Supplementary Materials for "Gaussian process modeling of heterogeneity and discontinuities using Voronoi tessellations"

October 25, 2019

1 FURTHER DETAILS: Cloud modelling

In this section, we include further details of the emulator models fitted to the System for Atmospheric Modelling cloud-resolving model (Khairoutdinov and Randall, 2003; Feingold et al., 2016) as detailed in Section 6 of the article. After building an emulator based on 105 training points, we found that having two distinct regions was most likely. In particular, there was a large region associated with high values for the output proportion and a much smaller region associated with low output proportions. The MAP estimates for the parameters of the Gaussian process models in each region are given in Table 1.

Region	Diagonal of roughness matrix, B							$\hat{\sigma}^2$
Large region	2.38986	0.66088	2.94809	2.07238	4.19353	31.77767	0.83469	0.05940
Small region	1.21890	0.50040	0.85465	1.08899	1.61007	20.84341	0.32239	0.00469

Table 1: MAP parameters for the two regions

To test the predictive ability of our initial model, we created 35 additional validation points using a Latin hypercube design as recommended in Bastos and O'Hagan (2009). The complete input configurations for the 35 validation points are given in Table 2. Given the size of the larger region, 33 of the 35 points fell within its boundaries (with respect to the MAP-estimate partition). Figure 1 shows the performance of the emulator at the 35 points. Generally speaking, the level of uncertainty and agreement with the true simulator output is acceptable for the 33 points with relatively high output proportions. For the two points that correspond to lower proportions of cloud cover in the model, the performance of the emulator is much worse: in one of the cases, the point is in an uncertain region of the input space where it is not known which region the point belongs and, in the other case, the point is misclassified as being in the region corresponding to larger proportions. Despite the poor fit for the lower proportions, our method performed better at predicting these validation points (MSE = 0.016) than the Treed GP (MSE = 0.032) and a standard Gaussian process model with no partitioning (MSE = 0.025). However, the issues with poor prediction for the location of one region motivated the use of a sampling regime to better locate the boundaries of the regions (as is detailed in Section 4 of the paper).

The second model fit as described in Section 6 of the paper gives much more certainty to the location of the partition between the two output regimes. This is achieved by targeting the location using the design algorithm in Section 4 of the paper. The resulting validation of the model show a clearer distinction between the two regimes and less uncertainty with regards to the low output proportion region because many more input configurations now fall within that region and the emulator is more confident in matching the model behaviour there.

Figure 1: The predicted values (posterior means and two standard deviation ranges) plotted against the true value of the cloud fraction (those values gained from running the simulator).

Index	x_1	x_2	x_3	x_4	x_5	x_6
1	286.120331	6.896842	1105.825684	6.766926	8.837931	123.511589
2	290.900452	8.704780	1238.534546	6.613815	6.059642	322.657379
3	289.877350	9.916729	881.390198	8.815986	6.335011	248.487091
4	287.186310	7.313122	1077.944824	8.986353	7.164250	201.089767
5	293.596558	10.422102	1184.299805	6.934781	9.394021	141.447266
6	287.653473	8.947084	688.814148	8.371425	6.810549	307.157623
7	284.266571	7.176429	697.652771	6.086229	6.856291	55.463993
8	290.681305	8.823312	1087.004517	6.375655	7.325428	77.907173
9	287.300934	9.377343	536.270142	6.902112	8.835855	258.708252
10	288.070679	9.976534	674.181885	6.489483	8.629810	187.722443
11	291.965179	10.233494	1133.300537	8.602721	6.487415	486.610962
12	285.561401	8.396331	1219.780762	9.970832	8.346141	119.727188
13	286.975067	7.441350	1188.145142	9.653389	7.268930	169.915665
14	288.093445	9.040697	1274.174561	8.731211	8.061809	288.946320
15	288.7691	8.878672	1192.7964	7.269598	8.892009	436.92209
16	291.1294	9.890397	1264.6671	8.542641	6.535751	480.32889
17	287.4935	9.418394	1033.1639	9.741000	7.526431	342.75906
18	285.0430	7.662993	1084.1565	8.112438	6.009365	283.14258
19	289.3911	10.211799	862.2623	6.512305	8.251513	413.94525
20	285.6145	8.251071	786.8574	6.154116	9.888325	303.79385
21	291.9070	9.642790	919.7665	7.145650	9.038586	164.66283
22	286.0617	7.340646	753.2080	6.823638	6.784937	128.04608
23	289.9971	8.102586	1025.3121	7.023006	6.395765	174.56256
24	287.6086	8.363940	580.2039	9.023112	9.969320	149.89809
25	290.2240	9.315969	843.0035	8.340917	7.480579	496.92413
26	292.9937	9.230615	1204.1548	6.957496	9.338216	463.66156
27	292.6375	9.548503	1070.3263	7.384440	8.984981	348.31155
28	289.1604	8.669858	775.1762	9.355122	7.039664	192.46733
29	285.4333	8.124009	518.6815	8.439637	9.257391	30.75079
30	290.2913	9.477997	798.2083	7.982011	7.219952	368.44559
31	289.6282	8.169958	886.3463	9.127620	8.949938	447.49091
32	290.1033	9.062427	824.5475	7.611224	6.641779	224.59059
33	287.8524	8.065599	831.0386	9.320685	9.995889	233.12976
34	285.0476	7.393353	585.1801	7.915319	9.542266	474.21387
35	286.7267	7.080297	900.1011	6.234400	7.567740	445.32407

