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1 FURTHER DETAILS: Cloud modelling

In this section, we include further details of the emulator models fitted to the System for Atmospheric
Modelling cloud-resolving model (Khairoutdinov and Randall, 2003; Feingold et al., 2016) as detailed
in Section 6 of the article. After building an emulator based on 105 training points, we found that
having two distinct regions was most likely. In particular, there was a large region associated
with high values for the output proportion and a much smaller region associated with low output
proportions. The MAP estimates for the parameters of the Gaussian process models in each region
are given in Table 1.

Region Diagonal of roughness matrix, B β̂ σ̂2

Large region 2.38986 0.66088 2.94809 2.07238 4.19353 31.77767 0.83469 0.05940
Small region 1.21890 0.50040 0.85465 1.08899 1.61007 20.84341 0.32239 0.00469

Table 1: MAP parameters for the two regions

To test the predictive ability of our initial model, we created 35 additional validation points
using a Latin hypercube design as recommended in Bastos and O’Hagan (2009). The complete
input configurations for the 35 validation points are given in Table 2. Given the size of the larger
region, 33 of the 35 points fell within its boundaries (with respect to the MAP-estimate partition).
Figure 1 shows the performance of the emulator at the 35 points. Generally speaking, the level
of uncertainty and agreement with the true simulator output is acceptable for the 33 points with
relatively high output proportions. For the two points that correspond to lower proportions of cloud
cover in the model, the performance of the emulator is much worse: in one of the cases, the point is in
an uncertain region of the input space where it is not known which region the point belongs and, in
the other case, the point is misclassified as being in the region corresponding to larger proportions.
Despite the poor fit for the lower proportions, our method performed better at predicting these
validation points (MSE = 0.016) than the Treed GP (MSE = 0.032) and a standard Gaussian
process model with no partitioning (MSE = 0.025). However, the issues with poor prediction for
the location of one region motivated the use of a sampling regime to better locate the boundaries of
the regions (as is detailed in Section 4 of the paper).

The second model fit as described in Section 6 of the paper gives much more certainty to the
location of the partition between the two output regimes. This is achieved by targeting the location
using the design algorithm in Section 4 of the paper. The resulting validation of the model show
a clearer distinction between the two regimes and less uncertainty with regards to the low output
proportion region because many more input configurations now fall within that region and the
emulator is more confident in matching the model behaviour there.
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Figure 1: The predicted values (posterior means and two standard deviation ranges) plotted against
the true value of the cloud fraction (those values gained from running the simulator).
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Index x1 x2 x3 x4 x5 x6
1 286.120331 6.896842 1105.825684 6.766926 8.837931 123.511589
2 290.900452 8.704780 1238.534546 6.613815 6.059642 322.657379
3 289.877350 9.916729 881.390198 8.815986 6.335011 248.487091
4 287.186310 7.313122 1077.944824 8.986353 7.164250 201.089767
5 293.596558 10.422102 1184.299805 6.934781 9.394021 141.447266
6 287.653473 8.947084 688.814148 8.371425 6.810549 307.157623
7 284.266571 7.176429 697.652771 6.086229 6.856291 55.463993
8 290.681305 8.823312 1087.004517 6.375655 7.325428 77.907173
9 287.300934 9.377343 536.270142 6.902112 8.835855 258.708252
10 288.070679 9.976534 674.181885 6.489483 8.629810 187.722443
11 291.965179 10.233494 1133.300537 8.602721 6.487415 486.610962
12 285.561401 8.396331 1219.780762 9.970832 8.346141 119.727188
13 286.975067 7.441350 1188.145142 9.653389 7.268930 169.915665
14 288.093445 9.040697 1274.174561 8.731211 8.061809 288.946320
15 288.7691 8.878672 1192.7964 7.269598 8.892009 436.92209
16 291.1294 9.890397 1264.6671 8.542641 6.535751 480.32889
17 287.4935 9.418394 1033.1639 9.741000 7.526431 342.75906
18 285.0430 7.662993 1084.1565 8.112438 6.009365 283.14258
19 289.3911 10.211799 862.2623 6.512305 8.251513 413.94525
20 285.6145 8.251071 786.8574 6.154116 9.888325 303.79385
21 291.9070 9.642790 919.7665 7.145650 9.038586 164.66283
22 286.0617 7.340646 753.2080 6.823638 6.784937 128.04608
23 289.9971 8.102586 1025.3121 7.023006 6.395765 174.56256
24 287.6086 8.363940 580.2039 9.023112 9.969320 149.89809
25 290.2240 9.315969 843.0035 8.340917 7.480579 496.92413
26 292.9937 9.230615 1204.1548 6.957496 9.338216 463.66156
27 292.6375 9.548503 1070.3263 7.384440 8.984981 348.31155
28 289.1604 8.669858 775.1762 9.355122 7.039664 192.46733
29 285.4333 8.124009 518.6815 8.439637 9.257391 30.75079
30 290.2913 9.477997 798.2083 7.982011 7.219952 368.44559
31 289.6282 8.169958 886.3463 9.127620 8.949938 447.49091
32 290.1033 9.062427 824.5475 7.611224 6.641779 224.59059
33 287.8524 8.065599 831.0386 9.320685 9.995889 233.12976
34 285.0476 7.393353 585.1801 7.915319 9.542266 474.21387
35 286.7267 7.080297 900.1011 6.234400 7.567740 445.32407

Table 2: The 35 input configurations for the validation (and subsequent improvement) of the emu-
lator

3



2 FURTHER APPLICATION: USA ammonia levels data

We also apply our method to data on recorded ammonia (NH4) levels at locations across the USA,
obtained from obtained from the National Atmospheric Deposition Program (National Atmospheric
Deposition Program, 2007), which can be seen in Figure 2. The NH4 was measured at 250 locations
in the USA, with the two points in the bottom right corresponding to the United States Virgin
Islands and Puerto Rico. On plotting the data in Figure 2, we have found that there is a drastic
change in the output for certain areas of the USA. In other locations, however, the output does
not change as drastically, suggesting that we may have heterogeneity. As this is real observed data,
which is observed with error as opposed to a deterministic computer output as in Section 6 of the
main paper, the error term σ2

ε is included in our model.
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Figure 2: Analysis on the USA ammonia data. Top: The design points and output of the data;
Bottom: The integrated surface from the application of our method.

The integrated surface that we obtain for this example, via application of our modelling approach,
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is shown in Figure 2. This surface suggests that the north-central region of the USA has higher levels
of ammonia compared to the rest of the country. We also notice that the north western region of
the USA has much lower levels than the rest of the country.

Figure 3 shows our posterior distribution for the number of regions of different behaviour in NH4

over the USA. We see that we have a bell shaped distribution that peaks at eight regions with an
elongated tail towards the larger values, showing that there are most likely 8 different regimes over
the spatial area. As with the previous examples in the paper, we test our method against the TGP
and the standard Gaussian process modelling approaches. To do this here we use cross validation in
which we randomly omit 50 training points (20% of the total data), and then use these as validation
points on a model trained using only the remaining training points. Here, we again found that our
method has a lower MSE (MSE = 0.0057) than both the standard Gaussian process (MSE = 0.0084)
and the treed Gaussian process (MSE = 0.0059).
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Figure 3: The posterior distribution for the number of regions for the USA ammonia level data.
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