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1 Complements on conservative estimates

The following result here presented as a corollary of proposition 4, main text, is a well
known result Molchanov (2005) for the Vorob’ev expectation.

Corollary 1 (of proposition 4). The Vorob’ev expectation QρV minimizes the expected
distance in measure with Γ among all measurable (deterministic) sets M such that µ(M) =
µ(QρV ). Moreover if ρV ≥ 1

2
, then the Vorob’ev expectation also minimizes the expected

distance in measure with Γ among all measurable sets M that satisfy µ(M) = E[µ(Γ)].

Proof of corollary 1. The first statement is a direct application of proposition 4 with ρ =
ρV .

For the second statement, by definition we have that either µ(QρV ) = E[µ(Γ)] or
µ(Qρ) < E[µ(Γ)] ≤ µ(QρV ) for each ρ > ρV . In the first case we can directly apply proposi-
tion 4. In the second case we can apply the same reasoning as in the proof of proposition 4
however in last step of the proof we need to impose ρV ≥ 1

2
for obtaining the result.

In general, the Vorob’ev quantile chosen for CEα is not the set S with the largest
measure µ that has the property P (S ⊂ Γ) ≥ α as shown in the counterexample below.
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Example 1. Consider a discrete set X = {x1, x2, x3, x4}, a random field (Zx)x∈D and
Γ = {x ∈ X : Zx ≥ 0}. In this framework we show the existence of a conservative set at
level α = 0.5 larger than the largest Vorob’ev quantile with the same conservative property.

Assume that for some ρ1 ∈ [0, 1]

P (Qρ1 ⊂ Γ) = P (Zx1 ≥ 0, Zx2 ≥ 0) = 1/2,

where Qρ1 = {x1, x2} is a Vorob’ev quantile at level ρ1, that is P (Zx1 ≥ 0), P (Zx2 ≥ 0) ≥ ρ1.
Note that in the case where Zx1⊥⊥Zx2, the Vorob’ev level is automatically determined as

ρ1 =
√

2/2 and if Zx1 = Zx2 a.s., then ρ1 = 1/2. Let us assume here that Zx1 6= Zx2, which
implies ρ1 ∈ (1/2,

√
2/2). Let us further denote with Ω1 the subset of Ω such that for all

ω ∈ Ω1 min(Zx1(ω), Zx2(ω)) ≥ 0 and define Ω2 = Ω \ Ω1.
We further fix Zx3 as the random variable

Zx3(ω) =

{
1 if ω ∈ Ω1

−1 if ω ∈ Ω2.

Then P (Zx3 ≥ 0) = P (min(Zx1 , Zx2) ≥ 0) = P (Zx1 ≥ 0, Zx2 ≥ 0) = 1/2. Moreover
P (min(Zx1 , Zx2 , Zx3) ≥ 0) = 1/2, i.e. {x1, x2, x3} has the conservative property at level
α = 0.5.

Consider Ω3 ⊂ Ω1 with P (Ω3) = 1/3 and Ω4 ⊂ Ω2 with P (Ω4) = 1/3. Define

Zx4(ω) =

{
1 if ω ∈ Ω3 ∪ Ω4

−1 otherwise.

We now have that P (min(Zx1 , Zx2 , Zx3 , Zx4) ≥ 0) = 1/3 < 1/2 and P (Zx4 ≥ 0) = 1/3 +
1/3 > 1/2. Under this construction the Vorob’ev quantiles are Qρ1 = {x1, x2}, Qρ2 =
{x1, x2, x4} and Q0.5 = D. The set {x1, x2, x3} is therefore the conservative set at level
α = 0.5, as it is the largest subset of D with the conservative property, however it is not a
Vorob’ev quantile.

2 Sequential conservative excursion set estimation: pro-

cedure overview

Consider a function f : X→ R, we are interested in estimating

Γ(f) = {x ∈ X : f(x) ≥ t}, t ∈ R.

from few evaluations. We consider a prior Gaussian process (Zx)x∈X with prior mean m
and covariance kernel K. The estimation procedure often starts with a small initial design
Xn, n ≥ 1, where n is often chosen as a function of the input space dimension. As a rule
of thumbs, the initial number of evaluations is often n = 10d. In our framework, often,
the initial design is chosen as space filling, such as a Latin hypercube sample (LHS) design
or points from a low discrepancy sequence such as the Halton and the Sobol’ sequence.
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In algorithm 1 we summarize the main steps for computing conservative estimates and
evaluating their uncertainties.

Algorithm 1 Sequential conservative excursion set estimation.

