Supporting information

Design and synthesis of tricyclic terpenoid derivatives as novel PTP1B inhibitors with improved pharmacological property and in vivo antihyperglycemic efficacy

Lingling Yang^a, Feng Chen^a, Cheng Gao^a, Jiabao Chen^a, Junyan Li^a, Siyan Liu^a, Yuanyuan Zhang^b, Zhouyu Wang^{b, **} and Shan Qian^{a, *}

^a Department of Pharmaceutical Engineering, College of Food and Bioengineering, Xihua University, Chengdu 610039, China.

^b Department of Chemistry, College of Science, Xihua University, Chengdu 610039, China

CONTACT Shan Qian (qians33@163.com); Zhouyu Wang (zhouyuwang77@gmail.com); College of *Food and Bioengineering*, *Xihua University*, *Chengdu 610039*, *China*.

Table of Contents

- 1. Cell viability in the MTT assay
- 2. The NMR spectra of compounds

Cell viability in the MTT assay

The toxicities of the compounds were evaluated by (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) test. HepG2 cells were routinely grown in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% (v/v) fetal bovine serum, streptomycin (100mg/mL), and penicillin (100U/mL), in a humidified atmosphere of 95% air, 5% CO₂ at 37°C. HepG2 cells were planked in a 96 well plate with a concentration of 1×10^4 cells/well and cultured in 37°C and 5%CO₂ for 24 h. Then HepG2 cells were treated with 40 µM of the synthetic compound. HepG2 cells untreated were used as control. HepG2 cells were cultured in 37°C and 5%CO₂ for 24 h, the old medium was carefully removed and were cultured for another 4 h in MTT (0.5%) containing DMEM, then the medium was carefully removed. 150 µL/well dimethyl sulfoxide was added and oscillated gently to make crystal dissolved. The absorbance at 560 nm was measured using a microplate reader. The cell viability was expressed as a percentage of OD560 (sample)/ OD560 (control) as shown in Fig.S1.

Fig. S1. Cell viability in the MTT assay.

The ¹H-NMR and ¹³C-NMR spectra of the compounds

¹H NMR (400 MHz, CDCl₃) spectrum of compound 3

¹³C NMR (300 MHz, CDCl₃) spectrum of compound 3

¹H NMR (400 MHz, CDCl₃) spectrum of compound 4a

¹³C NMR (300 MHz, CDCl₃) spectrum of compound 4a

¹H NMR (400 MHz, CDCl₃) spectrum of compound 4b

¹H NMR (400 MHz, DMSO) spectrum of compound 5

¹³C NMR (300 MHz, CDCl₃) spectrum of compound 5

¹H NMR (400 MHz, CDCl₃) spectrum of compound 6a

¹³C NMR (300 MHz, CDCl₃) spectrum of compound 6a

¹³C NMR (300 MHz, CDCl₃) spectrum of compound 6b

¹H NMR (400 MHz, CDCl₃) spectrum of compound 7

¹³C NMR (300 MHz, CDCl₃) spectrum of compound 7

¹H NMR (400 MHz, CDCl₃) spectrum of compound 11

¹H NMR (400 MHz, CDCl₃) spectrum of compound 13

¹³C NMR (300 MHz, CDCl₃) spectrum of compound 13

¹H NMR (400 MHz, CDCl₃) spectrum of compound 14

 ^{13}C NMR (300 MHz, CDCl_3) spectrum of compound 14

¹H NMR (400 MHz, CDCl₃) spectrum of compound 15

¹³C NMR ((300 MHz, CDCl₃) spectrum of compound 15

¹H NMR (400 MHz, CDCl₃) spectrum of compound 16

¹³C NMR ((300 MHz, CDCl₃) spectrum of compound 16

¹H NMR (400 MHz, CDCl₃) spectrum of compound 17

¹³C NMR ((300 MHz, CDCl₃) spectrum of compound 17

¹H NMR (400 MHz, CDCl3) spectrum of compound 18

¹³C NMR (300 MHz, CDCl₃) spectrum of compound 18

¹H NMR (400 MHz, *d*₆-DMSO) spectrum of compound 19 ¹³C NMR (300 MHz, CDCl₃) spectrum of compound 19

¹H NMR (400 MHz, CDCl₃) spectrum of compound 20

¹³C NMR (300 MHz, CDCl₃) spectrum of compound 20

¹H NMR (400 MHz, CDCl3) spectrum of compound 21 ¹³C NMR (300 MHz, CDCl₃) spectrum of compound 21

¹H NMR (400 MHz, CDCl₃) spectrum of compound 22

¹³C NMR (300 MHz, CDCl₃) spectrum of compound 22

¹H NMR (400 MHz, CDCl₃) spectrum of compound 23

¹³C NMR (300 MHz, CDCl₃) spectrum of compound 23

¹H NMR (400 MHz, CDCl₃) spectrum of compound 24

¹³C NMR (300 MHz, CDCl₃) spectrum of compound 24

¹H NMR (400 MHz, CDCl₃) spectrum of compound 25

¹³C NMR (300 MHz, CDCl₃) spectrum of compound 25

¹H NMR (400 MHz, CDCl₃) spectrum of compound 26

¹³C NMR (300 MHz, CDCl₃) spectrum of compound 26

¹H NMR (400 MHz, CDCl₃) spectrum of compound 27 ¹³C NMR (300 MHz, CDCl₃) spectrum of compound 27

¹H NMR (400 MHz, CDCl₃) spectrum of compound 28

¹³C NMR (300 MHz, CDCl₃) spectrum of compound 28

¹H NMR (400 MHz, CDCl₃) spectrum of compound 29

¹³C NMR (300 MHz, CDCl₃) spectrum of compound 29

¹H NMR (400 MHz, CDCl₃) spectrum of compound 30

¹³C NMR (300 MHz, CDCl₃) spectrum of compound 30

¹H NMR (400 MHz, CDCl₃) spectrum of compound 31

¹³C NMR (300 MHz, CDCl₃) spectrum of compound 31

¹H NMR (400 MHz, CDCl₃) spectrum of compound 32

¹³C NMR (300 MHz, CDCl₃) spectrum of compound 32

¹H NMR (400 MHz, CDC₁₃) spectrum of compound 33

¹³C NMR (300 MHz, CDCl₃) spectrum of compound 33

¹H NMR (400 MHz, *d*₆-DMSO) spectrum of compound 34

¹³C NMR (300 MHz, *d*₆-DMSO) spectrum of compound 34