table 1 occurs in the covariance estimation at the M-step. First, assuming
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heteroscedastic components along with K groups, we have the pro�led log-likelihood of co-
variance matrices under separability for each group k = 1, . . . , K by

n∑
i=1

w
(t)
ik

{
log p̂

(t+1)
k − q

2
log |U k|−

p

2
log |V k|−

1

2
tr
(
U−1k

(
Y i−M̂

(t+1)

k

)
V −1k

(
Y i−M̂

(t+1)

k

)T)}
,

(2)
which has no explicit solutions in general. However, the alternating scheme (Dutilleul, 1999)
can be applied here and has been empirically shown to work well with fast convergence based
on our experiments. We alternate updating U k and V k as follows until convergence is met;

vec(U k) =
( n∑
i=1

H
(t)
ik

/
q

n∑
i=1

w
(t)
ik

)
vec(V −1k ),

V k =



mat

(( n∑
i=1

H
(t)
ik

/
p

n∑
i=1

w
(t)
ik

)T
vec(U−1k )

)
, if the model is UN,

ΣAR(ρ̂k) if the model is AR,

with ρ̂k = argmin
ρ

hAR

(
ρ ; p

∑n
i=1w

(t)
ik , {ỹik`}1≤i≤n,1≤`≤p

)
,

ΣCS(ρ̂k) if the model is CS,

with ρ̂k = argmin
ρ

hCS

(
ρ ; p

∑n
i=1w

(t)
ik , {ỹik`}1≤i≤n,1≤`≤p

)
,

(3)
where the operator �mat� is an inversion of vectorization associated with �vec�, and let

H
(t)
ik =

n∑
i=1

w
(t)
ik (Y i − M̂ k) ⊗ (Y i − M̂ k) and a q × 1 vector ỹik`, ` = 1, . . . , p be the `-th

row vector from

√
w

(t)
ik (Y i−M̂ k) post-multiplied by U

−1/2
k after transposition. It should be

remarked that another loop to optimize temporal parameters ρk is embedded within the outer
loop of the EM algorithm, which may cause the overall computation to be slow. However,
an additional experiment not shown here reports that running all covariance models with
K ∈ {1, . . . , 5} only takes a moderate amount of execution time, approximately an average
of 94.12 with a standard deviation of 17.9 in seconds over 100 repetitions (data are generated
from one of the cases in the simulation study).

When group components are homoscedastic, the estimates for common covariances are
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given by

vec(U) =
( n∑
i=1

K∑
k=1

H
(t)
ik /nq

)
vec(V −1),

V =



mat

(( n∑
i=1

K∑
k=1

H
(t)
ik /np

)T
vec(U−1)

)
, if the model is UN,

ΣAR(ρ̂) if the model is AR,

with ρ̂ = argmin
ρ

hAR

(
ρ ;np, {ỹik`}1≤i≤n,1≤k≤K,1≤`≤p

)
,

ΣCS(ρ̂) if the model is CS,

with ρ̂ = argmin
ρ

hCS

(
ρ ;np, {ỹik`}1≤i≤n,1≤k≤K,1≤`≤p

)
,

(4)
where relevant notations are de�ned as before.

3 Results of Numerical Study

We provide the results from the numerical study, which are omitted in the main body of the
paper due to limited space. First, we present contingency tables for model selection under
various settings. We mention some details commonly applied to all of the following �gures.
Covariance candidates are listed in rows, and the number of clusters in columns. Covariance
models not selected at all through 50 repetitions are omitted in the table. The greater the
frequency in each cell, the darker the blue it shows. The column labels indicate types of a
true covariance model. The row label denotes the modulus of a mean vector, or c. In each
�gure, a sub-�gure on the top is for balanced-sized clusters and the other on the bottom is
for unbalanced-size clusters.

We can similarly interpret contingency tables of model selection given in Figure 1, 2,
and 3, regarding covariance models and the modulus of mean vectors (i.e., c), as in Section
3. It seems slightly harder to choose the correct mixture models (covariance models and
the number of groups) if the cluster size varies, which, however, is not signi�cant to be
generalized. We note that signals are more condensed in µstep than in µone, so a smaller
magnitude (c = 2, 4) of the length of the mean vector µstep is su�cient to distinguish samples.
When more than two components comprise a mixture model, the level of separation should be
larger than before since more overlapping area would be expected among them. This is why
c is set to be larger in the K = 5 case than in K = 2. However, selection of the covariance
matrix is less focused in the true model, which we conjecture occurs because there are more
local minima. The general solution of this phenomenon is to initialize the EM algorithm from
multiple starting points and to use one of the results based on the information criterion.
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Figure 1: Contingency table of selected models when K = 2, µone(c), and balanced (top) or unbalanced
(bottom) groups are used.
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Figure 2: Contingency table of selected models when K = 2, µstep(c), and balanced (top) or unbalanced
(bottom) groups are used.
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Figure 3: Contingency table of selected models when K = 5 and balanced (top) or unbalanced (bottom)
groups are used.

Next, results for the identi�cation of clusters are given in the following Figure 4, 5, and
6. As noted in Section 3, we compute the best accuracy up to relabeling of the estimated
membership. We mention some details commonly applied to all of the following �gures.
Comparative methods are �Mclust� from Fraley et al. (2012) (red, left) and �SEP� proposed
by this paper (blue, right). The column label indicates a type of true covariance model. The
row label denotes the modulus of a mean vector, or c. In each �gure, a sub-�gure on the top
is for balanced-sized clusters and the other on the bottom is for unbalanced-size clusters.

Under covariance separability, our model performs uniformly better than the other model.
When nonseparable covariance models are assumed, the proposed model shows comparative
or even higher accuracy, except (C2) O.CS with a mean vector µone and (C4) O.NS with a
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mean vector µstep. The exceptional cases occur when our model does not correctly specify the
number of clusters. In other words, once the number of groups is consistently estimated, the
separable structure of the covariance matrix can be an alternative robust option in mixture
model-based clustering.
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Figure 4: Boxplot of 50 accuracy values for cluster membership when K = 2, µone(c), and balanced (top)
or unbalanced (bottom) groups are used.
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Figure 5: Boxplot of 50 accuracy values for cluster membership when K = 2, µstep(c), and balanced (top)
or unbalanced (bottom) groups are used.
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Figure 6: Boxplot of 50 accuracy values for cluster membership when K = 5 and balanced (top) or
unbalanced (bottom) groups are used.
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