Require: Ntot maximum number of evaluations, n size of initial design, q size of batches,
function f , threshold t, criterion J , uncertainty function H

1: select initial DoE Xn, e.g., with space filling design
2: evaluate the function f at Xn

3: compute the posterior model Z | An and the estimate Qn,ραn

4: i = n0

5: while i less than Ntot do

6: select x̂(q) by minimizing Ji(x
(q))

7: evaluate the function f at x̂(q)

8: update the posterior model Z | Ai+q
9: compute the conservative estimate Qi+q,ραi

10: evaluate the uncertainty function Hi+q on Qi+q,ραi

11: i = i+ q
12: end while
13: optional post-processing on QNtot,ραNtot

14: return QNtot,ραNtot
for Γ(f) and the uncertainty value HN

3 Uncertainty MEAS and related SUR strategy

The measure of a conservative estimate gives a good indication of the uncertainty on the
current estimate. For α close to 1, Qn,ραn is constrained to be inside Γ with high probability,
therefore the estimate is often smaller (in measure) than Γ. This allows us to define the
following additional uncertainty: the expected difference between the measure of Γ and the
measure of Qn,ραn .

Definition 1 (Uncertainty meas). We denote the uncertainty related to the measure µ
with Hmeas

n,ραn
, defined as

Hmeas
n,ραn

:= En[µ(Γ)− µ(Qn,ραn)] (1)

This quantity is a reasonable uncertainty function only for conservative estimates. In
this case, in fact, this quantity is equal to En[G

(2)
n (ραn) − G(1)

n (ραn)] and, if the estimate is
completely included in Γ, then it is the Type II uncertainty.

As for the other criteria defined in section 3, main text, we can use the uncertainty
Hmeas
n to define a SUR criterion. Let us denote with JMEAS

n the following function

Jmeas
n (x(q); ραn+q) = En,x(q)

[
µ(Γ)− µ(Qn+q,ραn+q

)
]
. (2)

Since we are interested in minimizing this criterion and En[µ(Γ)] is independent from x(q),
we consider the equivalent function to maximize

J̃n
meas

(x(q); ραn+q) = En,x(q)

[
µ(Qn+q,ραn+q

)
]
.

3



Table 1: MC function evaluation scenarios, total cost O(nMCkq) fixed.

q τ 2 nMC k n
1 0.05 20 80 80

8 0.25 4 50 400

16 0.5 2 50 800

Note minimizing J̃n
meas

selects points that are meant to increase the measure of the estimate
and it is only reasonable for conservative estimates where the conservative condition leads
to Qn+q,ραn+q

with finite measure in expectation.
In the particular case where T = (−∞, t] this criterion has a closed-form formula.

Proposition 1 (Measure criterion). The criterion Jmeas
n can be expanded in closed-form

as

J̃n
meas

(x(q); ραn) = En,x(q)

[
µ(Qn+q,ραn)

]
=

∫
X

Φ

(
an+q(u)− Φ−1(ραn)√

γn+q(u)

)
dµ(u). (3)

Proof of proposition 1. The indicator function of the setQn+q,ραn can be written as 1pn+q(x)≥ραn .
By Tonelli’s theorem we exchange the expectation with the integral over X and we obtain

En
[
E
[
µ(Qn+q,ραn) | Xn+1 = xn+1, . . . , Xn+q = xn+q

] ]
=

∫
X
En
[
1pn+q(u)≥ραn

]
dµ(u) =

∫
X
Pn (pn+q(u) ≥ ραn) dµ(u).

By substituting the expression in equation equation (17) we obtain∫
X
Pn (pn+q(u) ≥ ραn) dµ(u) =

∫
X
Pn
(
an+q(u) + bTn+q(u)Yq ≥ Φ−1(ραn)

)
dµ(u)

=

∫
X

Φ

(
an+q(u)− Φ−1(ραn)√

γn+q(u)

)
dµ(u)

4 Batch-sequential strategies in high noise scenarios

In this section we consider the synthetic test case introduced in section 4, main text, and
we run an additional benchmark study with higher noise levels. Table 1 describes the
allocation of resources in this benchmark. Note that the noise variance τ 2 is 500 times
larger here than the benchmark in the main text.
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Figure 1: Expected Type II error in different batch sequential scenarios.