Table 2: The 35 input configurations for the validation (and subsequent improvement) of the emulator

2 FURTHER APPLICATION: USA ammonia levels data

We also apply our method to data on recorded ammonia (NH₄) levels at locations across the USA, obtained from obtained from the National Atmospheric Deposition Program (National Atmospheric Deposition Program, 2007), which can be seen in Figure 2. The NH₄ was measured at 250 locations in the USA, with the two points in the bottom right corresponding to the United States Virgin Islands and Puerto Rico. On plotting the data in Figure 2, we have found that there is a drastic change in the output for certain areas of the USA. In other locations, however, the output does not change as drastically, suggesting that we may have heterogeneity. As this is real observed data, which is observed with error as opposed to a deterministic computer output as in Section 6 of the main paper, the error term σ_{ϵ}^2 is included in our model.

Figure 2: Analysis on the USA ammonia data. Top: The design points and output of the data; Bottom: The integrated surface from the application of our method.

The integrated surface that we obtain for this example, via application of our modelling approach,

is shown in Figure 2. This surface suggests that the north-central region of the USA has higher levels of ammonia compared to the rest of the country. We also notice that the north western region of the USA has much lower levels than the rest of the country.

Figure 3 shows our posterior distribution for the number of regions of different behaviour in NH₄ over the USA. We see that we have a bell shaped distribution that peaks at eight regions with an elongated tail towards the larger values, showing that there are most likely 8 different regimes over the spatial area. As with the previous examples in the paper, we test our method against the TGP and the standard Gaussian process modelling approaches. To do this here we use cross validation in which we randomly omit 50 training points (20% of the total data), and then use these as validation points on a model trained using only the remaining training points. Here, we again found that our method has a lower MSE (MSE = 0.0057) than both the standard Gaussian process (MSE = 0.0084) and the treed Gaussian process (MSE = 0.0059).

Figure 3: The posterior distribution for the number of regions for the USA ammonia level data.

References

- Bastos, L. S. and A. O'Hagan (2009). Diagnostics for Gaussian process emulators. *Technometrics* 51(4), 425–438.
- Feingold, G., A. McComiskey, T. Yamaguchi, J. S. Johnson, K. S. Carslaw, and K. S. Schmidt (2016). New approaches to quantifying aerosol influence on the cloud radiative effect. *Proceedings* of the National Academy of Sciences 113(21), 5812–5819.
- Khairoutdinov, M. F. and D. A. Randall (2003). Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. *Journal of the Atmospheric Sciences* 60(4), 607–625.
- National Atmospheric Deposition Program (2007). Ammonia monitering network. http://nadp. sws.uiuc.edu/data/AMoN/. Accessed: 2017-06-10.