As in section 4, main text, we consider the unknown function f as a realization of
(ξx)x∈X ∼ GP (m,K) with constant mean function m and Matérn covariance kernel K with
smoothness parameter ν = 3/2, variance σ2 = 1 and lengthscales θi = 0.2, i = 1, 2. Also
in this case the set to estimate is Γ(f) = {x ∈ [0, 1]2 : f(x) ≥ 1}, an excursion above t = 1
and µ is the usual volume on [0, 1]2. For each scenario we consider an initial DoE of size
ninit = 3 and we select the next function evaluation with the strategies listed in table 3,

main text, with the additional strategy D, where the criterion J̃n
meas

introduced above
is maximized. We run each strategy for the number of iteration specified in table 1. We
consider mdoe = 10 different initial DoE and, for each design, we replicate the procedure
10 times with different values for ξXinit

.
Figure 1 shows the expected type II error for each strategy in the two batch sequential

scenarios. Note that while the convergence of the parallel scenario (q = 8) is still faster
than the sequential one, here the difference is much less important than in the less noisy
example. The scenario q = 16 shows a slightly faster convergence for all strategies, however
the difference with q = 8 is very small. A smarter online allocation strategy such as the one
outlined in Picheny et al. (2013) could further improve the performances of batch-sequential
strategies.

5 Noise free numerical benchmarks

In this section we develop a benchmark study with Gaussian process realizations to study
the different behavior of the proposed strategies. We consider two cases with the follow-
ing shared setup. The input space is the unit hypercube X = [0, 1]d, for d = 2, 5 and
(ξx)x∈X ∼ GP (m,K) with constant prior mean m ≡ 0 and tensor product Matérn covari-
ance function with known hyper-parameters fixed as in table 2. The noise variance here is
constant and equal to zero. The objective is a conservative estimate at level α = 0.95 for
Γ = {x ∈ X : ξx ≥ 1} and µ is the usual volume. We test the strategies listed in table 3,
main text, and the additional strategy D which maximizes the meas criterion.

We consider an initial design of experiments Xninit
, obtained with the function optimumLHS

from the package lhs and we simulate the field at Xninit
. The size ninit (see table 2) is cho-
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Table 2: Test cases parameter choices.

Test case d covariance parameters mdoe ninit

GP 2 ν = 3/2, θ = [0.2, 0.2]T , σ2 = 1 10 3

GP 5 ν = 3/2, θ = [0.2, 0.2, 0.2, 0.2, 0.2]T , σ2 = 1 10 6
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Figure 2: Gaussian process realizations test case in dimension 2.

sen small to highlight the differences between the sequential strategies. We select the next
evaluations by minimizing each sampling criterion detailed in table 3, main text, and by

maximizing J̃n
meas

(·; ραn). Each strategy is run for n = 80 (n = 120 if d = 5) iterations,
updating the model with q = 1 new evaluations at each step. We consider mdoe different
initial design of experiments and, for each design, we replicate the procedure 10 times with
different initial values ξXninit

.
We evaluate the strategies by looking at the type I and type II errors for Qn,ραn , defined

in section 3.1, main text, and by computing the measure µ(Qn,ραn). Since the estimate
Qn,ραn has a guaranteed low type I error, a large measure is an indicator of a non trivial
conservative estimate. We report mean and median result for each initial design. Expected
type I error does not vary much among the different strategies as it is controlled by the
condition defining conservative estimate, as shown in section 3.1, main text.

5.1 Dimension 2 GP realizations

Figure 2a shows the expected type II error at selected iteration numbers averaged across
different initial DoE. This quantity decreases for all strategies, however strategy B and
C outperform the others. Figure 2b shows the values of expected volume En[µ(Qn,ραn)]
obtained after n = 80 new evaluations, across different initial DoEs.
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Figure 4: Total time to compute Qn,ραn , Gaus-
sian processes test case, d = 2.

The strategies A,B,C,D all provide better uncertainty reduction for conservative es-
timates than a standard IMSE strategy or than a tIMSE strategy. In particular strategy
C has the second lowest mean type 2 error while at the same time providing an estimate
with the largest measure, thus yielding a conservative set likely to be included in Γ(f)
and, at the same time, not trivial. All estimates, however, are very conservative: the final
median ratio between the expected type I error and the estimate’s volume is 0.016%, much
smaller than the upper bound 1− α = 5% computed in proposition 1, main text. On the
other hand, the median ratio between the expected type II error and the volume at the
last iteration is between 31% (C) and 143% (IMSE).

Figure 3 shows the type I error for each strategy in table 3, main text, plus strategy D,

i.e., maximization of J̃n
meas

. Strategies B and C show a lower type I error with respect to
the other strategies, however the all strategies present very low type I error compared to
the total expected measure of the set.

Figure 4 shows the total time required to evaluate the criteria and to compute at each
step the conservative estimate. The computational time is mainly driven by the size of the
conservative estimate. In fact, for conservative estimates with large measure, the othant
probabilities involved in its computation are higher dimensional.

5.2 Dimension 5 GP realizations

Figures 5a and 5b show the mean expected type II error over selected iterations and the ex-
pected measure En[µ(Qn,ραn)] after 120 iterations of each strategy. Strategies A,B,C,D pro-
vide better uncertainty reduction for conservative estimates than IMSE or tIMSE. Strate-
gies A and C provide a faster reduction of the type II error and a smaller final mean value
than the others with strategy A obtaining a slightly higher median value for the expected
measure at iteration 120. Also in this case, even if the iteration number is higher, the final
estimates provided by all methods are very conservative. Over all DoEs and replications,
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Figure 5: Gaussian process realizations test case in dimension 5.

the median ratio between the expected type I error and the volume of Qn,ραn is 0.02%,
much smaller than the upper bound 5%. The expected type II error is instead 3 orders of
magnitude larger than the estimate’s volume. This indicates that we have only recovered
a small portion of the true set Γ(f) and this estimate is very conservative.

Figure 6 shows the type I error and figure 7 shows the total time required to evaluate the
criteria and to compute at each step the conservative estimate. The conservative strategies
also in this case strategy present smaller type I error, however also in this case the type I
error is much smaller than the expected measure.

Figure 7 shows the total time required to evaluate the criteria and to compute at each
step the conservative estimate.

5.3 Model-free comparison of strategies

The metrics presented in the previous sections are based on the GP model. In this section
we compare the strategies with a simpler metric independent from the underlying model.

We consider the number of evaluation points that are selected inside and outside the
excursion set. At each iteration i, this quantity is computed as

#{j:zj≥t, j=1,...,ni}
ni

, where ni
is the total number of points at iteration i and z1, . . . , zni are the evaluations. Figure 8
shows the proportion of points inside the excursion set at each iteration for the two GP test
cases. Strategy IMSE is a space filling strategy therefore the proportion of points inside
the excursion reflects the volume of excursion. Strategies A and tIMSE are adapted to
the problem of estimating an excursion set, however they are not adapted for conservative
estimation, as such they tend to select points around the boundary of Γ and not inside.
Strategies B,C and D instead select more points inside the excursion leading to a good
trade-off between a good global approximation of the set and a good approximation of the
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Figure 6: Median type I error for Qn,ραn , Gaus-
sian processes test case, d = 5.
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Figure 7: Total time to compute Qn,ραn , Gaus-
sian processes test case, d = 5.
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Figure 8: GP realizations. Average proportion of points inside the excursion region.
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Figure 9: Coastal flood test case. Set of interest delimited by blue line, µ(Γ(f)) = 77.56%.

boundary. These observations are reflected in two dimensions, figure 8a, by the proportion
of points inside the excursion set. In the five dimensional test case, figure 8b, the proportion
of points inside the excursion set is similar across all strategies, except for the IMSE strategy
which tends to have a smaller proportion.

5.4 Coastal flood test case

In this section we show how sequential conservative estimates can locate a region of excur-
sion in the coastal flood test case introduced in Rohmer and Idier (2012).

Here we consider the simplified coastal flood case described in Rohmer and Idier (2012).
The water level at the coast is modeled as a deterministic function f : X ⊂ Rd → R, by
assuming steady offshore conditions and without solving the flood itself inland. The input
space X = [0.25, 1.50] × [0.5, 7] are the variables storm surge magnitude S and significant
wave height Hs. We are interested in recovering the set Γ(f) = {x ∈ X : f(x) ≤ t}, with
t = 2.15, shown in figure 9a. In order to evaluate the quality of the meta-model, we rely
on the grid experiment of 30× 30 runs carried out by Rohmer and Idier (2012).

Here we consider a Gaussian process prior (Zx)x∈X ∼ GP (m,K), with constant prior
mean function and Matérn covariance kernel with ν = 5/2 with MLE hyper-parameters. We
assume that the function evaluations are noisy with homogeneous variance σ2

noise estimated
from the data. We select mdoe = 10 different initial DoEs with a maximin LHS design
(function optimumLHS from the package lhs), with equal size ninit = 10. We compute
conservative set estimates for Γ(f) at level α = 0.95, as defined in section 2.1, main text,
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Figure 10: Randomized initial DoEs results. Values of the uncertainty functions for each
strategy with α = 0.95. Coastal flood test case.

with the Lebesgue measure on X.
We proceed to add 20 evaluations with the strategies detailed in table 3, main text. The

covariance hyper-parameters are re-estimated at each step with maximum likelihood. Fig-
ure 9b shows the conservative estimate obtained after 30 functions evaluations at locations
chosen with Strategy C.

Figure 10a shows the true type II error at the last iteration of each strategy, after
30 evaluations of the function. The true type II error is computed by comparing the
conservative estimate with an estimate of Γ(f) obtained from the 30× 30 grid experiment.
Monte Carlo integration over this grid of evaluations leads to a volume of Γ(f) equal to
77.56%.

At the last iteration, strategies A,B,C provide estimates with higher volume and lower
type II error in median than IMSE and tIMSE. For example, the median type II error
for Strategy C is 38% smaller than the IMSE type II error. For all strategies the true
type I error is zero for almost all initial DoEs, thus indicating that all strategies lead to
conservative estimates.

Figure 10b shows the behavior of relative volume error as a function of the iteration
number for Strategies tIMSE, A,B,C. The hyper-parameter re-estimation causes the model
to be overconfident at the initial iterations, thus increasing the relative volume error. As
the number of evaluations increases the hyper-parameter estimates become more stable and
the relative error decreases as conservative estimates are better included in the true set.

5.5 Hyper-parameter estimation

In this section we explore the behavior of the strategies under different scenarios for the
covariance hyper-parameters:
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1. fixed initial hyper-parameters (FI): the covariance parameters are fixed throughout
the sequential procedure as the maximum likelihood estimates obtained from the
initial evaluations f10;

2. re-estimated hyper-parameters (RE): at each step the hyper-parameter estimates are
updated with the new evaluations of the function;

We consider the same experimental setup of section 5.4, we fix only one initial DoE of
n = 10 points chosen with the function lhsDesign from the package DiceDesign Franco
et al. (2013). We run n = 20 iterations of each strategy in table 3, main text, where at
each iteration we select one evaluation of f . Additionally here we also run strategy D,
introduced in section 3, and an hybrid strategy. This strategy, denoted with E, selects
points by minimizing alternatively Jt2

n (·; ραn) for 1 iteration and then IMSE for 2 iterations.
Let us start with the case where we estimate the hyper-parameters only using the

evaluations of f at X10. Figure 11 and figure 12 show the type II error and the relative
total volume error. These errors are computed comparing the conservative estimate with
the true set as in section 5.4. True type I error, not shown, is equal to zero for each
strategy at each iteration. Type II error decreases as a function of the evaluations number
for all strategies, in particular strategies B, tIMSE, D and C provide a good uncertainty
reduction. In particular strategies B,D and C provide a larger uncertainty reduction in
the first 10 iterations compared to the other strategies.

In practice, the covariance parameters are often re-estimated after a new evaluation is
added to the model. This technique should improve the model, however better conservative
estimates are obtained only if the hyper-parameter estimation is stable and reliable. Con-
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Figure 13: True type II error versus rela-
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each step.
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Figure 14: True type II error for Qn,ραn com-
puted with respect to the true set at each n,
re-estimation of the covariance parameters at
each step.

servative estimates are in fact based on the coverage probability function and in particular
on high quantiles of this function.

Figure 13 and figure 14 show Type II and relative volume error computed comparing
the conservative estimate to the true set in the case where covariance parameters are re-
estimated at each step. During the first 10 iterations, all strategies except IMSE have small
(less than 1%) type I error, not shown, which becomes equal to zero for all strategies after
iteration 10.

The strategy IMSE is still the worst performer both in terms of true type II error and
of relative volume error, however the remaining strategies do not show big differences. The
tIMSE show the best behavior closely followed by Strategy C,D,A. The differences between
the final estimated set obtained with these four strategies are small and they are mainly
due to a difference in the hyper-parameter estimation. The tIMSE strategy produces more
stable hyper-parameter estimators than Strategy C, where the range parameters decrease
in the last steps. This change leads to smaller more conservative set estimates.

If the covariance hyper-parameters are kept fixed, figure 12 shows that the true type
II error tends to stabilize because the conservative estimate is the best according to the
current model. On the other hand parameter re-estimation leads to a more unstable type
II error which also indicates that the underlying model is adapting to the new observations.

Hyper-parameters re-estimation at each steps might lead to instabilities also in the
maximum likelihood estimators themselves. The MLEs for hyper-parameters in this test
case are quite stable, however further studies are required to better understand the behavior
of such estimators in a sequential framework.
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